“Hearts in Harmony” Astronaut Koichi Wakata Emphasizes the Importance of Teamwork on ISS Long-Duration Missions Contents No

Total Page:16

File Type:pdf, Size:1020Kb

“Hearts in Harmony” Astronaut Koichi Wakata Emphasizes the Importance of Teamwork on ISS Long-Duration Missions Contents No Japan Aerospace Exploration Agency April 2014 No. 08 ins pk o H M ke ik i ha M i l Ty u r in o i h c c a r O t s l a e g M K d r o t a o h v c i R K o i c h i y W k s a n k a a z t a a y R y e g r e S “Hearts in Harmony” Astronaut Koichi Wakata emphasizes the importance of teamwork on ISS long-duration missions Contents No. 08 Japan Aerospace Exploration Agency 1−5 Epsilon Launch Vehicle Ushers in a Welcome to JAXA TODAY New Era for Space Development On September 14, 2013, Epsilon-1 was The Japan Aerospace Exploration Agency (JAXA) works to realize its successfully launched, realizing a simplifi ed launch system for solid-fuel rockets. Epsilon vision of contributing to a safe and prosperous society through the Rocket Project Manager Professor Yasuhiro pursuit of research and development in the aerospace fi eld to deepen Morita discusses the innovative nature and importance of this new rocket and system. humankind’s understanding of the universe. JAXA’s activities cover a broad spectrum of the space and aeronautical fi elds, including satellite 6-7 development and operation, astronomical observation, planetary ex- Our First 10 Years—All of Japan ploration, participation in the International Space Station (ISS) project Becomes a Part of JAXA and the development of new rockets and next-generation aeronautical Three space-related organizations merged in technology. 2003 to form JAXA. We recall the highlights of JAXA’s fi rst decade, which included such With the aim of disseminating information about JAXA’s activities milestones as the Hayabusa sample-return and recent news relating to Japan’s space development programs and long-duration missions aboard the ISS. to as wide an audience as possible, we launched JAXA TODAY in 8−12 January 2010. Koichi Wakata—Japan’s First ISS Commander In March 2014, JAXA Astronaut Koichi Wakata Message from the President became Japan’s fi rst ISS Commander. We JAXA celebrated its 10th anniversary on October 1, look at the path that led to his taking up this role, and explain the duties it entails. 2013. During its fi rst decade, JAXA has logged many world-fi rst achievements that have received wide praise Epsilon Launch Vehicle 13 internationally. These include the successful test launch Liaison Diary: Russia of the Epsilon Launch Vehicle, and the sample-return The JAXA Moscow Offi ce was established by asteroid explorer Hayabusa. These successes have Ushers in a New Era for in 2011, and the second offi ce director has helped bolster Japan’s research and development recently taken up his new post. The fi rst offi ce director looks back on his impressions capabilities and national strength, while also driving of the space development scene in Russia. space development around the world. Space Development 14−15 JAXA has now entered a fresh stage in its organiza- tional development, and to coincide with this milestone TThehe EEpsilonpsilon LLaunchaunch VVehicle—JAXA’sehicle—JAXA’s nnewew ssolid-propellantolid-propellant rrocket—ocket— View from the Editor’s Window: has redefi ned its management philosophy as working “To realize a safe and affl u- rrealizesealizes ssimplifiimplifi eedd aandnd sstreamlinedtreamlined llaunchaunch pprocedures,rocedures, aandnd oopenspens Bringing Space Meals to You ent society using space and the sky.” We have also introduced a new corporate uupp tthehe wwayay fforor a ffurtherurther eexpansionxpansion ooff sspacepace ddevelopmentevelopment aandnd We adapt Japanese space food—designed slogan—“Explore to Realize.” for astronauts serving long-duration missions sspacepace uutilization.tilization. OOnn SSeptembereptember 114,4, 22013,013, tthehe fi rrstst EEpsilonpsilon To guide our activities as we strive to translate this management philosophy aboard the ISS—to serve in an original way LLaunchaunch