Ocean Methane Hydrates As a Slow Tipping Point in the Global Carbon Cycle

Total Page:16

File Type:pdf, Size:1020Kb

Ocean Methane Hydrates As a Slow Tipping Point in the Global Carbon Cycle Ocean methane hydrates as a slow tipping point in the global carbon cycle David Archera,1, Bruce Buffettb, and Victor Brovkinc aDepartment of the Geophysical Sciences, University of Chicago, Chicago, IL 60637; bDepartment of the Earth and Planetary Science, University of California, Berkeley, CA 94720; and cMax Planck Institute for Meteorology, D-20146 Hamburg, Germany Edited by Hans Joachim Schellnhuber, Potsdam Institute for Climate Impact Research, Potsdam, Germany, and approved September 9, 2008 (received for review January 29, 2008) We present a model of the global methane inventory as hydrate (following the geotherm), so that at a depth of a few hundred and bubbles below the sea floor. The model predicts the inventory meters below the sea floor the temperature exceeds the melting of CH4 in the ocean today to be Ϸ1600–2,000 Pg of C. Most of the threshold. The term ‘‘hydrate stability zone’’ generally refers to hydrate in the model is in the Pacific, in large part because lower the sediment column from the sea floor down to the melting oxygen levels enhance the preservation of organic carbon. Because depth, typically a few hundred meters below the sea floor. the oxygen concentration today may be different from the long- Climate warming primarily affects hydrate stability near the base term average, the sensitivity of the model to O2 is a source of of the stability zone, where temperatures approach the melting uncertainty in predicting hydrate inventories. Cold water column point. The sediment column provides a thermal buffer that slows temperatures in the high latitudes lead to buildup of hydrates in the response of the hydrates to climate warming by many the Arctic and Antarctic at shallower depths than is possible in low centuries. latitudes. A critical bubble volume fraction threshold has been Much of the methane in ocean hydrate deposits is held in what proposed as a critical threshold at which gas migrates all through have been called stratigraphic deposits (17), its concentration the sediment column. Our model lacks many factors that lead to determined by the slow processes of sediment accumulation, heterogeneity in the real hydrate reservoir in the ocean, such as pore fluid flow, and methanogenesis of buried organic matter. preferential hydrate formation in sandy sediments and subsurface This type of deposit is most amenable to one-dimensional gas migration, and is therefore conservative in its prediction of modeling such as we present here. In other deposits, called releasable methane, finding only 35 Pg of C released after 3 °C of structural, the methane concentrations are primarily determined uniform warming by using a 10% critical bubble volume. If 2.5% by subsurface flow of gaseous methane through faults and bubble volume is taken as critical, then 940 Pg of C might escape porous channels in the sediment column. Structural hydrate in response to 3 °C warming. This hydrate model embedded into a deposits can be more concentrated than stratigraphic, and closer global climate model predicts Ϸ0.4–0.5 °C additional warming to sea floor, making them potentially more responsive to climate from the hydrate response to fossil fuel CO2 release, initially warming. Hydrates in the Gulf of Mexico and Hydrate Ridge, because of methane, but persisting through the 10-kyr duration of for example, are heavily impacted by subsurface gas migration the simulations because of the CO2 oxidation product of methane. (18–20). Because much of the hydrate is in stratigraphic deposits, the clathrate ͉ climate characteristics of these are used to estimate the total inventory of methane in the ocean. Our estimates of methane release, arge but poorly known amounts of methane are trapped in neglecting structural methane deposits, are likely to be biased Lthe sediments beneath the sea floor, frozen into a form of severely low for societal time scales of decades to a century. water ice called methane hydrate (1–3). The hydrates could be Estimates of the inventory of methane in hydrates range from vulnerable to melting with a deep ocean warming of a few 700 to 10,000 Pg of C. Uncertainties in the average volume degrees Celsius (3–6), which is obtainable given the available fraction of hydrate accounts for most of this range. Typical values inventories of fossil fuel carbon for combustion. Methane is a for the average hydrate volume fraction depth-integrated over greenhouse gas, and it oxidizes in about a decade to CO2, the stability zone range from 1% to 10% (2, 21–23). another greenhouse gas that accumulates in the Earth’s carbon The climate impact of melting hydrates in the ocean depends cycle and continues to impact climate for many millennia (7, 8). on whether the carbon reaches the atmosphere in the form of The hydrate carbon reservoir has probably accumulated over methane. The chemical lifetime of methane in the atmosphere