Stability of Methane Clathrate Hydrates Under Pressure: Influence On

Total Page:16

File Type:pdf, Size:1020Kb

Stability of Methane Clathrate Hydrates Under Pressure: Influence On Icarus 205 (2010) 581–593 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan Mathieu Choukroun a,*, Olivier Grasset b, Gabriel Tobie b, Christophe Sotin a,b a Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., MS 79-24, Pasadena, CA 91109, United States b UMR-CRNS 6112 Planétologie et Géodynamique, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes Cedex 3, France article info abstract Article history: We have conducted high-pressure experiments in the H2O–CH4 and H2O–CH4–NH3 systems in order to Received 6 March 2009 investigate the stability of methane clathrate hydrates, with an optical sapphire-anvil cell coupled to a Revised 22 July 2009 Raman spectrometer for sample characterization. The results obtained confirm that three factors deter- Accepted 12 August 2009 mine the stability of methane clathrate hydrates: (1) the bulk methane content of the samples; (2) the Available online 25 August 2009 presence of additional gas compounds such as nitrogen; (3) the concentration of ammonia in the aqueous solution. We show that ammonia has a strong effect on the stability of methane clathrates. For example, a Keywords: 10 wt.% NH solution decreases the dissociation temperature of methane clathrates by 14–25 K at pres- Titan 3 sures above 5 MPa. Then, we apply these new results to Titan’s conditions. Dissociation of methane clath- Experimental techniques Interiors rate hydrates and subsequent outgassing can only occur in Titan’s icy crust, in presence of locally large Geophysics amounts of ammonia and in a warm context. We propose a model of cryomagma chamber within the Geological processes crust that provides the required conditions for methane outgassing: emplacement of an ice plume trig- gers the melting (if solid) or heating (if liquid) of large ammonia–water pockets trapped at shallow depth, and the generated cryomagmas dissociate surrounding methane clathrate hydrates. We show that this model may allow for the outgassing of significant amounts of methane, which would be sufficient to maintain the presence of methane in Titan’s atmosphere for several tens of thousands of years after a large cryovolcanic event. Published by Elsevier Inc. 1. I. Introduction concentration of the icy fraction of the planetesimals that formed Titan is probably lower than 5 wt.%, which may nevertheless sig- Titan has a bulk density of 1881 kg mÀ3 (e.g. Sohl et al., 2003, nificantly affect the internal structure and the thermal profile. and references therein), which implies a silicate fraction of 50– Titan’s methane concentration in the upper atmosphere is 1.4% 70% for densities within 2700 and 4000 kg mÀ3, the remainder (Niemann et al., 2005; Waite et al., 2005; Coustenis et al., 2007). In being mostly H2O. Thermal evolution models suggest a differenti- the troposphere, the mixing ratio of methane increases and reaches ated internal structure (Grasset and Sotin, 1996; Grasset et al., 5% close to the surface (Niemann et al., 2005). The vertical profile 2000; Sohl et al., 2003; Tobie et al., 2005; Sotin et al., 2009), with of methane concentration suggests a total mass of 2.8 Â 1020 gof a silicate core overlaid by a 700 km-thick H2O-dominated mantle. CH4, which is consistent with the post-Voyager estimations The gravity data obtained during the Cassini–Huygens prime mis- (Lunine and Stevenson, 1987). Owing to photochemistry driven sion support these models for the H2O mantle (Rappaport et al., by solar UV (e.g. Yung et al., 1984; Toublanc et al., 1995), the current 2008). Due to the high pressures and relatively low temperatures methane amounts in the atmosphere would disappear in a time existing inside Titan, several phases of H2O are theoretically stable span of 10–100 Myr. Such a short lifetime of methane in Titan’s and likely segregated in three layers because of the large density atmosphere implies the existence of replenishment processes, contrast between them: the low-pressure phase ice Ih, liquid which involve the emission of CH4 from surface or deep-seated res- water, and high-pressure polymorphs ice V and ice VI. From solar ervoirs. Prior to the Cassini–Huygens mission, several potential nebula condensation and satellite formation models (e.g. Alibert methane reservoirs or methane sources had been identified. The and Mousis, 2007; Hersant et al., 2008), primordial ammonia physical state of methane in these foreseen reservoirs is liquid, or gaseous. These reservoirs are summarized in Table 1, and the likelihood of methane replenishment is assessed from the Cas- * Corresponding author. Fax: +1 818 393 4878. sini–Huygens observations whenever available. E-mail addresses: [email protected] (M. Choukroun), Olivier. [email