Des Géométries Étatsuniennes À Partir De L'étude De L'american

Total Page:16

File Type:pdf, Size:1020Kb

Des Géométries Étatsuniennes À Partir De L'étude De L'american Des géométries étatsuniennes à partir de l’étude de l’American Mathematical Society : 1888-1920 Samson Duran To cite this version: Samson Duran. Des géométries étatsuniennes à partir de l’étude de l’American Mathematical Society : 1888-1920. Histoire, Philosophie et Sociologie des sciences. Université Paris Saclay (COmUE), 2019. Français. NNT : 2019SACLS207. tel-02505814 HAL Id: tel-02505814 https://tel.archives-ouvertes.fr/tel-02505814 Submitted on 11 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèsepb Des géométriespb de doctorat étatsuniennes à partirpb NNT: 2019SACLS207 de l’étude de l’Americanpb Mathematical Society : 1888–1920pb Thèse de doctorat de l’Université Paris-Saclay préparée à l’Université Paris-Sud École doctorale No 578 Sciences de l’Homme et de la Société (ED SHS) Spécialité de doctorat: Histoire des sciences et des techniques Thèse dirigée par Hélène Gispert et Renaud Chorlay, présentée et soutenue à Orsay, le 2 juillet 2019, par: Samson Duran Composition du jury: Présidente Rossana Tazzioli PR, Université de Sciences et Technologie Lille 1 Laboratoire Paul Painlevé Rapporteur Philippe Nabonnand PR, Université de Lorraine Archives Henri-Poincaré Rapportrice Karen Parshall Professor, Université de Virginie Corcoran Department of History Examinateur Pierre Pansu PR, Université Paris-Sud Département de Mathématiques d’Orsay Co-directrice de thèse Hélène Gispert Professeuse émérite, Université Paris-Sud GHDSO-EST Co-directeur de thèse Renaud Chorlay MCF, ÉSPÉ de l’académie de Paris Remerciements Je tiens d’abord à remercier la directrice et le directeur de cette thèse, Hélène Gispert et Renaud Chorlay, qui ont été présent·e·s tout au long de ces recherches et dont les conseils, les discussions, les relectures m’ont permis de construire ce travail. Merci aussi à Karen Parshall et Philippe Nabonnand qui ont accepté de rapporter cette thèse et qui ont aussi largement participé à mes réflexions de recherche. Merci également à Rossana Tazzioli et Pierre Pansu pour leur participation au jury et leur intérêt pour mon travail. Merci enfin à Annick Jacq et Renaud d’Enfert d’avoir accepté de faire partie du comité de suivi de ma thèse. Avant le doctorat, ma formation en histoire des sciences a été rendue possible grâce à de nombreuses personnes que je souhaite ici remercier, depuis Maryvonne Spiesser et Sébastien Maronne lors de mon parcours en mathématiques à l’université de Toulouse, jusqu’à l’ensemble des personnes chargées de l’enseignement et de l’organisation du Master Lophiss de Paris 7, pour les années 2011-2013. Toutes ces personnes m’ont permis de découvrir et d’apprécier des disciplines nouvelles pour moi et de me diriger vers l’une d’elles : l’histoire des mathématiques. Je voudrais donc remercier sincèrement mes directeurs de mémoires de M1 et de M2 (respectivement Ivahn Smadja et Renaud Chorlay) mais aussi tou·te·s les enseignant·e·s d’histoire ou d’histoire des mathématiques de ces deux années et les organisateur·rice·s des groupes de travail sur les mathématiques des xixe et xxe siècles. La suite de ma formation, mais aussi la découverte de l’histoire des sciences dans un cadre professionnel, se sont déroulées auprès des membres de mon laboratoire, le GHDSO-EST, à l’Université Paris-Sud. Toutes les personnes y travaillant ont ainsi participé à mon travail de thèse ; je les remercie pour leur accueil, leur gentillesse, leur intérêt pour mon travail et leur aide. Parmi elles, je remercie tout particulièrement mes camarades doctorant·e·s (Aurélie, Florian, Laura, Laure, Matthias, Marie), Véronique Leday qui administre le laboratoire et dont le travail m’a été souvent très précieux, puis les titulaires du laboratoire qui ont régulièrement pu m’aider et m’accompagner dans mon travail de recherche comme d’enseignement (Delphine, Hélène, Virginie et Philippe). Je tiens aussi, en les remerciant plus généralement, à souligner le travail souvent invisibilisé de toutes les personnes que je ne connais pas forcément et qui par leurs activités ont permis le déroulement de mes travaux de recherches (dans le cadre de bibliothèques, de syndicats, de lieux de restauration, d’écoles doctorales, d’universités, d’archives, etc.). En particulier, je remercie Cécile et Pascaline de la caféterie de Paris 7 ainsi que Sophie