VVehicle—Epsilon-1—achievedehicle—Epsilon-1—achieved a ssuccessfuluccessful llaunchaunch aandnd here on Earth. Let’s see how it tasted. into tangible results, we have formulated an Action Declaration, comprising three parts. We will: sseparationeparation ooff iitsts ppayload,ayload, tthehe uultravioletltraviolet aastronomystronomy ssatelliteatellite 16–17 1. Aim to improve people’s daily lives, and contribute to the enjoyment of those SSPRINT-APRINT-A ((JapaneseJapanese nnickname:ickname: ““HISAKI”).HISAKI”). IInn tthishis iinterview,nterview, JAXA’s Frontier lives. EEpsilonpsilon RRocketocket PProjectroject MManageranager PProfessorrofessor YYasuhiroasuhiro MMoritaorita A roundup of JAXA’s recent activities 2. Constantly strive for greater heights, and aspire toward creativity. eelucidateslucidates tthehe iinnovativennovative nnatureature ooff tthehe EEpsilonpsilon LLaunchaunch 3. Work to meet the trust and expectations placed on us by society by acting with VVehicle.ehicle. OOnn ppageage 55,, wwee pproviderovide aann eexplanationxplanation fforor responsibility and pride. cchildrenhildren oonn tthehe EEpsilonpsilon kkeyey ppointsoints iinn bbothoth EEnglishnglish This declaration highlights our commitment as an organization to pioneering a new To All Our Readers era in space development. aandnd JJapanese.apanese. In fi scal 2014, which commenced on April 1, 2014, we will focus particularly Hello, my name is Koji Terada, and I am Director on the development of a new main rocket, as well as an array of satellite missions of the JAXA Public Affairs Department and that will serve many important roles. In these endeavors, we look forward to your executive editor of JAXA TODAY. Coinciding with the start of a new stage in JAXA’s history, continued support and cooperation. JAXA TODAY returns with even greater momentum. In articles covering JAXA activities, we have Dr. Naoki Okumura special features on JAXA Astronaut Koichi Received a Doctorate in Applied Physics from The University of Tokyo in 1973. Served Profi le Wakata, the fi rst ISS Commander from Asia, as Representative Director and Executive Vice President of Nippon Steel Corporation Epsilon-1 lifts off from the Uchinoura and the Epsilon Launch Vehicle, which uses the and executive member of Japan’s Council for Science and Technology Policy. Appointed Space Center, in Kimotsuki, Kagoshima world’s fi rst mobile launch control system. Professor Yasuhiro Morita, Ph.D. Prefecture, on September 14, 2013 In addition, in response to requests from our President of JAXA in April 2013. readers, we have included pages for children at Project Manager, Epsilon Rocket Project Team the end of each feature article with text in both Professor, Department of Space Systems and Astronautics English and Japanese. Institute of Space and Astronautical Science (ISAS), JAXA To help make space even more familiar, our editorial staff will introduce topics under a new Cover Photograph Professor Morita graduated from the Department of Aeronautics, The regular column called “View from the Editor’s University of Tokyo, and received his doctorate in aeronautics from the Window.” We also begin a new column called ISS Expedition 38 Long-Duration Crew Graduate School of Engineering, The University of Tokyo. At ISAS, he was “Liaison Diary” covering the activities of JAXA’s From bottom-right, clockwise: Koichi Wakata, Sergey Ryazansky, appointed Project Manager of the M-V rocket program in 2003, and has overseas offi ces. In this fi rst installment, we Richard Mastracchio, Mike Hopkins, Mikhail Tyurin and Oleg Kotov. introduce the JAXA Moscow Offi ce. (© JAXA/NASA) fulfi lled a key leadership role in Japan’s solid-fuel rocket development efforts We hope you enjoy the newly reborn as the Epsilon Rocket Project Manager since 2010. JAXA TODAY. JAXA Astronaut Koichi Wakata became Japan’s fi rst ISS Commander when Expedition 39 began on March 9, 2014. 