Sociosexual Interactions in Rats: Are They Relevant for Understanding Human Sexual Behavior?

Total Page:16

File Type:pdf, Size:1020Kb

Sociosexual Interactions in Rats: Are They Relevant for Understanding Human Sexual Behavior? INT.J.PSYCHOL.RES. 2016; 9 (Special Issue): 76-95 Sociosexual Interactions in Rats: Are They Relevant for Understanding Human Sexual Behavior? Interacción Sociosexual en ratas: ¿son relevantes para comprender el comportamiento Sexual humano? R e v i e w a a Xi Chu * and Anders Ågmo a Department of Psychology, University of Tromsø, Norway. ARTICLE INFO ABSTRACT Article history: When a prolonged observation of groups of rats in a seminatural Received: 18-03-2016 environment is used as testing procedure, different behavioral patterns are shown Revised: 23-05-2016 compared with what observed in a pair housed in a small cage. Males and females Accepted: 26-05-2016 copulate simultaneously, they show a promiscuously and random copulatory pattern. Females remain completely receptive from the first lordosis displayed in the Key words: period of behavioral estrus until the last. There is no reduction in paracopulatory representative design, behaviors and no increase in rejections towards the end of estrus. Female seminatural paracopulatory behavior and receptivity change in a most abrupt way at both environment, sexual initiation and termination of behavioral estrus. It appears that, in the seminatural behavior, social environment, males copulate in bouts, and males do not pursue the females unless behavior, rat. they are fully receptive. Non-sexual, social behavior including affiliative and nonaffiliative interaction among rats is rather unrelated to sexual activities in both sex. RESUMEN Cuando una observación prolongada de grupos de ratas en ambientes seminaturales es usada como procedimiento de evaluación, diferentes patrones conductuales se muestran en comparación con lo que se observa con una pareja en una jaula pequeña. Machos y hembras copulan simultáneamente, muestran promiscuidad y un patrón aleatorio de copulación. Las hembras permanecen Palabras clave: diseño completamente receptivas desde su primera lordosis desplegada en el periodo de representativo, comportamiento de celo hasta el último. No hay una reducción de comportamientos ambiente seminatural, para-copulatorios y no hay incremento en el rechazo hacia el final del celo. Las conducta sexual, conductas para-copulatorias en hembras y la receptividad cambian de la manera conducta social y rata. más abrupta tanto al iniciarse como al terminarse la conducta de celo. Al parecer, en un ambiente seminatural, los machos copulan en peleas y no persiguen a las hembras a menos que ellas estén totalmente receptivas. Conductas sociales no sexuales, incluidas las interacciones afiliativas y no afiliativas entre ratas, no están relacionadas con actividades sexuales en ambos sexos. *Corresponding author: Xi Chu, Department of Psychology, University of Tromsø, Huginbakken 32, 9037 Tromsø, Norway. Fax: +47 77 64 52 91. Tlf: +47 77 64 92 13. Email address: [email protected] * ISSN printed 2011-2084 ISSN electronic 2011-2079 DOI: 10.21500/20112084.2339 C or re 76 sp on di ng R E V I E W INTERNATIONAL JOURNAL OF PSYCHOLOGICAL RESEARCH Sociosexual Interactions in Rats 1. INTRODUCTION observed. Basing notions of function, or of adaptive value, on data from an entirely artificial context is In most laboratory studies of animal behavior, extremely risky. we do not want to limit our conclusions to the specific A representative design is particularly individuals observed. Rather we wish to generalize our important when behavior is at the forefront. In studies findings to the population from which our experimental of the neurobiological mechanisms controlling a subjects were drawn. Likewise, we would often like to behavior pattern, for example the lordosis posture in the generalize our results to situations different from the female rodent or the display of paracopulatory specific procedure employed in the laboratory. These behavior, the specific procedure is probably basic notions apply to all fields of behavioral inquiry, but inconsequential. Silencing of the estrogen receptor α in we will focus on the field of rodent sexual behavior. the ventromedial nucleus of the hypothalamus will Thus, if we happened to study the structure of strongly reduce these behaviors both in a standard copulatory behavior in ten opposite-sex pairs of rats, we copulation test (Spiteri et al., 2010) and in a seminatural would like to believe that the structure determined in our environment (Snoeren et al., 2015), just to mention an pairs would apply also to other pairs of rats. We assume example. that this is the case as long as we have a random The concept of representative design is sample of rats. equivalent to what frequently is called external validity. A different question is whether the structure of Sometimes the term ecological validity is used instead. copulatory behavior in our pairs, observed for a short This, however, is most unfortunate since ecological time in a standard observation cage, would be similar if validity within the Brunswikian framework refers to the we instead observed them for