Havard de l’administration de 3 l’Université Paris-Sud, dont le soutien m’a été très précieux lors d’un conflit avec mes employeurs. Je remercie aussi tou·te·s les chercheur·se·s que j’ai pu croiser ou rencontrer (en séminaires, journées d’étude, écoles d’été, etc.) dont les exposés et les conversations ont pu m’aider à construire mes propres réflexions, et plus largement tou·te·s les collègues avec qui j’ai travaillé depuis le début de mes recherches en doctorat. En particulier, je remercie les membres de l’ANR Cirmath, qui ont toujours été bienveillants avec mon travail, et les organisatrices du Séminaire femmes et savoirs : Pratiques et pouvoir qui a été très enrichissant pour ma démarche scientifique. Bien que mon travail comme enseignant ne soit pas directement lié à mon travail de recherche en thèse, je souhaite ici remercier toutes les personnes y ayant participé, à l’Université Paris 11 et à l’Université Paris 8. Je remercie donc mes collègues enseignant·e·s d’Orsay, de l’équipe MITSIC à Saint-Denis, les personnes en charge de l’administration, de l’organisation des cours, des locaux, des services de reprographie, etc. Enfin, je remercie les étudiant·e·s pour leur participation à ces cours, qui m’a permis d’apprécier grandement cette partie de mon travail. Enfin, je remercie plus chaleureusement mes camarades doctorant·e·s (ou maintenant ex doctorant·e·s) croisé·e·s pendant ces années de thèse pour des moments vécus ensemble qui ont rendu mon travail plus intéressant mais surtout plus agréable ! Parmi eux·lles je cite avec plaisir Anne-Sandrine, Barnabé, Charlotte, Dalia, Eleonora, Emmylou, Elena, François, Guillaume, Isabelle, Martin, Simon, Thomas, Yannick, mais il y en aurait bien d’autres. Plus personnellement, je remercie mes proches, ma famille, mes ami·e·s, mes colocataires, avec une pensée particulière pour les personnes qui ont participé à ce travail de thèse, que ce soit en relisant des morceaux de ma thèse (mes parents principalement, qui ont fait de nombreuses relectures pendant toute la thèse, mais aussi Alix, Cassandre, Marie, Mildred, Pauline, Selma, Simon, Victor), en m’apprenant et en m’aidant à coder (Syka, Quentin), en m’aidant à mettre mon texte en page (Clovis), en m’aidant pour mes enseignements (Simon, Reda, Mélanie) ou encore en partageant des moments de travail universitaire en bibliothèque (Maryam, David, Angèle, Hélène, Colette, Vincent et d’autres encore !). 4 Résumé : En 1888, trois étudiants créent une société mathématique à New York. Six années plus tard, cette société devient nationale et est renommée l’American Mathematical Society (AMS). En 1920, elle regroupe des centaines de membres, publie de nombreux articles et recensions et organise régulièrement des réunions mathématiques dans le pays. Cette thèse propose une histoire sociale de la Géo- métrie à partir de l’étude des publications parues dans ses journaux jusqu’en 1920. Elle a pour objet de répondre à deux problématiques principales : comment s’organisent et se distribuent les activités de Géométrie en lien avec la Société et quels transferts de connaissances géométriques sont mis en place depuis ou vers les États-Unis d’Amérique ? Après avoir déterminé ce que la catégorie de Géométrie signifiait pour les responsables de plusieurs répertoires de classements mathématiques, j’analyserai les formations reçues et les enseignements donnés par des membres de l’AMS, les recensions publiées dans son Bulletin et les rencontres mathématiques tenues en son cadre. Les descriptions des activités géométriques portées par l’AMS, ainsi que du contexte dans lesquelles elles s’inscrivent, per- mettront alors d’établir une cartographie de la Géométrie. Nous verrons comment la caractériser, tant d’un point de vue disciplinaire que sociologique. Je propose aussi de déterminer les personnes dominantes pour la Géométrie, dans le cadre de la Société. Plus précisément, il s’agira de comprendre qui détient le plus de pouvoir, scientifique et institutionnel, selon les différentes formes qu’il peut prendre à l’AMS. Parmi les acteurs ainsi mis en lumière, trois d’entre eux (V. Snyder, L. P. Eisenhart et E. J. Wilczynski) feront l’objet d’études spécifiques. Cela permettra de traiter à l’échelle individuelle les deux problématiques jusqu’alors envisagées à l’échelle d’une institution. Pour les deux premiers cas, nous nous demanderons quels résultats mathématiques non étatsuniens sont réutilisés dans leurs travaux, tandis que le troisième cas nous permettra de comprendre comment ses recherches sont diffusées à l’étranger. Mots-clés États-Unis d’Amérique, Géométries, American Mathematical Society, Histoire des institutions scientifiques, Histoire sociale des sciences, Histoire des géométries 5 US American geometries from the study of the American