protected] (O. Grasset), [email protected] (G. Tobie), Chris The earliest conceptual models of Titan’s surface mostly focused [email protected] (C. Sotin). on the thermodynamic equilibrium of gaseous methane with liquid 0019-1035/$ - see front matter Published by Elsevier Inc. doi:10.1016/j.icarus.2009.08.011 582 M. Choukroun et al. / Icarus 205 (2010) 581–593 Table 1 Comparison of the reservoirs and sources of methane for atmospheric replenishment on Titan foreseen before the Cassini–Huygens mission with the Cassini observations and relevant experimentalwork. Y/ Reservoir/source Location Exchange Cassini/experimental evidence Comment N N Global ocean/seasa,b Surface Evaporation No oceansc N Lakesd Surface Evaporation Small lakese Present-dayf, does not explain CH4 Y? Porous regolithg 0–1 km Compaction/ Gas release on landingh Large porosity evap. Y? Deep methane 0–2 km Diffusion/evap. No relevant data oceani k,l YCH4 clathrate 0– Cryovolcanism Experimental: stable at depth Cassini: potentially cryovolcanic Possible throughout history hydratesj 1000 km featuresm,n o 40 p,h N Serpentinization 1000 km CO2 reduction Outgassing of Ar Early ages (stops at 2 Gy) N Cometsq Surface Evaporation Few impact craters at presentr Early ages (before 1 Gy) a Sagan and Dermott (1982). b Lunine et al. (1983). c Tomasko et al. (2005). d Flasar (1998). e Stofan et al. (2007). f Lorenz et al. (2008). g Kossacki and Lorenz (1996). h Niemann et al. (2005). i Stevenson (1992). j Lunine and Stevenson (1987). k Loveday et al. (2001). l Hirai et al. (2001). m Sotin et al. (xxxx). n Lopes et al. (2007). o Atreya et al. (2006). p Waite et al. (2005). q Zahnle et al. (1992). r Lorenz et al. (2007). reservoirs consisting of a mixture of methane and ethane. These sug- state or as clathrate hydrate. The boiling point of pure liquid meth- gested the presence of a global hydrocarbon-dominated ocean, or at ane is at a temperature of 110–130 K depending on the pressure least large-scale seas (e.g. Sagan and Dermott, 1982; Lunine et al., conditions, which temperatures are reached at very shallow depth 1983). The global ocean hypothesis has been ruled out by the first on Titan, thus restricting the methane amounts potentially trapped ground-based radar and infrared observations of Titan’s surface, as a liquid in a porous regolith. Such a methane reservoir cannot be which have shown reflectance variations (e.g. Muhleman et al., neglected (e.g., Stevenson, 1992; Kossacki and Lorenz, 1996), but 1990; Griffith, 1993; Coustenis et al., 1995). Observations of Titan’s the storing capability of ice, i.e. the wetting properties and perme- surface by the Cassini spacecraft (Stofan et al., 2007) and the Huy- ability, as well as the processes allowing methane to be supplied to gens probe (Tomasko et al., 2005) have shown the absence of exten- the atmosphere, remain poorly constrained. Thus the likelihood of sive liquid hydrocarbon bodies, the lakes of the North and South this replenishment mechanism is difficult to address in the current Polar regions excepted. According to the estimation of Lorenz et al. state of knowledge. (2008), Titan’s surface lakes may not contain more than Methane could also be trapped at depth on Titan in the form of 3 Â 105 km3 of liquid, which correspond to 1.2 Â 1020 g of methane clathrate hydrate. Clathrate hydrates are non-stoichiometric inclu- – assuming that the lakes are uniquely composed of liquid methane. sion compounds with an ice lattice forming molecular cages, in This corresponds to less than half of the total atmospheric methane which gases are trapped. Their stability at the low pressure–low mass at present-day, and therefore it is insufficient to sustain meth- temperature conditions relevant to the presolar nebula is such that ane in the atmosphere on geological timescales. clathrate hydrates are believed to be the primordial source of the Atmospheric methane could also originate from exogenic reser- volatiles trapped in icy satellites (e.g., Lunine and Stevenson, voirs, like cometary material, which would have fallen onto Titan’s 1985; Gautier and Hersant, 2005; Lunine et al., 2009). Methane surface and released methane upon heating during the impact (Zah- clathrate hydrates are also stable up to very high pressures of nle et al., 1992; Griffith and Zahnle, 1995). The high impact rates that 42 GPa (Hirai et al., 2003), with phase transitions that have been were expected in the early ages of Titan between its formation and documented at 0.8–1 GPa (Loveday et al., 2001; Hirai et al., 2001; the end of the Late Heavy Bombardment might indeed have contrib- Shimizu et al., 2002; Choukroun et al., 2007) and 2 GPa (Loveday uted to the atmospheric methane budget at that time. However, the et al., 2001; Hirai et al., 2001). This very broad stability domain impact rate has tremendously decreased since then.