a long time in a large, predictive reliability of a stimulus, and not to the complex environment. This we cannot know until we generalizability of data from a specific experimental have performed such observations. We could also ask procedure (Brunswik & Kamiya, 1953). Regardless of ourselves whether the structure of copulatory this, we will begin with an overview of some of the non- interactions observed in opposite-sex pairs would be representative designs used in studies of sociosexual similar to that observed when several males had the behaviors in rats. Then we will outline some opportunity to copulate with the same female, or when observations on the sociosexual behavior in a several females copulated with the same male, or when seminatural environment, incorporating the basic several males and several females copulated with elements of rats’ natural habitat. We will also highlight whomever they wished. Again, we would need to several of the differences between our data and some perform all these observations in order to determine if notions derived from studies in non-representative behavioral structures indeed are generalizable from procedures. one context to another. Many years ago, it was suggested that in order 2. RATS’ NATURAL HABITAT: PHYSICAL AND to generalize research findings to all possible contexts SOCIAL ASPECTS we need to employ a representative design (Brunswik, 1955). In parallel to the need of a representative sample Rats are as cosmopolitan as humans. Their of individuals from the population we wish to generalize habitat range from the skyscrapers on Manhattan to the to, a representative design means a random sample of garbage dumps in Calcutta, and from the research all the possible contexts we wish to generalize to. This stations in the Antarctic to the tropical rain forests of the is certainly quite impractical, particularly when applied Amazon. It is, consequently, impossible to make a to animal behavior, and when we wish to generalize to specific description of rats’ natural, physical habitat. It contexts outside the laboratory, for example to could probably be maintained that any setup includes conditions in the wild. Nevertheless, the Brunswikian some of the physical elements of rats’ natural habitat, spirit has been applied to studies of animal behavior and that there is none that can include them all. (Petrinovich, 1979; Petrinovich & Patterson, 1980). An There seems to be far less variability in the approximation to a representative design in animal social aspects of rats’ natural habitat. Wild rats live in behavior studies can be achieved by including as many groups, and occupy a rather extensive area for their elements as possible of the animals’ natural habitat in daily activities and share elaborate burrows with the laboratory setting. This would at least make it tunnels and chambers (Calhoun, 1962a). A typical possible to accurately describe complex behavior organization of a group of rats consists of several patterns and formulate hypotheses concerning the females, a small number of males, and offspring functional importance of the behavioral structures (McClintock, 1987). Studies involving wild rats are Chu and Ågmo (2016) int.j.psychol.res. 9 (Special Issue) PP. 76 - 95 77 R E S E A R C H INTERNATIONAL JOURNAL OF PSYCHOLOGICAL RESEARCH Sociosexual Interactions in Rats usually conducted in a field with a native rat pen. Their 3. EXAMPLES OF PROCEDURES COMMONLY sociosexual interaction has been described earlier by USED IN THE LABORATORY Calhoun (1962a). Approximately one day prior to a wild female rat enters behavioral estrus, she drags her 3.1 Standard copulation cage anogenital region over the soil around trees, bushes, The shape and size of the enclosure used for and at both sides of a burrow to mark her scent. Shortly studying sexual behavior is varied, but it is generally after, male rats notice the female scent and they mark rather small, e.g. a rectangular steel cage with a their own scent as well. The female rat wanders beyond dimension of 40 × 60 cm was used by Ågmo (1997), the limits of her normal home range and actively search and another cage of 50 × 80 cm was used by males. No copulatory behavior is observed before she Madlafousek & Hliňák (1977). This setup is commonly is fully receptive, but she copulates with multiple males used for studying social and sexual interactions during the entire period of estrus. As a consequence, between pairs of opposite sex individuals (Figure 1), many of the males involving in this group sex and it is suitable to test for behaviors in both sexually successfully copulate with the estrous female naïve and experienced animals. (Robitaille & Bouvet, 1976). In fact, multiple paternity appears to be common in wild rat populations (Miller, Russell, MacInnes, Abdelkrim, and Fewster, 2010). Figure 1. Photograph of a standard copulation cage. Compared with wild rats’ living conditions, receptive females than in that of a single female. The observing the behavioral patterns of a pair of rats in this copulatory acts of the males were distributed among kind of cage cannot be considered to be an externally multiple females but not all females received valid procedure.