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • An Historical Review of the Theoretical Development of Rigid Body Displacements from Rodrigues Parameters to the finite Twist
    Mechanism and Machine Theory Mechanism and Machine Theory 41 (2006) 41–52 www.elsevier.com/locate/mechmt An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist Jian S. Dai * Department of Mechanical Engineering, School of Physical Sciences and Engineering, King’s College London, University of London, Strand, London WC2R2LS, UK Received 5 November 2004; received in revised form 30 March 2005; accepted 28 April 2005 Available online 1 July 2005 Abstract The development of the finite twist or the finite screw displacement has attracted much attention in the field of theoretical kinematics and the proposed q-pitch with the tangent of half the rotation angle has dem- onstrated an elegant use in the study of rigid body displacements. This development can be dated back to RodriguesÕ formulae derived in 1840 with Rodrigues parameters resulting from the tangent of half the rota- tion angle being integrated with the components of the rotation axis. This paper traces the work back to the time when Rodrigues parameters were discovered and follows the theoretical development of rigid body displacements from the early 19th century to the late 20th century. The paper reviews the work from Chasles motion to CayleyÕs formula and then to HamiltonÕs quaternions and Rodrigues parameterization and relates the work to Clifford biquaternions and to StudyÕs dual angle proposed in the late 19th century. The review of the work from these mathematicians concentrates on the description and the representation of the displacement and transformation of a rigid body, and on the mathematical formulation and its progress.
    [Show full text]
  • Geometric Algebras for Euclidean Geometry
    Geometric algebras for euclidean geometry Charles Gunn Keywords. metric geometry, euclidean geometry, Cayley-Klein construc- tion, dual exterior algebra, projective geometry, degenerate metric, pro- jective geometric algebra, conformal geometric algebra, duality, homo- geneous model, biquaternions, dual quaternions, kinematics, rigid body motion. Abstract. The discussion of how to apply geometric algebra to euclidean n-space has been clouded by a number of conceptual misunderstandings which we first identify and resolve, based on a thorough review of cru- cial but largely forgotten themes from 19th century mathematics. We ∗ then introduce the dual projectivized Clifford algebra P(Rn;0;1) (eu- clidean PGA) as the most promising homogeneous (1-up) candidate for euclidean geometry. We compare euclidean PGA and the popular 2-up model CGA (conformal geometric algebra), restricting attention to flat geometric primitives, and show that on this domain they exhibit the same formal feature set. We thereby establish that euclidean PGA is the smallest structure-preserving euclidean GA. We compare the two algebras in more detail, with respect to a number of practical criteria, including implementation of kinematics and rigid body mechanics. We then extend the comparison to include euclidean sphere primitives. We arXiv:1411.6502v4 [math.GM] 23 May 2016 conclude that euclidean PGA provides a natural transition, both scien- tifically and pedagogically, between vector space models and the more complex and powerful CGA. 1. Introduction Although noneuclidean geometry of various sorts plays a fundamental role in theoretical physics and cosmology, the overwhelming volume of practical science and engineering takes place within classical euclidean space En. For this reason it is of no small interest to establish the best computational model for this space.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Intro to Line Geom and Kinematics
