Program Status of the Pratt & Whitney RL60 Engine

Total Page:16

File Type:pdf, Size:1020Kb

Program Status of the Pratt & Whitney RL60 Engine Program Status of the Pratt & Whitney RL60 Engine J.R. Bullock, M. Popp, J.R. Santiago Pratt & Whitney Space Propulsion P.O. Box 109600 West Palm Beach, Florida 33410-9600 Abstract Introduction Pratt & Whitney’s RL10 engine, in a variety of There are two versions of the RL10 in models, has been the cryogenic powerplant for production at Pratt & Whitney at this time. The high-energy upper stages in US expendable RL10A-4 powers both the single engine version launch vehicles for over thirty years. In and the dual engine version of the Centaur upper preparation for future vehicle upgrades, Pratt & stage for the Lockheed Martin Atlas II, Atlas III Whitney has started the development of a next and Atlas V vehicles. The RL10B-2 powers the generation cryogenic upper stage engine upper stage of both the Delta III and Delta IV providing higher performance while maintaining vehicles, built by Boeing. As of this writing, 492 the same installation envelope as the RL10. The RL10’s have been produced and have an Pratt & Whitney RL60 is an advanced liquid accumulated 636 in-space firings. oxygen/liquid hydrogen (LOX/LH2) expander cycle engine incorporating several key Payloads have continued to grow in mass over technologies to increase performance and the history of expendable vehicles, both because operability while maintaining RL10 reignition of need and because of improved vehicle capability, life and reliability. capability. The new expendable vehicles have been developed to offer increased payload Engine performance is characterized by a thrust capability at lower launch costs, while range of 40 to 60 k-lbf, with a 10% growth incorporating improvements in reliability and margin, and a specific impulse of 465 seconds. safety. In concert with these vehicle In order to meet the 60 k-lbf thrust requirement, developments, Pratt & Whitney has established a the engine must be operated at much higher plan for development of a next generation chamber pressures than any current expander cryogenic upper stage engine providing higher cycle. This is made possible by the use of a performance while maintaining the same copper tubular combustion chamber liner, a high installation envelope as the RL10. heat load chamber technology specifically developed by Pratt & Whitney for expander The Pratt & Whitney RL60 is an advanced liquid cycle application. oxygen/liquid hydrogen (LOX/LH2) expander cycle engine incorporating several key The first phase of engine development, the RL60 components and technologies to increase demonstrator engine program, is currently under performance and operability. The RL60 way and will demonstrate technology readiness development program will combine existing for a reduced risk full scale development technologies with new technologies either program. The RL60 engine design is defined, developed under Integrated High Payoff Rocket critical design review was passed for the Propulsion Technology (IHPRPT) programs with demonstrator engine in the first quarter of 2002, the US Air Force or independently by Pratt & and the engine program is on plan to conduct full Whitney. It will include components designed power engine tests in 2003. The RL60 and developed specifically for the RL60 by demonstrator phase is approved and fully funded rocket engine propulsion companies outside the by Pratt & Whitney and will serve as a basis for United States. It is being developed to cover a full scale RL60 engine development. broad range of thrust requirements, designed to Furthermore the RL60 demonstrator engine will operate at any thrust setting between 40,000 lbf be available as a testbed for future Air Force and to 65,000 lbf, thus covering a range of potential NASA technology programs. vehicle requirements. Figure 1 shows an 1 overview of existing and planned cryogenic Program Overview upper stage engines including the RL10 and RL60. The RL60 Demonstrator Engine Program is the first phase in development of the RL60 Based on the excellent track record of the RL10 Cryogenic Upper Stage Engine. This program is expander cycle engine, this cycle was selected funded by Pratt & Whitney. Its goal is to for RL60. The expander cycle is inherently safe demonstrate the major components of the RL60 because of its self-limiting power cycle. as a system in full scale at the 60,000 lbf Additionally, because it uses no external operating condition. combustion devices to drive turbomachinery, it is the best approach for in-space re-starts. The This program has its beginnings in the original basic architecture of the RL60 also draws from commercial Cryogenic Advanced Upper Stage studies conducted and lessons learned during the Engine (cCAUSE) program of 1999. This Upper Stage Demonstrator (USD) program, program became the RL50 Engine