Recommended publications
  • Bioinspired Intrinsic Control of Freeze Cast Composites: Harnessing Hydrophobic Hydration and Clathrate Hydrates
    Acta Materialia 114 (2016) 67e79 Contents lists available at ScienceDirect Acta Materialia journal homepage: www.elsevier.com/locate/actamat Full length article Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates * Steven E. Naleway a, , Christopher F. Yu b, Rachel L. Hsiong b, Arijit Sengupta e, Peter M. Iovine e, John A. Hildebrand c, Marc A. Meyers a, b, d, Joanna McKittrick a, b a Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA b Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA c Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA d Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA e Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA article info abstract Article history: Bioinspired ZrO2-epoxy, two-phase composite materials were fabricated by the freeze casting fabrication Received 7 January 2016 technique followed by polymer infiltration. These materials were intrinsically controlled by adding Received in revised form varying concentrations of the monofunctional alcohols ethanol (EtOH), n-propanol (n-PrOH) and n- 9 May 2016 butanol (n-BuOH). The microstructures of freeze cast scaffolds created with these alcohol additives Accepted 10 May 2016 demonstrated maximum pore areas (peak Ap) at concentrations of 10, 5e7 and 3 vol% for EtOH, n-PrOH and n-BuOH respectively. Differential scanning calorimetry analyses of binary mixtures of these additives and water suggested only n-PrOH was capable of developing clathrate hydrates.
    [Show full text]
  • Methane Hydrate Stability and Anthropogenic Climate Change
    Biogeosciences, 4, 521–544, 2007 www.biogeosciences.net/4/521/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. Methane hydrate stability and anthropogenic climate change D. Archer University of Chicago, Department of the Geophysical Sciences, USA Received: 20 March 2007 – Published in Biogeosciences Discuss.: 3 April 2007 Revised: 14 June 2007 – Accepted: 19 July 2007 – Published: 25 July 2007 Abstract. Methane frozen into hydrate makes up a large 1 Methane in the carbon cycle reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intu- 1.1 Sources of methane itively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir 1.1.1 Juvenile methane is so large that if 10% of the methane were released to the at- Methane, CH , is the most chemically reduced form of car- mosphere within a few years, it would have an impact on the 4 bon. In the atmosphere and in parts of the biosphere con- Earth’s radiation budget equivalent to a factor of 10 increase trolled by the atmosphere, oxidized forms of carbon, such as in atmospheric CO . 2 CO , the carbonate ions in seawater, and CaCO , are most Hydrates are releasing methane to the atmosphere today in 2 3 stable. Methane is therefore a transient species in our at- response to anthropogenic warming, for example along the mosphere; its concentration must be maintained by ongoing Arctic coastline of Siberia. However most of the hydrates release. One source of methane to the atmosphere is the re- are located at depths in soils and ocean sediments where an- duced interior of the Earth, via volcanic gases and hydrother- thropogenic warming and any possible methane release will mal vents.