Recommended publications
  • Highlights of the Museum of Zoology Highlights on the Blue Route
    Highlights of the Museum of Zoology Highlights on the Blue Route Ray-finned Fishes 1 The ray-finned fishes are the most diverse group of backboned animals alive today. From the air-breathing Polypterus with its bony scales to the inflated porcupine fish covered in spines; fish that hear by picking up sounds with the swim bladder and transferring them to the ear along a series of bones to the electrosense of mormyrids; the long fins of flying fish helping them to glide above the ocean surface to the amazing camouflage of the leafy seadragon… the range of adaptations seen in these animals is extraordinary. The origin of limbs 2 The work of Prof Jenny Clack (1947-2020) and her team here at the Museum has revolutionised our understanding of the origin of limbs in vertebrates. Her work on the Devonian tetrapods Acanthostega and Ichthyostega showed that they had eight fingers and seven toes respectively on their paddle-like limbs. These animals also had functional gills and other features that suggest that they were aquatic. More recent work on early Carboniferous sites is shedding light on early vertebrate life on land. LeatherbackTurtle, Dermochelys coriacea 3 Leatherbacks are the largest living turtles. They have a wide geographical range, but their numbers are falling. Eggs are laid on tropical beaches, and hatchlings must fend for themselves against many perils. Only around one in a thousand leatherback hatchlings reach adulthood. With such a low survival rate, the harvesting of turtle eggs has had a devastating impact on leatherback populations. Nile Crocodile, Crocodylus niloticus 4 This skeleton was collected by Dr Hugh Cott (1900- 1987).
    [Show full text]
  • Importance of Dewlap Display in Male Mating Success in Free- Ranging Brown Anoles (Anolis Sagrei) Author(S): Richard R
    Importance of Dewlap Display in Male Mating Success in Free- Ranging Brown Anoles (Anolis sagrei) Author(s): Richard R. Tokarz, Ann V. Paterson, Stephen McMann Source: Journal of Herpetology, 39(1):174-177. 2005. Published By: The Society for the Study of Amphibians and Reptiles DOI: http://dx.doi.org/10.1670/0022-1511(2005)039[0174:IODDIM]2.0.CO;2 URL: http://www.bioone.org/doi/ full/10.1670/0022-1511%282005%29039%5B0174%3AIODDIM%5D2.0.CO %3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. SHORTER COMMUNICATIONS Journal of Herpetology, Vol. 39, No. 1, pp. 174–177, 2005 Copyright 2005 Society for the Study of Amphibians and Reptiles Importance of Dewlap Display in Male Mating Success in Free-Ranging Brown Anoles (Anolis sagrei) 1,2 3,4 3,5 RICHARD R.