Program, so awarded to P&W by the Air Force Research designated to identify its 50,000 lbf thrust class Laboratory as part of the IHPRPT initiative. The (ref. 2). During the latter half of 1999 and early USD program encompassed cycle balance and 2000, Pratt & Whitney and Snecma established a component performance trade studies, plan to develop a new cryogenic upper stage component and system design and integration engine that encompassed the requirements and activities, and component testing intended to capabilities of both the RL50 and the Vinci. It lead up to a demonstrator engine. This program was thought that effective cost management and helped identify and/or reinforce the need for economies of scale could be achieved by critical technologies and components, and developing one engine to meet the future needs provided pathfinders for fabrication of US and European expendable launch vehicles. technologies. The USD program also provided a This engine was given the designation key piece of information for an advanced SPW2000, signifying the partnership and the expander engine, namely a test of a full-scale new millennium. Unfortunately, it was not a copper tubular combustion chamber (described program fully embraced by ESA, and was in ref. 1) discontinued in June 2000. Since that event, Pratt & Whitney has re-established its own program, Existing 470 Development now designated the RL60 to identify its design RL60 RL60 465 thrust level. The RL60 Demonstrator Program RL10B-2 MB60 VINCI 180 was initiated at the end of 2000. Fig. 2 provides 460 an overall RL60 program schedule, including the Current Engines 455 cCause, RL50 and SPW2000 efforts preceding RL10A-4-1 RD-0146 (CADB) LE-5A (Japan) the RL60. Specific Impulse - sec 450 LE-5B (Japan) 2X RL10A-4-2 DEC HM7 B (Snecma) 445 Activities: 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Program Development YF-75 (China) cCause Program Planning RL50 Authorization RL50 Development Planning 440 SPW2000 MOU SPW2000 Feasibility Studies 0 10000 20000 30000 40000 50000 60000 70000 ESA Board Decision Thrust - LBs RL60 Business Case Studies Nov 8 Figure 1: Existing and Planned Cryogenic Passport 0 Review Engine Demonstration Upper Stage Engines Design Hardware Fabrication/Assembly Demo Engine Engine Demonstration Test to Test The market for expendable launch vehicles has Full-Scale Development Vehicle Integration not met the predictions made just a few short Design Hardware Fabrication/Assembly First Engine to Test Development Testing years ago. The date envisioned for first launch of Qualification Testing Certification a next generation high energy upper stage engine Production has continued to move to the right. For this Production Engine Deliveries reason the RL60 Development Program has been divided into two parts. The first part, and the Figure 2: RL60 Program Schedule subject of this paper, is the RL60 Demonstrator Engine Program. Following the successful completion of this phase, and the establishment The RL60 Demonstrator Engine incorporates all of launch vehicle commitment, the RL60 Full the design requirements of the full scale Scale Development (FSD) Program will be development engine. However, the Demonstrator initiated. Program will concentrate solely on the “core” 2 components. The RL60 Demonstrator will In order to take advantage of technologies and include the combustion chamber, injector, capabilities throughout the industry, the RL60 regeneratively cooled nozzle and both main includes components designed and fabricated by propellant turbopumps. It will include the highly key non US space propulsion partners. IHI, the reliable RL10 dual direct spark ignition system center of excellence for rocket engine and flight-type thrust control valves. Plumbing turbomachinery in Japan is designing and and on/off valves will be rig type hardware building the main fuel turbopump. CADB of designed to flight-type operational and Russia is responsible for the main LOX performance requirements. The RL60 turbopump. And Volvo Aero of Sweden is Demonstrator will not include the propellant providing the regeneratively cooled (regen) boost pumps or the radiation cooled extendable nozzle incorporating their laser welded sandwich nozzle and its deployment system. technology. Pratt & Whitney is responsible for system design and integration, engine controls Although the Demonstrator Engine does not and combustion devices. include all the components of the full scale development engine, it is being designed with The RL60 Demonstrator Program is well attention to flight-type requirements. Even where underway and has passed its Critical Design program limitations forced the use of less- Review. Hardware is in fabrication and the stringent requirements, the status of the engine majority
Recommended publications
  • Rocket Propulsion Fundamentals 2
    https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force.