    [Show full text]
  • Journées “Hydrates”
    Journées Hydrates, Brest, 09‐13 septembre 2019 Journées “Hydrates” 09‐13 septembre 2019 IFREMER Pôle Numérique 305 Avenue Alexis de Rochon 29280 PLOUZANE 1 Journées Hydrates, Brest, 09‐13 septembre 2019 2 Journées Hydrates, Brest, 09‐13 septembre 2019 WELCOME We are pleased to welcome you for the 2nd meeting of the French research consortium GdR2026 Hydrates at the University of Bordeaux. This event brings together leading experimental, theoretical, and computational scientists from among the unusually broad community of researchers interested in the various research areas of gas hydrates going from chemical and energy engineering to geosciences and astrophysics through physical‐ chemistry and thermodynamics. The issues addressed during this meeting concern major aspects of “hydrate sciences” such as hydrate/substrates interactions, thermodynamics, formation kinetics, cage occupancy and as well as formation at extreme conditions. The workshop is divided into two parts. The first part is dedicated to meetings of french research consortiums working on a common project (ANR, EU, etc.) in closed session. The second part is the general meeting, gathering about 60 participants. Its scientific program contains about 31 presentations, including invited talks, oral contributions and poster presentations. Organizing committee Livio Ruffine ‐ IFREMER, Brest Hélène Ondréas ‐ IFREMER, Brest Marie‐Odile Lamirault‐Gall ‐ IFREMER, Brest Alison Chalm‐ IFREMER, Brest Elisabeth Savoye ‐ IFREMER, Brest Olivia Fandino‐Torres – IFREMER, Brest Arnaud Desmedt, ISM CNRS ‐ Univ. Bordeaux Karine Ndiaye, ISM CNRS ‐ Univ. Bordeaux Audrey Bourgeois, ISM CNRS ‐ Univ. Bordeaux Daniel Broseta – LFC‐R UMR 5150 CNRS, Total, Univ. Pau Scientific Committee Baptiste Bouillot ‐ LGF, UMR 5703 CNRS, Mines Saint‐Etienne Daniel Broseta – LFC‐R UMR 5150 CNRS, Total, Univ.
    [Show full text]
  • Final Investigation Report: E.I
    Toxic Chemical Release at the U.S. Chemical Safety and DuPont La Porte Chemical Facility Hazard Investigation Board La Porte, Texas | Incident Date: November 15, 2014 | No. 2015-01-I-TX Investigation Report Published: June 2019 Investigation Report EY SSUES K I : • Emergency Planning and Response (Preparedness) • Implementation of Process Safety Management Systems • Assessment of Process Safety Culture FINAL COPY Toxic Chemical Release at the DuPont La Porte Chemical Facility U.S. Chemical Safety and Hazard Investigation Board La Porte, Texas | Incident Date: November 15, 2014 | No. 2015-01-I-TX The U.S. Chemical Safety and Hazard Investigation Board (CSB) is an independent federal agency whose mission is to drive chemical safety change through independent investigations to protect people and the environment. The CSB is a scientific investigative organization, not an enforcement or regulatory body. Established by the Clean Air Act Amendments of 1990, the CSB is responsible for determining accident causes, issuing safety recommendations, studying chemical safety issues, and evaluating the effectiveness of other government agencies involved in chemical safety. More information about the CSB is available at www.csb.gov. The CSB makes public its actions and decisions through investigative publications, all of which may include safety recommendations when appropriate. Types of publications include: Investigation Reports: Formal, detailed reports on significant chemical incidents that include key findings, root causes, and safety recommendations Investigation Digests: Plain-language summaries of Investigation Reports Case Studies: Reports that examine fewer issues than Investigation Reports Safety Bulletins: Short publications typically focused on a single safety topic Hazard Investigations: Broader studies of significant chemical hazards Safety Videos: Videos that animate aspects of an incident or amplify CSB safety messages CSB products can be freely accessed at www.csb.gov or obtained by contacting: U.S.