millions of years (9, 10), with the gradual cooling of the ocean at present concentrations is about a decade, so an abrupt pulse over geologic time, but a release of carbon from the hydrate pool of methane released to the atmosphere would generate a tran- because of melting could take place on a time scale of millennia sient spike of high methane concentrations, which would subside (11, 12). Human release of CO2 from fossil fuel combustion has in about a decade. If methane is released on a time scale that is the potential to make the oceans warmer than they have been in long relative to its atmospheric lifetime, the result would be an millions of years (13, 14), thus, potentially releasing more increase in the steady-state concentration of methane in the methane than the apparently small releases through the repeated atmosphere; a doubling of the total source flux would lead to a glacial-interglacial cycles (15). The methane hydrate reservoir bit more than a doubling of the steady-state concentration. The can be considered a slow but, for societal purposes, irreversible oxidation product of methane is CO2, another greenhouse gas tipping point in the Earth’s carbon cycle (16). although a weaker one (per molecule, by a factor of Ϸ30). In The melting temperature of hydrate increases with pressure, whereas temperature in the ocean water column decreases with pressure (depth), so in the presence of sufficient concentrations Author contributions: D.A., B.B., and V.B. designed research, performed research, and of dissolved methane, hydrate would become increasingly stable wrote the paper. with depth in the ocean. However, methane concentrations in The authors declare no conflict of interest. the open ocean are too low to support hydrate formation, This article is a PNAS Direct Submission. restricting hydrates to the sediments below the sea floor. Within 1To whom correspondence should be addressed. E-mail: [email protected]. the sediment column, the temperature increases with depth © 2008 by The National Academy of Sciences of the USA 20596–20601 ͉ PNAS ͉ December 8, 2009 ͉ vol. 106 ͉ no. 49 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0800885105 contrast to methane, a transient chemical species, CO2 accumu- lates in the atmosphere, ultimately taking hundreds of thousands SPECIAL FEATURE of years to be consumed by weathering reactions with igneous rocks. Methane that dissolves in the deep ocean would be oxidized to CO2 (24), in which form it would ultimately equili- brate with the atmosphere, releasing some 15–25% of the carbon to the air. The bottom-line question is whether the methane released from melting hydrates in the sediment column is likely to escape to the ocean or the atmosphere or to remain in place below the sea floor. The production of bubbles associated with melting may act to destabilize the sediment column to landslides (25). How- ever, even the largest known submarine landslide, the Storrega slide off Norway, did not release a climatically significant amount of methane to the atmosphere (11). The most likely impact of a melting hydrate reservoir is therefore a long-term, chronic methane source, thus, elevating atmospheric methane and contributing to the total CO2 load on the atmosphere from combustion of fossil fuels. In the absence of sediment slumping, the sediment column overlying the melting hydrate acts as a physical cap through which the released methane must travel to escape to the ocean or the atmosphere. Assuming that the surface sediment remains colder than the melting temperature, released bubbles or dis- solved methane would have to migrate through the cold trap of the stability zone. There is also a chemical trap of oxidation by sulfate. Several authors (10, 26) suggest that the probability of Fig. 1. Maps from the bathymetric model. (A) Active (red) versus passive SCIENCE methane escape increases when bubbles make up a large fraction (purple) margin classification. (B) Column-integrated inventory of methane in SUSTAINABILITY of the pore fluid. High bubble volume would encourage bubbles hydrates. (C) Column-integrated methane in bubbles. (D) Area average bub- to migrate through the sediment column by creating a pressure ble fraction of the pore volume. (E) Area average bubble fraction upon differential between the bubble and the water at the tops and the melting of the hydrate at the base of the stability zone. (F) Column inventory bottoms of the bubbles. High salinities from freezing hydrate or of releasable methane, defined as in text. dissolving evaporates might also create channels of hydrate instability through the nominal stability zone (27–29). Simple ϫ kinetics might also allow the methane to escape if it passes methane with an efficiency of 25% and a time constant of 3 Ϫ13 Ϫ1 GEOPHYSICS through the stability and oxidized zones quickly (30). These 10 yr . Sediment surface organic carbon concentrations mechanisms are motivated, in part, by evidence for free gas come from the Muds model of the early diagenesis reaction zone moving through the stability zone (31).