1 JAXA TODAY No. 08 Epsilon Launch Vehicle Ushers in a New Era for Space Development Theme 1 Continuing Japan’s Tradition of Theme 2 Adding New Innovations with Solid Rocket Development Each Successive Launch What was your primary goal at the development stage? Please outline the innovative technologies incorporated it is no longer necessary to build an entire satellite into the Epsilon Launch Vehicle. from scratch, but simply replace the mission section. Morita: Our main objective was to create an innova- This makes the design suitable for a broad variety of tive launch system. Previously, it was suffi cient to Morita: Previously, we spent a lot of time and effort missions. Following on from the ultraviolet astronomy improve the performance of the launch vehicle itself. on pre-launch inspections of the rocket’s electrical satellite HISAKI (SPRINT-A) carried by Epsilon-1, That was the overriding consideration. However, if systems and ignition circuits, which were carried out this semi-customized method will also be employed we look at a 50-year horizon for space development, manually. To make these procedures autonomous for Epsilon-2’s payload satellite—Exploration of ener- improving rocket performance alone is not enough. and automated, we newly developed the Responsive gization and Radiation in Geospace (ERG)—which is What we have to do is design a system that makes it Operation Support Equipment (ROSE), which planned for launch in 2015. easier to put launch vehicles into space. It is impera- employs artifi cial intelligence (AI), and the Launch We use the term “space vehicle” to express the tive that we shift away from the current paradigm— Control System (LCS), which provides remote control combination of the Epsilon rocket and the small satel- one that is based on having a large workforce spend a capabilities from the ground. ROSE is mounted on lite bus section. In the future, we will aim to provide a lot of time and money, using a large array of equip- the rocket to perform a wide array of equipment diag- method whereby space users will only have to develop ment to get a rocket launched. The key feature of nostic tasks. their mission equipment and we will transport that the Epsilon development project was our decision Through this system, we have shortened the time into space aboard our space vehicle.
Recommended publications
  • Ed Spencer 402-510-3276 for Moreinformation
    AUTOS, AUCTIONS, BARGAINS, BUILDING SUPPLIES, EVENTS, IMPLEMENTS, REAL ESTATE - OVER 85,000 READERS Leading Rocket Member Publications Avoca Journal Herald • 888-343-2154 Oakland Herald Dunlap Reporter • 642-2791 888-343-2154 Harlan PennySaver Missouri Valley Times 800-909-6397 642-2791 Mapleton Press • 881-1101 Harrison County Merchandiser WHERE Covering Charter Oak, Schleswig & Ute 642-2791 Coverage also includes Denison & Crawford County, THE ACTION Manilla, Manning, Woodbine & Logan, IS Pottawattamie County & Council Bluffs rural routes August 11 - 13, 2020 FREE Harlan (IA) Tribune Printing SECTION ★ ★ ★ BIKES ★ MUSIC ★ DRINKS FEATURING: For Latest Details, Check Out Our Facebook Page: BikesonThe100Block Remember To Please Maintain Social Distancing! Circulated every week in the following publications Avoca Harlan Oakland Harrison County WHERE THE Journal Herald PennySaver Herald Merchandiser ACTION IS 888-343-2154 800-909-6397 888-343-2154 712-642-2791 Dunlap Mapleton Press Missouri Valley Reaching Coverage also includes Denison & Crawford County, Manilla, Manning, Reporter Covering Charter Oak, Schleswig & Ute Times-News 44,000 readers Woodbine & Logan, Pottawattamie County & Council Bluffs rural routes 712-642-2791 712-881-1101 712-642-2791 in Western Iowa 08/11/2020 Call 1-888-343-2154 To Place Your Ad In The Rocket Avoca, Iowa WE WON'T BE UNDERSOLD! Cover Crop Specials Reward ȏ Wheat Bulk Retail $7.95/Bu 60# ȏ Radishes $1.70/lb ȏ Rye Bulk Retail $10.50/Bu 56# ȏ Turnips $1.52/lb Yourself ȏ Peas 59¢/lb ȏ Rape 94¢/lb SPECIAL BALE TUFF Easy Way Cattle Oilers With a Career SILAGE WRAP & Back Rubbers 30"x5,000', 1 Mil, White, $69.95 Also Cattle Sprays You Love! SILAGE BAGS: ȏ 9x250 AT Films ....................$569.16 PIT COVERS: ȏ 8x100 AT Films ....................$207.61 ȏ 9x300 AT Films ..................