    [Show full text]
  • Mating Systems and Parental Investment Mating Systems
    Mating systems and parental investment Mating systems Pattern of matings in a population green anole Antithesis = promiscuity Polygyny Polygyny Scramble: no attempts to defend females, resources horseshoe crabs Northern barred frog Female defense: must be clustered elk Montezuma’s oropendola Dulichiella spp. Polygyny Resource distribution Resource defense: males defend food, nest sites Distribution of females affects Red-winged blackbird Lamprologus cichlid males’ ability to guard them Males cannot monopolize wide-ranging females dunnock 1 Polygyny threshold Polygyny threshold Male with no other females (monogamy) Male with other female(s) polygyny threshold ??? Quality of male’s territory Polygyny threshold Male dominance polygyny When females and sage grouse Polygyny threshold = point at which it’s resources too dispersed, better to be polygynous on a good territory males compete Leks = communal display arenas hammerhead bat Uganda kob Leks Leks High variance in male mating success – 10-20% males achieve >50% copulations – one male got 75% copulations Classical lek: males display in sight of each other Exploded lek: males rely wire-tailed manakin on vocal communication, e.g. kakapo 2 Leks Leks • Hotshots • Hotshots – Females attracted to lek by dominant male – Females attracted to lek by dominant male • Hotspots – Leks located in high-use areas Leks Leks • Hotshots Position of most successful – Females attracted to lek by dominant male male territory shifts (hot shot?) • Hotspots black grouse – Leks located in high-use areas • Female
    [Show full text]
  • The Influence of Body Size on Sexual Dimorphism
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2017 The Influence of Body Size on Sexual Dimorphism Haley Elizabeth Horbaly University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Biological and Physical Anthropology Commons Recommended Citation Horbaly, Haley Elizabeth, "The Influence of Body Size on Sexual Dimorphism. " Master's Thesis, University of Tennessee, 2017. https://trace.tennessee.edu/utk_gradthes/4970 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Haley Elizabeth Horbaly entitled "The Influence of Body Size on Sexual Dimorphism." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Arts, with a major in Anthropology. Dawnie W. Steadman, Major Professor We have read this thesis and recommend its acceptance: Benjamin M. Auerbach, Michael W. Kenyhercz Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) The Influence of Body Size on Sexual Dimorphism A Thesis Presented for the Master of Arts Degree The University of Tennessee, Knoxville Haley Elizabeth Horbaly December 2017 Copyright © 2017 by Haley Elizabeth Horbaly All rights reserved.
    [Show full text]
  • Zoology Lab Manual
    General Zoology Lab Supplement Stephen W. Ziser Department of Biology Pinnacle Campus To Accompany the Zoology Lab Manual: Smith, D. G. & M. P. Schenk Exploring Zoology: A Laboratory Guide. Morton Publishing Co. for BIOL 1413 General Zoology 2017.5 Biology 1413 Introductory Zoology – Supplement to Lab Manual; Ziser 2015.12 1 General Zoology Laboratory Exercises 1. Orientation, Lab Safety, Animal Collection . 3 2. Lab Skills & Microscopy . 14 3. Animal Cells & Tissues . 15 4. Animal Organs & Organ Systems . 17 5. Animal Reproduction . 25 6. Animal Development . 27 7. Some Animal-Like Protists . 31 8. The Animal Kingdom . 33 9. Phylum Porifera (Sponges) . 47 10. Phyla Cnidaria (Jellyfish & Corals) & Ctenophora . 49 11. Phylum Platyhelminthes (Flatworms) . 52 12. Phylum Nematoda (Roundworms) . 56 13. Phyla Rotifera . 59 14. Acanthocephala, Gastrotricha & Nematomorpha . 60 15. Phylum Mollusca (Molluscs) . 67 16. Phyla Brachiopoda & Ectoprocta . 73 17. Phylum Annelida (Segmented Worms) . 74 18. Phyla Sipuncula . 78 19. Phylum Arthropoda (I): Trilobita, Myriopoda . 79 20. Phylum Arthropoda (II): Chelicerata . 81 21. Phylum Arthropods (III): Crustacea . 86 22. Phylum Arthropods (IV): Hexapoda . 90 23. Phyla Onycophora & Tardigrada . 97 24. Phylum Echinodermata (Echinoderms) . .104 25. Phyla Chaetognatha & Hemichordata . 108 26. Phylum Chordata (I): Lower Chordates & Agnatha . 109 27. Phylum Chordata (II): Chondrichthyes & Osteichthyes . 112 28. Phylum Chordata (III): Amphibia . 115 29. Phylum Chordata (IV): Reptilia . 118 30. Phylum Chordata (V): Aves . 121 31. Phylum Chordata (VI): Mammalia . 124 Lab Reports & Assignments Identifying Animal Phyla . 39 Identifying Common Freshwater Invertebrates . 42 Lab Report for Practical #1 . 43 Lab Report for Practical #2 . 62 Identification of Insect Orders . 96 Lab Report for Practical #3 .