Recommended publications
  • Methane Hydrate Stability and Anthropogenic Climate Change
    Biogeosciences, 4, 521–544, 2007 www.biogeosciences.net/4/521/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. Methane hydrate stability and anthropogenic climate change D. Archer University of Chicago, Department of the Geophysical Sciences, USA Received: 20 March 2007 – Published in Biogeosciences Discuss.: 3 April 2007 Revised: 14 June 2007 – Accepted: 19 July 2007 – Published: 25 July 2007 Abstract. Methane frozen into hydrate makes up a large 1 Methane in the carbon cycle reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intu- 1.1 Sources of methane itively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir 1.1.1 Juvenile methane is so large that if 10% of the methane were released to the at- Methane, CH , is the most chemically reduced form of car- mosphere within a few years, it would have an impact on the 4 bon. In the atmosphere and in parts of the biosphere con- Earth’s radiation budget equivalent to a factor of 10 increase trolled by the atmosphere, oxidized forms of carbon, such as in atmospheric CO . 2 CO , the carbonate ions in seawater, and CaCO , are most Hydrates are releasing methane to the atmosphere today in 2 3 stable. Methane is therefore a transient species in our at- response to anthropogenic warming, for example along the mosphere; its concentration must be maintained by ongoing Arctic coastline of Siberia. However most of the hydrates release. One source of methane to the atmosphere is the re- are located at depths in soils and ocean sediments where an- duced interior of the Earth, via volcanic gases and hydrother- thropogenic warming and any possible methane release will mal vents.
    [Show full text]
  • Methane Clathrate: General Idea and Overview
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072 Methane Clathrate: General Idea and Overview Tanmay Tatu1, Ajinkya Mandlik2, Aniruddha Kambekar3, Prof.Rupali Karande4 1,2,3BE, Department of Chemical Engineering, Dwarkadas J Sanghvi College of Engineering, Mumbai, India 4Assistant Professor, Department of Chemical Engineering, Dwarkadas J Sanghvi College of Engineering, Mumbai, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract -The demand for energy has grown significantly releases the innate water or ice(if the temperature is over the past few years and to meet the ever increasing below the freezing point) and the guest gas. demand, we have increased the rate of power consumption by amping up the extraction of energy from their respective Methane Clathrate (4CH4.23H2O) is a compound formed sources. This has caused the drying up of the current major when a large number of methane molecules coalesce sources of energy to the heavy industries or powerplants, together and get trapped inside a water molecule under thus requiring an alternate source of energy which can be low temperature and high pressure to form an ice-like utilized once the major sources such as Oil, Natural Gas, substance. Such conditions are commonly found at a few Coal, etc. get diminished. Renewable sources of energy such metres of depth below the waterbodies or beneath the as solar energy, wind energy, tidal energy, geothermal permafrost or in deep ocean sediments where methane energy etc. are being researched upon for maximum clathrates exist naturally and is called as gas hydrate exploitation but the main problem of these sources is that stability zone(GHSZ).
    [Show full text]
  • Preface to the Clathrate Hydrates Special Issue
    American Mineralogist, Volume 89, pages 1153–1154, 2004 Preface to the Clathrate Hydrates special issue BRYAN C. CHAKOUMAKOS Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393, U.S.A. Clathrate hydrates are of an immediate and practical concern, m without compromising their integrity is not trivial (Paull et because of the hazards they pose to oil and gas drilling and al. 2000). Most physical property measurements are based on production operations in both deep marine and onshore Arctic studies of laboratory-synthesized samples. environments. Drilling operations have encountered numerous Methane is powerful greenhouse gas, and discharge of large problems (gas kicks, blowouts, and fires) when gas hydrates are amounts of methane into the atmosphere would contribute to penetrated, due to the large and often uncontrolled gas release global warming. Since the proposal of the clathrate gun hypoth- from their dissociation. In addition, the conditions in the deep esis (Kennett et al. 2002), the role of marine methane hydrates marine oil and gas production facilities and many kinds of pipe- in global climate change (over the past 1.5 million years) has lines can promote the growth of clathrate hydrates. In these situa- been hotly debated by climatologists and geophysicists. This tions, they can form costly and hazardous blockages in pipelines idea proposes that the marine methane hydrate reservoir has and sub-sea wellheads. Flow assurance in pipelines is a major repeatedly reloaded and discharged in response to changes in concern of all deepwater oil and gas companies. In pipeline sys- sea level and sea-floor temperatures.