    [Show full text]
  • Mechanical Characterization Via Full Atomistic Simulation: Applications to Nanocrystallized Ice
    Mechanical Characterization via Full Atomistic Simulation: Applications to Nanocrystallized Ice A thesis presented By Arvand M.H. Navabi to The Department of Civil and Environmental Engineering in partial fulfillment of the requirements for the degree of Master of Science in the field of Civil Engineering Northeastern University Boston, Massachusetts August, 2016 Submitted to Prof. Steven W. Cranford Acknowledgements I acknowledge generous support from my thesis advisor Dr. Steven W. Cranford whose encouragement and availability was crucial to this thesis and also my parents for allowing me to realize my own potential. The simulations were made possible by LAMMPS open source program. Visualization has been carried out using the VMD visualization package. 3 Abstract This work employs molecular dynamic (MD) approaches to characterize the mechanical properties of nanocrystalline materials via a full atomistic simulation using the ab initio derived ReaxFF potential. Herein, we demonstrate methods to efficiently simulate key mechanical properties (ultimate strength, stiffness, etc.) in a timely and computationally inexpensive manner. As an illustrative example, the work implements the described methodology to perform full atomistic simulation on ice as a material platform, which — due to its complex behavior and phase transitions upon pressure, heat exchange, energy transfer etc. — has long been avoided or it has been unsuccessful to ascertain its mechanical properties from a molecular perspective. This study will in detail explain full atomistic MD methods and the particulars required to correctly simulate crystalline material systems. Tools such as the ReaxFF potential and open-source software package LAMMPS will be described alongside their fundamental theories and suggested input methods to simulate further materials, encompassing both periodic and finite crystalline models.
    [Show full text]
  • Methane Clathrate Behavior in Martian Surface Ice, and Supporting Morphological Observations
    Lunar and Planetary Science XXXIX (2008) 1163.pdf Methane Clathrate Behavior in Martian Surface Ice, and Supporting Morphological Observations. D.S. McMenamin and George E. McGill, Department of Geosciences, University of Massachusetts, Amherst, MA. Email: [email protected]. Introduction: Earlier, we reported on the likeli- If clathrate dissociates due to deformation in the hood that methane clathrate hydrate in martian glaciers HSZ, some methane may escape to the atmosphere. and other surface ice is the source of ancient glacial Trapped methane can re-combine with water to make meltwater features and modern atmospheric methane clathrate again, but if methane does escape and the [1, 2, 3]. In the current work, we consider the behavior temperature is high enough, films and small pockets of of methane clathrate in surface ice, and describe geo- water or brine can form [6]. In a glacier or debris flow morphic features that we interpret as being related to with an ice matrix, this increases pore pressure and clathrate dissociation. Methane clathrate may also be allows slippage of the surrounding layers of ice. When present in permafrost ice [4 5], but because sublima- the ice regelates or the clathrate re-associates, slippage tion of ice at the surface is inevitable, downward mi- stops. If ruptures are on a large enough scale, the ice gration of the HSZ (Hydrate Stability Zone) must re- will move episodically, with most of the movement sult in the gradual destabilization of any clathrate pre- probably near the toe of the glacier or debris flow, sent in surface ice, without the need to hypothesize any where strain rates are highest.
    [Show full text]
  • The Origin of Titan's Atmosphere: Some Recent Advances
    The origin of Titan’s atmosphere: some recent advances By Tobias Owen1 & H. B. Niemann2 1University of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 2Laboratory for Atmospheres, Goddard Space Fight Center, Greenbelt, MD 20771, USA It is possible to make a consistent story for the origin of Titan’s atmosphere starting with the birth of Titan in the Saturn subnebula. If we use comet nuclei as a model, Titan’s nitrogen and methane could easily have been delivered by the ice that makes up ∼50% of its mass. If Titan’s atmospheric hydrogen is derived from that ice, it is possible that Titan and comet nuclei are in fact made of the same protosolar ice. The noble gas abundances are consistent with relative abundances found in the atmospheres of Mars and Earth, the sun, and the meteorites. Keywords: Origin, atmosphere, composition, noble gases, deuterium 1. Introduction In this note, we will assume that Titan originated in Saturn’s subnebula as a result of the accretion of icy planetesimals: particles and larger lumps made of ice and rock. Alibert & Mousis (2007) reached this same point of view using an evolutionary, turbulent model of Saturn’s subnebula. They found that planetesimals made in the solar nebula according to their model led to a huge overabundance of CO on Titan. We obviously have no direct measurements of the composition of these planetes- imals. We can use comets as a guide, always remembering that comets formed in the solar nebula where conditions must have been different from those in Saturn’s subnebula, e.g., much colder.