    TEUBNER’S MATHEMATICAL GUIDES VOLUME 41 INTRODUCTION TO LINE GEOMETRY AND KINEMATICS BY ERNST AUGUST WEISS ASSOC. PROFESSOR AT THE RHENISH FRIEDRICH-WILHELM-UNIVERSITY IN BONN Translated by D. H. Delphenich 1935 LEIPZIG AND BERLIN PUBLISHED AND PRINTED BY B. G. TEUBNER Foreword According to Felix Klein , line geometry is the geometry of a quadratic manifold in a five-dimensional space. According to Eduard Study , kinematics – viz., the geometry whose spatial element is a motion – is the geometry of a quadratic manifold in a seven- dimensional space, and as such, a natural generalization of line geometry. The geometry of multidimensional spaces is then connected most closely with the geometry of three- dimensional spaces in two different ways. The present guide gives an introduction to line geometry and kinematics on the basis of that coupling. 2 In the treatment of linear complexes in R3, the line continuum is mapped to an M 4 in R5. In that subject, the linear manifolds of complexes are examined, along with the loci of points and planes that are linked to them that lead to their analytic representation, with the help of Weitzenböck’s complex symbolism. One application of the map gives Lie ’s line-sphere transformation. Metric (Euclidian and non-Euclidian) line geometry will be treated, up to the axis surfaces that will appear once more in ray geometry as chains. The conversion principle of ray geometry admits the derivation of a parametric representation of motions from Euler ’s rotation formulas, and thus exhibits the connection between line geometry and kinematics. The main theorem on motions and transfers will be derived by means of the elegant algebra of biquaternions.
    [Show full text]
  • LONG-TERM HISTORY and EPHEMERAL CONFIGURATIONS Catherine Goldstein
    LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS Catherine Goldstein To cite this version: Catherine Goldstein. LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS. Interna- tional Congress of Mathematicians, Aug 2018, Rio de Janeiro, Brazil. pp.487-522. hal-02334505 HAL Id: hal-02334505 https://hal.archives-ouvertes.fr/hal-02334505 Submitted on 29 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS CATHERINE GOLDSTEIN Abstract. Mathematical concepts and results have often been given a long history, stretching far back in time. Yet recent work in the history of mathe- matics has tended to focus on local topics, over a short term-scale, and on the study of ephemeral configurations of mathematicians, theorems or practices. The first part of the paper explains why this change has taken place: a renewed interest in the connections between mathematics and society, an increased at- tention to the variety of components and aspects of mathematical work, and a critical outlook on historiography itself. The problems of a long-term history are illustrated and tested using a number of episodes in the nineteenth-century history of Hermitian forms, and finally, some open questions are proposed.
    [Show full text]
  • Prize Is Awarded Every Three Years at the Joint Mathematics Meetings
    AMERICAN MATHEMATICAL SOCIETY LEVI L. CONANT PRIZE This prize was established in 2000 in honor of Levi L. Conant to recognize the best expository paper published in either the Notices of the AMS or the Bulletin of the AMS in the preceding fi ve years. Levi L. Conant (1857–1916) was a math- ematician who taught at Dakota School of Mines for three years and at Worcester Polytechnic Institute for twenty-fi ve years. His will included a bequest to the AMS effective upon his wife’s death, which occurred sixty years after his own demise. Citation Persi Diaconis The Levi L. Conant Prize for 2012 is awarded to Persi Diaconis for his article, “The Markov chain Monte Carlo revolution” (Bulletin Amer. Math. Soc. 46 (2009), no. 2, 179–205). This wonderful article is a lively and engaging overview of modern methods in probability and statistics, and their applications. It opens with a fascinating real- life example: a prison psychologist turns up at Stanford University with encoded messages written by prisoners, and Marc Coram uses the Metropolis algorithm to decrypt them. From there, the article gets even more compelling! After a highly accessible description of Markov chains from fi rst principles, Diaconis colorfully illustrates many of the applications and venues of these ideas. Along the way, he points to some very interesting mathematics and some fascinating open questions, especially about the running time in concrete situ- ations of the Metropolis algorithm, which is a specifi c Monte Carlo method for constructing Markov chains. The article also highlights the use of spectral methods to deduce estimates for the length of the chain needed to achieve mixing.