    [Show full text]
  • Methane Hydrate Stability and Anthropogenic Climate Change
    Biogeosciences, 4, 521–544, 2007 www.biogeosciences.net/4/521/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. Methane hydrate stability and anthropogenic climate change D. Archer University of Chicago, Department of the Geophysical Sciences, USA Received: 20 March 2007 – Published in Biogeosciences Discuss.: 3 April 2007 Revised: 14 June 2007 – Accepted: 19 July 2007 – Published: 25 July 2007 Abstract. Methane frozen into hydrate makes up a large 1 Methane in the carbon cycle reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intu- 1.1 Sources of methane itively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir 1.1.1 Juvenile methane is so large that if 10% of the methane were released to the at- Methane, CH , is the most chemically reduced form of car- mosphere within a few years, it would have an impact on the 4 bon. In the atmosphere and in parts of the biosphere con- Earth’s radiation budget equivalent to a factor of 10 increase trolled by the atmosphere, oxidized forms of carbon, such as in atmospheric CO . 2 CO , the carbonate ions in seawater, and CaCO , are most Hydrates are releasing methane to the atmosphere today in 2 3 stable. Methane is therefore a transient species in our at- response to anthropogenic warming, for example along the mosphere; its concentration must be maintained by ongoing Arctic coastline of Siberia. However most of the hydrates release. One source of methane to the atmosphere is the re- are located at depths in soils and ocean sediments where an- duced interior of the Earth, via volcanic gases and hydrother- thropogenic warming and any possible methane release will mal vents.
    [Show full text]
  • Methane and Global Environmental Change
    EG43CH08_Reay ARI 31 May 2018 12:37 Annual Review of Environment and Resources Methane and Global Environmental Change Dave S. Reay,1 Pete Smith,2 Torben R. Christensen,3,4 Rachael H. James,5 and Harry Clark6 1School of GeoSciences, University of Edinburgh, Edinburgh EH8 9XP, United Kingdom; email: [email protected] 2Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom; email: [email protected] 3Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark 4Department of Physical Geography and Ecosystem Science, Lund University, 221 00 Lund, Sweden; email: [email protected] 5Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO17 1BJ, United Kingdom; email: [email protected] 6Grasslands Research Centre, New Zealand Agricultural Greenhouse Gas Research Centre, Palmerston North 4442, New Zealand; email: [email protected] Annu. Rev. Environ. Resour. 2018. 43:8.1–8.28 Keywords The Annual Review of Environment and Resources is feedbacks, sources, sinks, Paris Climate Agreement, mitigation, adaptation online at environ.annualreviews.org https://doi.org/10.1146/annurev-environ- Abstract 102017-030154 Global atmospheric methane concentrations have continued to rise in re- Copyright c 2018 by Annual Reviews. cent years, having already more than doubled since the Industrial Revo- All rights reserved Annu. Rev. Environ. Resour. 2018.43. Downloaded from www.annualreviews.org lution. Further environmental change, especially climate change, in the twenty-first century has the potential to radically alter global methane fluxes. Access provided by University of California - Santa Barbara on 06/18/18.
    [Show full text]
  • The Properties of Methane Clathrate in the Presence of Ammonium Sulphate Solutions with Relevance to Titan
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1440-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. The properties of methane clathrate in the presence of ammonium sulphate solutions with relevance to Titan Emmal Safi (1), Stephen P. Thompson (3), Aneurin Evans (2), Sarah J. Day (3), Claire A. Murray (3), Annabelle R. Baker (3), Joana M. Oliveira (2), Jacco Th. van Loon (2). (1) School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK ([email protected]). (2) Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK (3) Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK Abstract which methane clathrate dissociation could occur, contributing a net source of methane to Titan’s The source of atmospheric methane on Saturn’s atmospheric methane. satellite Titan is currently unknown. However, one possibility is that it originates from clathrate hydrates 2. Results formed below the surface. Titan’s sub-surface ocean is believed to be composed of saline, rather than pure, A single-crystal sapphire capillary was filled with the water and in situ experimental data on clathrate (NH4)2SO4 solution and sealed into a high pressure formation under these conditions are largely absent in gas cell. Cooling was effected using a liquid nitrogen literature. Here, synchrotron X-ray powder cryostream. Once the solution had frozen at, CH4 gas diffraction (SXRPD) is used to study the properties was admitted to the cell and gradually increased to 26 of methane clathrate hydrates formed in the presence bar.