    [Show full text]
  • Variations of Solid Rocket Motor Preliminary Design for Small TSTO Launcher
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Space Propulsion 2012 – ID 2394102 Variations of Solid Rocket Motor Preliminary Design for Small TSTO launcher Etienne Dumont Space Launcher Systems Analysis (SART), DLR, Bremen, Germany [email protected] NGL New/Next Generation Launcher Abstract SI Structural Index (mdry / mpropellant) Several combinations of solid rocket motors and ignition SRM Solid Rocket Motor strategies have been considered for a small Two Stage to TSTO Two Stage To Orbit Orbit (TSTO) launch vehicle based on a big solid rocket US Upper Stage motor first stage and cryogenic upper stage propelled by VENUS Vega New Upper Stage the Vinci engine. In order to reach the target payload avg average during the flight performance of about 1400 kg into GTO for the clean s.l. sea level version and 2700 to 3000 kg for the boosted version, the vac vacuum influence of the selected solid rocket motors on the upper 2 + 2 P23 4 P23: two ignited on ground and two with a stage structure has been studied. Preliminary structural delayed ignition designs have been performed and the thrust histories of the solid rocket motor have been tweaked to limit the upper stage structural mass. First stage and booster 1. Introduction combinations with acceptable general loads are proposed. Solid rocket motors (SRM) are commonly used for boosters or launcher first stage. Indeed they can provide high thrust levels while being compact, light and Nomenclature relatively simple compared to a liquid rocket engine Isp specific impulse s providing the same thrust level.
    [Show full text]
  • Basic Analysis of a LOX/Methane Expander Bleed Engine
    DOI: 10.13009/EUCASS2017-332 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE Basic Analysis of a LOX/Methane Expander Bleed Engine ? ? ? Marco Leonardi , Francesco Nasuti † and Marcello Onofri ?Sapienza University of Rome Via Eudossiana 18, Rome, Italy [email protected] [email protected] [email protected] · · †Corresponding author Abstract As present trends in rocket engine development recommend overall simplicity and reliability as the main design driver, while preserving high performance, expander cycle engines based on the oxygen-methane pair have been considered as a possible upper stage option. A closed expander cycle is considered for Vega Evolution upper stage, while there are no studies published in the literature on methane-based expander bleed cycles. A basic cycle analysis is presented to evaluate the performance of an oxygen/methane ex- pander bleed cycle for an engine of 100 kN thrust class. Results show the feasibility of the system and its peculiarities with respect to the better known expander bleed cycle based on hydrogen. 1. Introduction The high chamber pressure required to achieve high specific impulse in liquid propellant rocket engines (LRE), has been efficiently obtained by pump-fed systems. Different solutions have been proposed since the beginning of space age and just a few of them has found its own field of application. In these systems the pumps are driven by gas turbines whose power comes from two possible sources: combustion or cooling system. The different needs for the specific applications (booster, sustainer or upper stage of different classes of rockets) led to classify pump-fed LRE systems in open and closed cycles, which differ because of turbine discharge pressure.14, 16 Closed cycles are those providing the best performance because the whole propellant mass flow rate is exploited in the main chamber.
    [Show full text]
  • Jarvis Heavy Launch Vehicle
    JARVIS HEAVY LAUNCH VEHICLE By Forum Orbiter Italia Version 2.62 – October 2012 USER MANUAL Disclaimer and credits This add-on is provided “as is”, without any kind of warranty; it is compatible with Orbiter 2006-P1 (build 060929) and with Orbiter 2010-P1 (build 100830). Many thanks to Dr. Martin Schweiger, for the Orbiter Space Simulator. For the others developers: You are free to use parts of our work, eg sound and texture, but you must credit us as the original source of your work. FOI Credits - Andrew: add-on conception; rocket textures, meshes and configuration; documentation editing. - Fausto: new launch pad textures, meshes and configuration. - Pete Conrad: engine meshes and textures; Shuttle SRB meshes and textures; “dummy” payload meshes and textures. - FedeX: beta testing. - Dany: “Forum Orbiter Italia” logo. - Ripley: D3D9/D3D11 documentation. Forum Orbiter Italia: http://orbiteritalia.forumotion.com/ Introduction In the mid-eighties, the "Jarvis" project was the last serious attempt to revive the glorious Saturn V rocket, and at the same time, one of the first ideas of an alternative use for the Space Shuttle hardware, many years before the current "Ares", "Direct" and “SLS” projects. The Jarvis rocket combines the powerful Apollo-era F-1 and J-2 engines with Space Shuttle electronics and 8.4 m stages (the same size of the Shuttle External Tank). Later versions, with Space Shuttle Main Engines (SSME) and/or Solid Rocket Boosters (SRB), were proposed, but never realized. Forum Orbiter Italia has developed a complete and versatile family of heavy launchers around these original ideas and projects.