    [Show full text]
  • The First One Hundred Years
    The Maryland‐District of Columbia‐Virginia Section of the Mathematical Association of America: The First One Hundred Years Caren Diefenderfer Betty Mayfield Jon Scott November 2016 v. 1.3 The Beginnings Jon Scott, Montgomery College The Maryland‐District of Columbia‐Virginia Section of the Mathematical Association of America (MAA) was established, just one year after the MAA itself, on December 29, 1916 at the Second Annual Meeting of the Association held at Columbia University in New York City. In the minutes of the Council Meeting, we find the following: A section of the Association was established for Maryland and the District of Columbia, with the possible inclusion of Virginia. Professor Abraham Cohen, of Johns Hopkins University, is the secretary. We also find, in “Notes on the Annual Meeting of the Association” published in the February, 1917 Monthly, The Maryland Section has just been organized and was admitted by the council at the New York meeting. Hearty cooperation and much enthusiasm were reported in connection with this section. The phrase “with the possible inclusion of Virginia” is curious, as members from all three jurisdictions were present at the New York meeting: seven from Maryland, one from DC, and three from Virginia. However, the report, “Organization of the Maryland‐Virginia‐District of Columbia Section of the Association” (note the order!) begins As a result of preliminary correspondence, a group of Maryland mathematicians held a meeting in New York at the time of the December meeting of the Association and presented a petition to the Council for authority to organize a section of the Association in Maryland, Virginia, and the District of Columbia.
    [Show full text]
  • Scientific Workplace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra
    Scientific WorkPlace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra (-l +lr,:znt:,-1 + 2r) ,..,_' '"""""Ke~r~UrN- r o~ r PooiliorK 1.931'J1 Po6'lf ·1.:1l26!.1 Pod:iDnZ 3.881()2 UfW'IICI(JI)( -2.801~ ""'"""U!NecteoZ l!l!iS'11 v~ 0.7815399 Animated plots ln spherical coordln1tes > To make an anlm.ted plot In spherical coordinates 1. Type an expression In thr.. variables . 2 WMh the Insertion poilt In the expression, choose Plot 3D The next exampfe shows a sphere that grows ftom radius 1 to .. Plot 3D Animated + Spherical The Gold Standard for Mathematical Publishing Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in LAT£X. You choose to print with or without LATEX typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 20 and 30 plots, rotate, move, and fly through 3D plots, create 3D implicit plots, and more. MuPAD' Pro MuPAD Pro is an integrated and open mathematical problem­ solving environment for symbolic and numeric computing. Visit our website for details. cK.ichan SOFTWARE , I NC. Visit our website for free trial versions of all our products. www.mackichan.com/notices • Email: info@mac kichan.com • Toll free: 877-724-9673 It@\ A I M S \W ELEGRONIC EDITORIAL BOARD http://www.math.psu.edu/era/ Managing Editors: This electronic-only journal publishes research announcements (up to about 10 Keith Burns journal pages) of significant advances in all branches of mathematics.
    [Show full text]
  • Emily Greene Balch: Crusader for Peace and Justice Tara S
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2002 Emily Greene Balch: Crusader For Peace and Justice Tara S. Lambert Follow this and additional works at: http://mds.marshall.edu/etd Part of the History of Gender Commons, Social History Commons, United States History Commons, and the Women's History Commons Recommended Citation Lambert, Tara S., "Emily Greene Balch: Crusader For Peace and Justice" (2002). Theses, Dissertations and Capstones. Paper 700. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. Emily Greene Balch: Crusader For Peace and Justice Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirement for the Degree of Master of Arts History By Tara S. Lambert Marshall University Huntington, West Virginia May 2002 Acknowledgements First and foremost, I wish to thank my husband Val and my children, Devon, Jordan and Meghan for their support while I have worked on this project the past two years. Thanks Mom! (Dr. G. Frances Gibser) I hope this meets your expectations. My thesis committee at Marshall University: Dr. Frances Hensley, Dr. Montserrat Miller and Dr. David Duke. Thank you so much for taking time out of your busy teaching schedules to answer questions and for guiding me in the writing process. I also wish to thank Professor Jean Edward Smith, visiting John Marshall Professor of Political Science, for allowing me the privilege of working as his research assistant on Grant and other publications as I have learned much about writing and research from the experience.