    [Show full text]
  • The Interaction of Climate Change and Methane Hydrates 10.1002/2016RG000534 Carolyn D
    PUBLICATIONS Reviews of Geophysics REVIEW ARTICLE The interaction of climate change and methane hydrates 10.1002/2016RG000534 Carolyn D. Ruppel1 and John D. Kessler2 Key Points: 1US Geological Survey, Woods Hole, Massachusetts, USA, 2Department of Earth and Environmental Sciences, University of • Gas hydrates are widespread, sequester large amounts of methane Rochester, Rochester, New York, USA at shallow depths, and have a narrow range of stability conditions • Warming climate conditions Abstract Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, destabilize hydrates, but sediment sequesters significant carbon in the global system and is stable only over a range of low-temperature and and water column sinks mostly prevent methane emission to the moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins atmosphere and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability • Gas hydrate is dissociating at some field and lead to release of the sequestered methane into the overlying sediments and soils. Methane locations now, but the impacts are primarily limited to ocean waters, not and methane-derived carbon that escape from sediments and soils and reach the atmosphere could the atmosphere exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy Correspondence to: requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and C. D. Ruppel, numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere.
    [Show full text]
  • Observation of the Main Natural Parameters Influencing the Formation of Gas Hydrates
    energies Article Observation of the Main Natural Parameters Influencing the Formation of Gas Hydrates Alberto Maria Gambelli 1,*, Umberta Tinivella 2,* , Rita Giovannetti 3,* , Beatrice Castellani 1 , Michela Giustiniani 2 , Andrea Rossi 3 , Marco Zannotti 3 and Federico Rossi 1 1 Engineering Department, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy; [email protected] (B.C.); [email protected] (F.R.) 2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale—OGS, Borgo Grotta Gigante 42C, 34010 Trieste, Italy; [email protected] 3 Chemistry Division, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; [email protected] (A.R.); [email protected] (M.Z.) * Correspondence: [email protected] (A.M.G.); [email protected] (U.T.); [email protected] (R.G.) Abstract: Chemical composition in seawater of marine sediments, as well as the physical properties and chemical composition of soils, influence the phase behavior of natural gas hydrate by disturbing the hydrogen bond network in the water-rich phase before hydrate formation. In this article, some marine sediments samples, collected in National Antarctic Museum in Trieste, were analyzed and properties such as pH, conductivity, salinity, and concentration of main elements of water present in the sediments are reported. The results, obtained by inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC) analysis, show that the more abundant cation is sodium and, Citation: Gambelli, A.M.; Tinivella, present in smaller quantities, but not negligible, are calcium, potassium, and magnesium, while the U.; Giovannetti, R.; Castellani, B.; more abundant anion is chloride and sulfate is also appreciable.
    [Show full text]
  • Stability of Methane Clathrate Hydrates Under Pressure: Influence On
    Icarus 205 (2010) 581–593 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan Mathieu Choukroun a,*, Olivier Grasset b, Gabriel Tobie b, Christophe Sotin a,b a Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., MS 79-24, Pasadena, CA 91109, United States b UMR-CRNS 6112 Planétologie et Géodynamique, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes Cedex 3, France article info abstract Article history: We have conducted high-pressure experiments in the H2O–CH4 and H2O–CH4–NH3 systems in order to Received 6 March 2009 investigate the stability of methane clathrate hydrates, with an optical sapphire-anvil cell coupled to a Revised 22 July 2009 Raman spectrometer for sample characterization. The results obtained confirm that three factors deter- Accepted 12 August 2009 mine the stability of methane clathrate hydrates: (1) the bulk methane content of the samples; (2) the Available online 25 August 2009 presence of additional gas compounds such as nitrogen; (3) the concentration of ammonia in the aqueous solution. We show that ammonia has a strong effect on the stability of methane clathrates. For example, a Keywords: 10 wt.% NH solution decreases the dissociation temperature of methane clathrates by 14–25 K at pres- Titan 3 sures above 5 MPa. Then, we apply these new results to Titan’s conditions. Dissociation of methane clath- Experimental techniques Interiors rate hydrates and subsequent outgassing can only occur in Titan’s icy crust, in presence of locally large Geophysics amounts of ammonia and in a warm context.