    [Show full text]
  • A Survey of Automatic Control Methods for Liquid-Propellant Rocket Engines
    A survey of automatic control methods for liquid-propellant rocket engines Sergio Pérez-Roca, Julien Marzat, Hélène Piet-Lahanier, Nicolas Langlois, Francois Farago, Marco Galeotta, Serge Le Gonidec To cite this version: Sergio Pérez-Roca, Julien Marzat, Hélène Piet-Lahanier, Nicolas Langlois, Francois Farago, et al.. A survey of automatic control methods for liquid-propellant rocket engines. Progress in Aerospace Sciences, Elsevier, 2019, pp.1-22. 10.1016/j.paerosci.2019.03.002. hal-02097829 HAL Id: hal-02097829 https://hal.archives-ouvertes.fr/hal-02097829 Submitted on 12 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A survey of automatic control methods for liquid-propellant rocket engines Sergio Perez-Roca´ a,c,∗, Julien Marzata,Hel´ ene` Piet-Lahaniera, Nicolas Langloisb, Franc¸ois Faragoc, Marco Galeottac, Serge Le Gonidecd aDTIS, ONERA, Universit´eParis-Saclay, Chemin de la Huniere, 91123 Palaiseau, France bNormandie Universit´e,UNIROUEN, ESIGELEC, IRSEEM, Rouen, France cCNES - Direction des Lanceurs, 52 Rue Jacques Hillairet, 75612 Paris, France dArianeGroup SAS, Forˆetde Vernon, 27208 Vernon, France Abstract The main purpose of this survey paper is to review the field of convergence between the liquid-propellant rocket- propulsion and automatic-control disciplines.
    [Show full text]
  • Materials for Liquid Propulsion Systems
    CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned.
    [Show full text]
  • IAF Committee Briefs
    IAF Committee Briefs July 2021 IAF SPACE PROPULSION TECHNICAL COMMITTEE 1. Introduction/Summary The Space Propulsion Committee addresses sub-orbital, earth to orbit, and in-space propulsion. The general areas considered include both chemical and non-chemical rocket propulsion, and air-breathing propulsion. Typical specific propulsion categories of interest are liquid, solid and hybrid rocket systems, electric, nuclear, solar and other advanced rocket systems, ramjet, scramjet, and various combinations of air-breathing and rocket propulsion. (Copyright SpaceX) The Committee deals with component technologies, propulsion system aspects, the implementation and In China, a project of heavy-lift launch vehicle, for future application of overall propulsion systems and dedicated important missions such as deep-space exploration and test facilities. The Committee is also examining the manned landing on the Moon, has been carried out. A feasibility of new missions made possible by new 500 ton- thrust-class LOX/kerosene rocket engine will propulsion systems and how combinations of pro- be used for the first stage and boosters of the launch pulsion technologies, such as chemical and electrical vehicle, which is also the next generation of large thrust technologies, can be optimized for this purpose. rocket engine in China. The engine employs oxidizer-rich staged-combustion cycle system and after-pump gimbal 2. Latest Developments configuration. The first engine has been manufactured and the sub-systems have been successfully hot-fire Right now, all over the world, a lot of new launchers tested. are appearing with new engines, with first flights just completed or planned for this year or in the next few On the coming first flights, we can underline the arrival years.