    [Show full text]
  • History of Mathematics
    SIGMAA – History of Mathematics Joint meeting of: British Society for the History of Mathematics Canadian Society for the History and Philosophy of Mathematics History of Mathematics Special Interest Group of the MAA (HOMSIGMAA) Philosophy of Mathematics Special Interest Group of the MAA (POMSIGMAA) Marriott Wardman Park, Washington, D.C. Wednesday, August 5 8:20 MAA Centennial Lecture #1 - Room: Salon 2/3 9:30 Hedrick Lecture #1 - Room: Salon 2/3 Session TCPS#1A: History of Mathematics – Room: Washington 4 Moderator: Amy Ackerberg-Hastings 10:30 Amy Shell-Gellasch, Montgomery College, Maryland Ellipsographs: Drawing Ellipses and the Devices in the Smithsonian Collection 11:00 Peggy Aldrich Kidwell, National Museum of American History, Smithsonian Institution Engaging Minds – Charter Members of the MAA and the Material Culture of American Mathematics 11:30 Florence Fasanelli The History of Mathematics in Washington, D.C. Session TCPS#1B: History of Mathematics – Room: Washington 5 Moderator: Danny Otero 10:30 Cathleen O’Neil Eisenhower, the Binomial Theorem, and the $64,000 Question 11:00 S. Roberts John Horton Conway: Certainly a Piece of History 11:30 E. Donoghue A Pair of Early MAA Presidents = A Pair of Mathematics Historians: Florian Cajori and David Eugene Smith 12:00 Lunch Break Session TCPS#1C: History and Philosophy of Mathematics – Room: Washington 4 Moderator: Jim Tattersall 1:00 Charles Lindsey Doing Arithmetic in Medieval Europe 1:30 Travis D. Williams, University of Rhode Island Imagination and Reading the Third Dimension in Early Modern Geometry 2:00 Christopher Baltus, SUNY Oswego The Arc Rampant in 1673: an Early Episode in the History of Projective Geometry 2:30 Andrew Leahy William Brouncker’s Rectification of the Semi-Cubical Parabola Session TCPS#1D: History and Philosophy of Mathematics – Room: Washington 5 Moderator: Dan Sloughter 1:30 Ann Luppi von Mehren, Arcadia University Inspiration for Elementary Mathematics Descriptions from a “Heritage” Reading (in the sense of Grattan-Guinness) of “On the Nonexistent” by Gorgias 2:00 Thomas Q.
    [Show full text]
  • Projective Geometric Algebra: a New Framework for Doing Euclidean Geometry
    Projective geometric algebra: A new framework for doing euclidean geometry Charles G. Gunn Raum+Gegenraum Falkensee, Germany [email protected] Abstract both conceptually and practically. We introduce projective geometric algebra (PGA), a mod- ern, coordinate-free framework for doing euclidean geom- 2 Feature list for doing euclidean etry featuring: uniform representation of points, lines, and planes; robust, \parallel-safe" join and meet oper- geometry ations; compact, polymorphic syntax for euclidean for- The standard approach (VLAAG) has proved itself to mulas and constructions; a single intuitive \sandwich" be a robust and resilient toolkit. Countless engineers form for isometries; native support for automatic differ- and developers use it to do their jobs. Why should entiation; and tight integration of kinematics and rigid they look elsewhere for their needs? On the other hand, body mechanics. Inclusion of vector, quaternion, dual long-time acquaintance and habit can blind craftsmen to quaternion, and exterior algebras as sub-algebras simpli- limitations in their tools, and subtly restrict the solutions fies the learning curve and transition path for experienced that they look for and find. Many programmers have practitioners. On the practical side, it can be efficiently had an \aha" moment when learning how to use the implemented, while its rich syntax enhances program- quaternion product to represent rotations without the ming productivity. The basic ideas are introduced in the use of matrices, a representation in which the axis and 2D context; the 3D treatment focus on selected topics. strength of the rotation can be directly read off of the four Advantages to traditional approaches are collected in a quaternion coordinates rather than laboriously extracted table at the end.
    [Show full text]