    [Show full text]
  • Methane Clathrate: General Idea and Overview
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072 Methane Clathrate: General Idea and Overview Tanmay Tatu1, Ajinkya Mandlik2, Aniruddha Kambekar3, Prof.Rupali Karande4 1,2,3BE, Department of Chemical Engineering, Dwarkadas J Sanghvi College of Engineering, Mumbai, India 4Assistant Professor, Department of Chemical Engineering, Dwarkadas J Sanghvi College of Engineering, Mumbai, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract -The demand for energy has grown significantly releases the innate water or ice(if the temperature is over the past few years and to meet the ever increasing below the freezing point) and the guest gas. demand, we have increased the rate of power consumption by amping up the extraction of energy from their respective Methane Clathrate (4CH4.23H2O) is a compound formed sources. This has caused the drying up of the current major when a large number of methane molecules coalesce sources of energy to the heavy industries or powerplants, together and get trapped inside a water molecule under thus requiring an alternate source of energy which can be low temperature and high pressure to form an ice-like utilized once the major sources such as Oil, Natural Gas, substance. Such conditions are commonly found at a few Coal, etc. get diminished. Renewable sources of energy such metres of depth below the waterbodies or beneath the as solar energy, wind energy, tidal energy, geothermal permafrost or in deep ocean sediments where methane energy etc. are being researched upon for maximum clathrates exist naturally and is called as gas hydrate exploitation but the main problem of these sources is that stability zone(GHSZ).
    [Show full text]
  • Formation of Clathrate Hydrate from Amorphous Ice During Warming R
    Formation of clathrate hydrate from amorphous ice during warming R. Netsu, T. Ikeda-Fukazawa Department of Applied Chemistry, Meiji University, Japan Water molecules are condensed on dust grains in interstellar molecular clouds and protester nebulae. The water exists as amorphous ice in the cold clouds and is transformed into various structures depending on thermal conditions and compositions with various deposited molecules. Blake et al. [1] proposed the presence of CO2 clathrate hydrate in cometary ice. From the results using the transmission electron microscopy (TEM) and fourier transformed infrared spectroscopy (FT-IR), they showed the phase transition of vapor deposited amorphous ice including CO2 and CH3OH into type-II clathrate hydrate at around 120 K. Clathrate hydrates are inclusion compounds consisting of water molecules and a variety of guests molecules. Most clathrate hydrates form one of two distinct crystallographic structures, type-I and –II, depending on the sizes and shapes of the guest molecules. The cubic unit cell of type-I clathrate hydrate contains 46 water molecules in a framework of two dodecahedral and six tetrakaidecahedral cages, and that of type-II clathrate hydrate contains 136 water molecules in a framework of 16 dodecahedral and eight hexakaidecahedral cages. The structure of CO2 clathrate hydrate formed under a high pressure condition is type-I [2]. For the hydrate from the vapor deposited amorphous ice [1], the structure is type-II due to the help-gasses effect of CH3OH. For the CO2 clathrate hydrate grown epitaxially on a hydrate in low pressure conditions, the structure depends on the structure of the hydrate as the substrate [3].
    [Show full text]
  • Effects of Additives on the Formation of Methane and Carbon Dioxide Gas Hydrates
    Effects of Additives on the Formation of Methane and Carbon Dioxide Gas Hydrates Nguyen Ngoc Nguyen B.E. & M.Sc. of Chemical Engineering A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemical Engineering Abstract Gas hydrates (GHs) are ice-like crystalline solids comprising water and suitable gases in which gas molecules are physically encaged in a cage-like hydrogen-bonded structure formed by water molecules. Under the presence of appropriate additives, the formation of GHs can be controlled in a desired manner thereby opening novel ways of using GHs for gas storage and transportation, carbon dioxide sequestration, gas separation, desalination, etc. Although significant works have been undertaken to investigate the effects of additives on gas hydrate formation, there still remains a substantial gap in the understanding of the fundamentals behind the experimental observations. This thesis aims to provide new molecular insights into the effects of surfactants, hydrophobic solid surfaces and sodium halides on the formation of GHs. These effects are studied at the molecular level using synergic combinations of experimental and computational techniques. Kinetics experiments using a high-pressure reactor are carried out to quantify the effect of additives on the kinetics of gas enclathration. A see-through reactor is used for in situ visual observations of the effects of the hydrophobicity of solid surfaces on the formability of GHs. Interface-susceptible sum frequency generation (SFG) vibrational spectroscopy is employed to analyse water structure at gas- solution interfaces. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) is employed to analyse water structure in the bulk solution.