    [Show full text]
  • Investigations of Future Expendable Launcher Options
    IAC-11-D2.4.8 Investigations of Future Expendable Launcher Options Martin Sippel, Etienne Dumont, Ingrid Dietlein [email protected] Tel. +49-421-24420145, Fax. +49-421-24420150 Space Launcher Systems Analysis (SART), DLR, Bremen, Germany The paper summarizes recent system study results on future European expendable launcher options investigated by DLR-SART. In the first part two variants of storable propellant upper segments are presented which could be used as a future evolvement of the small Vega launcher. The lower composite consisting of upgraded P100 and Z40 motors is assumed to be derived from Vega. An advanced small TSTO rocket with a payload capability in the range of 1500 kg in higher energy orbits and up to 3000 kg supported by additional strap-on boosters is further under study. The first stage consists of a high pressure solid motor with a fiber casing while the upper stage is using cryogenic propellants. Synergies with other ongoing European development programs are to be exploited. The so called NGL should serve a broad payload class range from 3 to 8 tons in GTO reference orbit by a flexible arrangement of stages and strap-on boosters. The recent SART work focused on two and three-stage vehicles with cryogenic and solid propellants. The paper presents the promises and constraints of all investigated future launcher configurations. Nomenclature TSTO Two Stage to Orbit VEGA Vettore Europeo di Generazione Avanzata D Drag N VENUS VEGA New Upper Stage Isp (mass) specific Impulse s (N s / kg) cog center of gravity M Mach-number - sep separation T Thrust N W weight N g gravity acceleration m/s2 1 INTRODUCTION m mass kg Two new launchers, Soyuz and Vega, are scheduled to q dynamic pressure Pa enter operation in the coming months at the Kourou v velocity m/s spaceport, increasing the range of missions able to be α angle of attack - launched by Western Europe.
    [Show full text]
  • Investigation of a Radial Turbines Compatibility for Small Rocket Engine
    E3S Web of Conferences 197, 11009 (2020) https://doi.org/10.1051/e3sconf/202019711009 75° National ATI Congress Investigation of a Radial Turbines Compatibility for Small Rocket Engine Angelo Leto * CIRA Italian Aerospace Research Center, via Maiorise, 81043 Capua (CE), Italy Abstract. In the radial turbine preliminary design for an expander rocket engine, a comparison was made with axial turbine used in Pratt & Whitney RL10 engine. One of the primary requirements of a liquid propellant rocket engine is the generation of a high thrust, which depends on both the mass flow rate of the propellant and the pressure in the thrust chamber. In expander-cycle engines, which are the subject of the present study, the liquid propellant is first compressed using centrifugal turbo-pumps, then it is used to cool the combustion chamber and the nozzle and, once vaporized, it flows through the turbines used to drive the turbo-pumps. The aim was to demonstrate the greater efficiency of the radial turbine with a reduction of the pressure ratio with respect to the axial turbine. Nomenclature c Absolute Flow Velocity – Chord r Radius h Enthalpy - Rotor Height T Temperature Lms Mean Surface Length u Impeller Tangential Velocity M Mach Number w Relative Velocity Ns Specific Speed Y Young’s Modulus O Mean Throat Width z Number Blades p Pressure Zr Rotor Axial Length q Mean Blade Pitch Greek Letters α Flow angle σr Rotor Blades Elastic Stress β Relative Flow Angle φ Flow Coefficient ƞ Efficiency ψ Loading Coefficient ν Poisson’s ratio ω Frequency ρ Density Subscripts 0 Total h hub 1 Rotor Inlet s shroud 2 Rotor Outlet 1 Introduction The turbine design was carried out in two phases, implementing a meanline analysis model that uses an approximation one-dimensional for the flow through the machine and empirical correlations to estimate the losses, necessary for performance calculation.
    [Show full text]
  • Development of the Liquid Oxygen and Methane M10 Rocket Engine for the Vega-E Upper Stage
    DOI: 10.13009/EUCASS2019-315 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Development of the liquid oxygen and methane M10 rocket engine for the Vega-E upper stage D. Kajon(1), D.Liuzzi (1), C. Boffa (1), M. Rudnykh(1), D. Drigo(1), L. Arione(1), N. Ierardo(2), A. Sirbi(2) (1) Avio S.p.A., Via Ariana, km 5.2, 00034 Colleferro, Italy (2) ESA-ESRIN: Largo Galileo Galilei 1, 00044 Frascati, Italy Abstract In the frame of the VEGA-E preparation programme to improve the competitiveness of VEGA launch service, AVIO is developing a new 10 Tons liquid cryogenic rocket engine called M10. The present work outlines the development status of the M10 rocket engine. The reference configuration for this engine is a full expander cycle using liquid oxygen and methane as propellants; the use of innovative technologies for the upper stage engine will enable the increase of competitiveness of VEGA -E through the reduction of the launch service costs and increase of flexibility. After having performed the Step 1 of the Preliminary Design Review (PDR) at engine level, the development of main engine subsystems (e.g. turbopumps, valves, cardan, igniter, ...) is ongoing and contributes to the design of the first Development Model (DM1) which will be manufactured by end 2019 and subject to hot firing tests. Regarding the core new development of the Thrust Chamber Assembly (TCA), a trade-off between the conventional bi-metallic nickel-copper manufacturing approach and an innovative design based on Additive Layer Manufacturing (ALM) is conducted, based on sub-scale hot firing tests of both configurations.