    [Show full text]
  • Sexual Selection and Mate Choice
    Review TRENDS in Ecology and Evolution Vol.21 No.6 June 2006 Sexual selection and mate choice Malte Andersson1 and Leigh W. Simmons2 1Department of Zoology, University of Gothenburg, SE 405 30 Gothenburg, Sweden 2Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley 6009, WA, Australia The past two decades have seen extensive growth of characterization of genes and their effects, from DNA sexual selection research. Theoretical and empirical sequences via protein to phenotypic expression at the level work has clarified many components of pre- and of the individual, with possible consequences at the postcopulatory sexual selection, such as aggressive population level and above. competition, mate choice, sperm utilization and sexual conflict. Genetic mechanisms of mate choice evolution Evolution of mate choice have been less amenable to empirical testing, but Although mate choice occurs in males and females [4], for molecular genetic analyses can now be used for incisive convenience we refer here to female choice of male traits. experimentation. Here, we highlight some of the As experimental evidence accumulated, mate choice currently debated areas in pre- and postcopulatory became widely recognized, but the genetic mechanisms sexual selection. We identify where new techniques underlying its evolution remain the subject of debate can help estimate the relative roles of the various (Box 1). Showing how mating preferences evolve geneti- selection mechanisms that might work together in the cally is harder than showing that they exist, and the evolution of mating preferences and attractive traits, problem is aggravated by the possibility that several and in sperm–egg interactions.
    [Show full text]
  • Sexual Behaviour of Rams:Male Orientation and Its Endocrine Correlates
    JournalofReproductionandFertilitySupplement54, 259-269 Sexual behaviour of rams:male orientation and its endocrine correlates J. A. Resko1, A. Perkins2, C. E. Roselli1, J. N. Stellflug3 and F. K. Stormshak4 'Department of Physiology and Pharmacology, School of Medicine, Oregon Health Sciences University, Portland, OR 97201-3098, USA; 'Department of Psychology, Carroll College,Helena, MAO 59625, USA; 'US Sheep Experimentation Station, Dubois, ID 83425, USA; and 4Department of Animal Sciences, Oregon State University, Corvallis, OR 97331-6702, USA The components of heterosexual behaviour in rams are reviewed as a basis for understanding partner preference behaviour. A small percentage of rams will not mate with oestrous females and if given a choice will display courtship behaviour towards another ram in preference to a female. Some of the endocrine profiles of these male- oriented rams differ from those of heterosexual controls. These differences include reduced serum concentrations of testosterone, oestradiol and oestrone, reduced capacity to produce testosterone in vitro, and reduced capacity to aromatize androgens in the preoptic-anterior hypothalamus of the brain. Our observation that aromatase activity is significantly lower in the preoptic-anterior hypothalamic area of male-oriented rams than in female-oriented rams may indicate an important neurochemical link to sexual behaviour that should be investigated. The defect in steroid hormone production by the adult testes of the male-oriented ram may represent a defect that can be traced
    [Show full text]
  • Dodos and Birds of Paradise
    ISLANDS AND THEIR LESSONS IN BIODIVERSITYi -Jack R. Holt ISLAND OF THE DODO The extinction of the dodo is representative of modernity in several ways, not the least of which is that the event occurred on a small island. -David Quammen (1996) When I was in London five years ago I had one day to stay in the city before our plane left for New York. With all of London to choose from, what does one do in one day? Well, for me there was no question. I had to go to the British Museum of Natural History. The main attraction was its collection of dinosaurs. I walked throughout the museum, and then paused at a display of animals that had become extinct during historic times. There was a stuffed Passenger Pigeon, birds once so numerous in North America that their flocks blackened the sky as they flew over. Nearby, there was a Dodo, another pigeon. This animal was large. In fact everything about this bird was large except its wings. Its skeleton indicated that the Dodo was flightless. Not only were its wings short, but its breast bone was too small to support flight muscles. Clearly, it could not fly, and its reconstruction made it look even more comical with a bald face and a body covered with fluffy down-like feathers (see Figure 1). Portuguese sailors discovered the Dodo's Island in 1510. The island, a small point of land in the Indian Ocean east of Madagascar, became known as Mauritius. The earliest record of the Dodo was in 1598.