    [Show full text]
  • Chemical Properties of Glacial and Ground Ice – Yu
    TYPES AND PROPERTIES OF WATER – Vol. II– Chemical Properties of Glacial and Ground Ice – Yu. K. Vasil’chuk CHEMICAL PROPERTIES OF GLACIAL AND GROUND ICE Yu. K. Vasil'chuk Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia Keywords: Ions, methane hydrate, air clathrate, heavy metals, stable oxygen and hydrogen isotopes Contents 1. Ionic composition in glaciers 2. Ice and snow chemistry 3. Ion migration in ice and frozen soils 4. Methane hydrate 5. Chemical physics of air clathrate hydrates in ice core 6. Chemistry of ice in dependence of electrical conductivity 7. Ionic composition in ground ice 8. Subpermafrost water geochemistry 9. Heavy metals in glaciers 10. Heavy metals in ground ice 11. Stable oxygen and hydrogen isotope of the ice 12. Temporal variations of isotopic composition of glacial-river water during summer; oxygen isotope composition of water sources 13. Stable isotope composition in glaciers 14. Stable isotopes in ground ice 15. Isotope composition of ice-wedge ice Acknowledgements Glossary Bibliography Biographical Sketch Summary Marine aerosols are the main source of Cl, Mg, Na, K, Mg, SO4, in ice sheets of Greenland and Antarctic. Marine salts accumulate along the coastline, their concentration decreasesUNESCO sharply away from the coastline. – ConcentrationEOLSS of elements of continental origin is independent on the distance from coastline. In Greenland dust concentrations in ice–age ice are SAMPLE3 to 70 times those in Holocene CHAPTERS ice. The ice–age dust contains a strong component of calcium carbonate. This neutralized acid aerosols in atmosphere so that in contrast to Holocene ice, nearly all ice–age ice is alkaline.
    [Show full text]
  • Genesis and Geometry of the Meiklejohn Peak Lime Mud-Mound
    University of Calgary PRISM: University of Calgary's Digital Repository Science Science Research & Publications 2001-12 Genesis and geometry of the Meiklejohn Peak lime mud-mound, Bare Mountain Quadrangle, Nevada, USA: Ordovician limestone with submarine frost heave structures- a possible response to gas clathrate hydrate evolution Krause, Federico F. Elsevier Krause, Frederico F.. (2001). "Genesis and geometry of the Meiklejohn Peak lime mud-mound, Bare Mountain Quadrangle, Nevada, USA: Ordovician limestone with submarine frost heave structures- a possible response to gas clathrate hydrate evolution". In: Carbonate mounds: Sedimentation, organismal response and diagenesis, D. W. Kopaska-Merkel and D. C. Haywick (editors). Sedimentary Geology, 145: 189-213. http://hdl.handle.net/1880/44457 journal article Downloaded from PRISM: https://prism.ucalgary.ca Sedimentary Geology Sedimentary Geology 145 (2001) 189-213 Genesis and geometry of the Meiklejohn Peak lime mud-mound, Bare Mountain Quadrangle, Nevada, USA: Ordovician limestone with submarine frost heave structures-a possible response to gas clathrate hydrate evolution Federico F. Krause* University qfcalgarv. Department of Geology and Geophysics, 2500 Universiiy Drive N. K, Calgaly, Alberta, Canada T2N IN4 Received 3 August 2000; accepted 15 May 2001 Abstract During the Early Middle Ordovician (Early Whiterockian) the Meiklejohn Peak lime mud-mound, a large whaleback or dolphin back dome, grew on a carbonate ramp tens to hundreds of kilometres offshore. This ramp extended from the northwest margin of Laurentia into the open waters of the ancestral Pacific Ocean to the north. The mound developed in an outer ramp environment, in relatively deep and cold water. A steep northern margin with a slope that exceeds 55' characterizes the mound.
    [Show full text]