    [Show full text]
  • The Strength and Rheology of Methane Clathrate Hydrate William B
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B4, 2182, doi:10.1029/2002JB001872, 2003 Correction published 17 June 2003 The strength and rheology of methane clathrate hydrate William B. Durham Lawrence Livermore National Laboratory, University of California, Livermore, California, USA Stephen H. Kirby and Laura A. Stern U.S. Geological Survey, Menlo Park, California, USA Wu Zhang1 Lawrence Livermore National Laboratory, University of California, Livermore, California, USA Received 12 March 2002; revised 12 September 2002; accepted 28 October 2002; published 2 April 2003. [1] Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, s), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 Â 10À8 e_ 4.3 Â 10À4 sÀ1, temperature 260 T 287 K, and internal methane pressure 10 PCH4 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, e_ =AsneÀ(E*+PV*)/RT the rheology is described by the constants A =108.55 MPaÀn sÀ1, n = 2.2, E* = 90,000 J molÀ1, and V* = 19 cm3 molÀ1. For comparison, at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound.
    [Show full text]
  • Carbon Dioxide, Argon, Nitrogen and Methane Clathrate Hydrates
    Carbon dioxide, argon, nitrogen and methane clathrate hydrates: Thermodynamic modelling, investigation of their stability in Martian atmospheric conditions and variability of methane trapping Jean-Michel Herri, Eric Chassefière To cite this version: Jean-Michel Herri, Eric Chassefière. Carbon dioxide, argon, nitrogen and methane clathrate hydrates: Thermodynamic modelling, investigation of their stability in Martian atmospheric conditions and variability of methane trapping. Planetary and Space Science, Elsevier, 2012, 73 (1), pp.376-386. 10.1016/j.pss.2012.07.028. hal-00760636 HAL Id: hal-00760636 https://hal.archives-ouvertes.fr/hal-00760636 Submitted on 4 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Carbon dioxide, argon, nitrogen and methane clathrate hydrates: 2 thermodynamic modelling, investigation of their stability in Martian 3 atmospheric conditions and variability of methane trapping 4 5 Jean-Michel Herri1, Eric Chassefière2,3 6 7 1 École Nationale Supérieure des Mines de Saint-Étienne, SPIN-EMSE, CNRS : FRE3312, 8 Laboratoire des Procédés en Milieux Granulaires, 158 Cours Fauriel, F-42023 Saint-Étienne 9 2 Université Paris-Sud, Laboratoire IDES, UMR8148, Bât. 504, Orsay, F-91405, France; 10 3 CNRS, Orsay, F-91405, France.
    [Show full text]
  • Deep Ocean Methane Clathrates: an Important New Source for Energy?
    Deep Ocean Methane Clathrates: An Important New Source for Energy? by Justin P. Barry A Thesis in Chemistry Education Presented to the Faculty of the University of Pennsylvania in partial fulfillment of the requirement of the Degree of Master of Chemistry Education At University of Pennsylvania 2008 ________________________________ Constance W. Blasie Program Director ________________________________ Dr. Michael Topp Supervisor of Thesis ________________________________ Barry 1 of 62 Abstract Deep Ocean Methane Clathrates: An Important New Source for Energy? by Justin P. Barry Chairperson of the Supervisory Committee: Professor Dr. Micahael Topp Department of Science Abstract Methane clathrates, commonly called methane hydrates, are formed when a methane molecule is trapped inside of a water cage-like structure. The hydrate structure is not thermodynamically stable without a guest, such as methane. Methane clathrate formation can occur in cold shallow permafrost regions (< 250 m) or in deep ocean water sediment (>250 m). The conditions necessary for formation are low temperatures ( <27 ºC), high pressure (> 0.6 MPa), sedimentation greater than 1 cm/kr, and organic content of approximately 1%. Methane, produced by anaerobic bacteria, travels up through sediment and enters into the hydrate structure producing three hydrate structures. Of the three hydrate structures (I, II, & H), structure I proves to be the most naturally occurring. Methane located in clathrate hydrates provides a rich source of methane useful for energy consumption of industrialized nations. Investigations have been made by scientists in recent years to understand their potential use in energy production. Deep ocean wells have already been drilled in Canada and Japan to harness the energy potential.
    [Show full text]