    [Show full text]
  • Polyrhythmic Foraging and Competitive Coexistence Akihiko Mougi
    www.nature.com/scientificreports OPEN Polyrhythmic foraging and competitive coexistence Akihiko Mougi The current ecological understanding still does not fully explain how biodiversity is maintained. One strategy to address this issue is to contrast theoretical prediction with real competitive communities where diverse species share limited resources. I present, in this study, a new competitive coexistence theory-diversity of biological rhythms. I show that diversity in activity cycles plays a key role in coexistence of competing species, using a two predator-one prey system with diel, monthly, and annual cycles for predator foraging. Competitive exclusion always occurs without activity cycles. Activity cycles do, however, allow for coexistence. Furthermore, each activity cycle plays a diferent role in coexistence, and coupling of activity cycles can synergistically broaden the coexistence region. Thus, with all activity cycles, the coexistence region is maximal. The present results suggest that polyrhythmic changes in biological activity in response to the earth’s rotation and revolution are key to competitive coexistence. Also, temporal niche shifts caused by environmental changes can easily eliminate competitive coexistence. Diverse species that coexist in an ecological community are supported by fewer shared limited resources than expected, contrary to theory1. A simple mathematical theory predicts that, at equilibrium, the number of sym- patric species competing for a shared set of limited resources is less than the quantity of resources or prey species2–4. Tis apparent paradox leads ecologists to examine mechanisms that allow competitors to coexist and has produced diverse coexistence theory5–7. Non-equilibrium dynamics is considered as a major driver to prevent interacting species from going into equilibrium and violate the competitive exclusion principle 8,9.
    [Show full text]
  • Predation and the Management of Prairie Grouse
    rgt''::gi°:k..//iS, EiS>3g Uv¢ -m USs,,uI_E 0000 30 i9, . t9 i.<,es,9S<,-0se!<:mNs § | $,S3+: 29 i^. i XL_3r.X.5 i >Sm&23xz.e\3§* 7)iLi;i"v" 3 333.9 _ >i;.i;.is9u9\:S 9.93S9i><.,.::::;;.3i9.00.tl329s9,Z, <'i'-: 3* >gt 0 i =v i : uooBS; v.E.: :::.-.0)f L\j;t;f . gk ::i:::; :0 g 0 - n_ +s_ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ 24 SPECIALCOVERAGE ;= E :2:i9'1J '3 i1 6w'S : 5R igis'3.333. d6Ci:9r9;,,e ",X,, :2- ,,,.,,, ,,,,D,: it 3 _ x s § tg > 3b.9; f :; 3 &.:i: :,':@,,: :, -,:: S EI II 1Ew °00; r r _i s 1ts\J11 1s t11 _ S: 9: m X _ 20 ,Q,FB ___Ff N_ .3_r: :. j,:. .,:: _ISIP.9IkP V :>> | Ttanagementof prairie . grouse _IIS. .: 9:::; E _3|6by ,:. ::: MichaelA. Schroeder and .:. .^. :%9: M:g9tW;x3&90Wt93FiXti-:::: LET:: lvlcllaruD* h 2 1x.r Davuacsn ,1 1 .9 : :9 .:13 ' :: . :<i:> 2 :$ . : 3:.v: . e°9'# ;;.3§2 ESe'E ,.,.,::. :::>':E ': .::ji :E:in: :: 1 .X.-72 , t0Ws:: :, x --: :piaper E ::: ii8.:.g ,:.E: examines the importanceof predationin the life cycles of sage grouse (Centrocercus urophasianus), sharp-tailedgrouse (Tympanuchus phasianellus), greaterprairie-chicken (17 cupido), and lesser prairie-chicken(l: pallidicinctus). Most individualprairie grouse eventuallysuccumb to predation,with substantial effects on nest success, juvenilesurvival, and adult survival. Predatorcontrol has occasionallybeen used as a managementtool with the belief that reducingpreda- tor numberscan enhance viabilityof game populationsin generaland prairie grouse in particular.Although some experimentalresearch has shown that direct reduction of predatornumbers can increase grouse recruitment,most currentman- agement plans recommendindirect management of the grouse-predatorrelation- ship by manipulatinghabitats.