    [Show full text]
  • AIAA 2003-4912 Technology Investigation for High Area Ratio
    AIAA 2003-4912 Technology Investigation for High Area Ratio Nozzle Concepts G. Hagemann, A. Preuss, F. Grauer, and J. Kretschmer EADS Space Transportation GmbH, Propulsion & Equipments, Munich, Germany M. Frey and R. Ryden Volvo Aero Corporation, Space Propulsion Division, Trollhättan, Sweden R. Stark and D. Zerjeski DLR Lampoldshausen, Institute for Space Propulsion, Hardthausen, Germany 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 20 – 23 July 2003 / Huntsville, Alabama For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191 Technology Investigation for High Area Ratio Nozzle Concepts Gerald Hagemann, Axel Preuss, Frank Grauer, and Joachim Kretschmer, EADS Space Transportation GmbH, Munich 81663, Germany Manuel Frey, and Roland Ryden, Volvo Aero Corporation, Trollhättan 46181, Sweden Ralf Stark, and David Zerjeski, DLR Lampoldshausen, Hardthausen 74219, Germany Bell-type nozzle concepts are state -of-the-art technology for expanding gases towards high exhaust velocities. Alternative nozzle concepts have been investigated, although none of them has achieved full-scale flight hardware status. These concepts include altitude adaptive concepts for first stage application, and concepts with reduced length for upper stage application. Both applications have the common requirement that for the thrust chamber design, accurate prediction models for the wall pressure evolution, the wall heat transfer, and the side-load characteristic are of importance. To enhance corresponding design models, the need of well tailored subscale tests at elevated thrust levels has been identified and expressed by the three partners EADS Space Transportation (former Astrium, Space Infrastructure), DLR Lampoldshausen, and Volvo Aero Corporation.
    [Show full text]
  • Cyclical Visits to Mars Via Astronaut Hotels
    Cyclical Visits to Mars via Astronaut Hotels Phase I Final Report Global Aerospace Corporation 30 November 2000 Universities Space Research Association Research Grant No.: 07600-049 GAC Report 510-04911-007 Global Aerospace Corporation 711 W. Woodbury Road, Suite H Altadena, CA 91001-5327 USA Telephones: +1 (626) 345-1200 (626) 303-9500, Fax (626) 296-0929 Email: [email protected] Web: http://www.gaerospace.com Abstract Global Aerospace Corporation is developing a revolutionary concept for an overall interplanetary rapid transit system architecture for human transportation between Earth and Mars which supports a sustained Mars base of 20 people circa 2035. This innovative design architecture relies upon the use of small, highly autonomous, solar-electric-propelled space ships, we dub Astrotels for astronaut hotels and hyperbolic rendezvous between them and the planetary transport hubs using even smaller, fast-transfer, aeroassist vehicles we shall call Taxis. Astrotels operating in cyclic orbits between Earth, Mars and the Moon and Taxis operating on rendezvous trajectories between Astrotels and transport hubs or Spaceports will enable low-cost, low-energy, frequent and short duration trips between these bodies. This proposed effort provides a vision of a far off future which establishes a context for near-term technology advance, systems studies, robotic Mars missions and human spaceflight. In this fashion Global Aerospace Corporation assists the NASA Enterprise for Human Exploration and Development of Space (HEDS) in all four of its goals, namely (1) preparing to conduct human missions of exploration to planetary and other bodies in the solar system, (2) expanding scientific knowledge (3) providing safe and affordable access to space, and (4) establishing a human presence in space.
    [Show full text]