    [Show full text]
  • Notes on the Behavior and Ecology of the Red-Cotingas (Cotingidae: Phoenicircus)
    THEWILSONBULLETIN A QUARTERLY MAGAZINE OF ORNITHOLOGY Published by the Wilson Ornithological Society VOL. 103, No. 4 DECEMBER 199 1 PAGES 539-768 Wilson Bull., 103(4), 199 1, pp. 539-55 1 NOTES ON THE BEHAVIOR AND ECOLOGY OF THE RED-COTINGAS (COTINGIDAE: PHOENICIRCUS) PEPPERW. TRAIL ’ AND PAUL DONAHUE* ABSTRACT.- The two speciesof red-cotingas,Phoenicircus, are little-known birds with a patchy distribution in the rain forestsof northern and central South America. We observed the foraging, displays, and vocalizations of the Guianan Red-Cotinga (P. curnifex) in Su- riname and of the Black-neckedRed-Cotinga (P. nigricollis) in northeasternPeru. Males of both speciesformed small, low-density leks. Almost all display occurred in the first hour after dawn, after which the birds dispersed and were rarely observed. Direct interactions between displaying males were infrequent, and male-male spacingat the lek appeared to be mediated through calling. Display consisted of repeated calling and horizontal flights between perches 5-15 m up in the understory. Display flights are often accompanied by mechanicalwhistling sounds.Although we observedfemale visits to the lek, no copulations or obvious pre-copulatory behaviors were seen. In courtship and vocalizations, as in mor- phology, red-cotingasexhibit charactersof both manakins and cotingas.Received 19 Feb. 1991, accepted 28 May 1991. The red-cotingas, genus Phoenicircus,are two closely related species inhabiting the lowland rain forests of northern and central South America. In both species, the male has a brilliant scarlet crown, breast, rump, and tail. The sides of the head, throat, back, and wings are black in male Black-necked Red-Cotingas (P.
    [Show full text]
  • Display Behavior, Foraging Ecology, and Systematic3 of the Golden-Winged Manakin (Masius Chrysopterus)
    THE WILSON BULLETIN A QUARTERLY MAGAZINE OF ORNITHOLOGY Publishedby the WilsonOrnithological Society VOL. 99, No. 4 DECEMBER 19 8 7 PAGES 521-784 Wilson Bull., 99(4), 1987, pp. 521-539 DISPLAY BEHAVIOR, FORAGING ECOLOGY, AND SYSTEMATIC3 OF THE GOLDEN-WINGED MANAKIN (MASIUS CHRYSOPTERUS) RICHARD 0. PRUM’ AND ANN E. JOHNSON~ ABSTRACT.-The displays and foraging behavior of the Golden-winged Manakin (Masius chrysopterus:Pipridae) were observed at two sites in western Ecuador from May to July 1985. Musius foraged both solitarily and with multispecies foraging flocks, and fed on fmits of 10 plant species from four botanical families. Male Masius occupied 30-40-m diameter display territories arranged in dispersed leks. Males defended territories through frequent advertisement calling, and performed displays on fallen logs and exposed buttress roots within each territory. Courtship display elements included a complex log-approach display, a chin-down display, and a side-to-side bowing display. Pairs ofmales performed coordinated log-approach and side-to-side bowing displays but the function of these coordinated be- haviors was not determined. A phylogenetic analysis of display behaviors strongly indicates that Mzsius is the sister-group to the genus Corapipo and that Zlicura may be the sister- group to these two genera. These conclusions are partially corroborated by morphological and biochemical evidence. Received5 Aug. 1986, accepted27 Feb. 1987. RES~EN. - Los comportamientos de alimentacibn y cortejo de1 saltarin ali-dorado (Mu- siuschrysopterus: Pipridae) se observaron en dos lugares en Ecuador occidental en 10smeses de mayo a julio de 1985. Individuos de Musius buscaron comida solitariamente y en grupos multi-especificos, y se alimentaron en 12 especies de plantas de 4 familias.
    [Show full text]