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Corporate Profile
    2013 : Epsilon Launch Vehicle 2009 : International Space Station 1997 : M-V Launch Vehicle 1955 : The First Launched Pencil Rocket Corporate Profile Looking Ahead to Future Progress IHI Aerospace (IA) is carrying out the development, manufacture, and sales of rocket projectiles, and has been contributing in a big way to the indigenous space development in Japan. We started research on rocket projectiles in 1953. Now we have become a leading comprehensive manufacturer carrying out development and manufacture of rocket projectiles in Japan, and are active in a large number of fields such as rockets for scientific observation, rockets for launching practical satellites, and defense-related systems, etc. In the space science field, we cooperate with the Japan Aerospace Exploration Agency (JAXA) to develop and manufacture various types of observational rockets named K (Kappa), L (Lambda), and S (Sounding), and the M (Mu) rockets. With the M rockets, we have contributed to the launch of many scientific satellites. In 2013, efforts resulted in the successful launch of an Epsilon Rocket prototype, a next-generation solid rocket which inherited the 2 technologies of all the aforementioned rockets. In the practical satellite booster rocket field, We cooperates with the JAXA and has responsibilities in the solid propellant field including rocket boosters, upper-stage motors in development of the N, H-I, H-II, and H-IIA H-IIB rockets. We have also achieved excellent results in development of rockets for material experiments and recovery systems, as well as the development of equipment for use in a space environment or experimentation. In the defense field, we have developed and manufactured a variety of rocket systems and rocket motors for guided missiles, playing an important role in Japanese defense.
    [Show full text]
  • Space Food and Nutrition
    Educational Product National Aeronautics and Educators Grades K–8 Space Administration EG-1999-02-115-HQEG-1998-12-115-HQ SPACE FOOD AND NUTRITION An Educator’s Guide With Activities in Science and Mathematics Space and Food Nutrition—An Educator’s Guide With Activities in Science and Mathematics is available in electronic format through NASA Spacelink—one of the Agency’s electronic resources specifically developed for use by the educational community. The system may be accessed at the following address: http://spacelink.nasa.gov/products SPACE FOOD AND NUTRITION An Educator’s Guide With Activities in Science and Mathematics National Aeronautics and Space Administration This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication. EG-1999-02-115-HQ Space Food and Nutrition An Educator’s Guide With Activities in Science and Mathematics Acknowledgments National Aeronautics and Space Administration Special thanks to the following Office of Human Resources and Education contributors and reviewers Education Division Washington, D.C. Charles T. Bourland, Ph.D. System Manager, Space Station Food Education Working Group Flight Crew Support Division NASA Johnson Space Center NASA Johnson Space Center Houston, Texas Debbie A. Brown Writers ISS Education Liaison Angelo A. Casaburri Education Working Group Aerospace Education Services Program NASA Johnson Space Center NASA Johnson Space Center Houston, Texas Gregory L. Vogt, Ed.D. Crew Educational Affairs Liaison Cathy A. Gardner Education Working Group Dickinson Independent School District NASA Johnson Space Center Dickinson, Texas Karol L. Yeatts, Ed.D. Editor 1998 Einstein Fellow Jane A. George Miami Dade County Public Schools Teaching From Space Program Miami, Florida NASA Headquarters Washington, D.C.
    [Show full text]
  • Messages from Space Explorers to Future Generations
    Messages from Space Explorers to future generations start Messages from Space Explorers to future generations by by by year name country intro Messages from Space Explorers to future generations In honour of the fiftieth anniversary To pay tribute to the extraordinary journey of the of human space flight, the United Nations men and women who have flown into space, and to capture their unique perspectives and declared 12 April as the International Day experiences in a distinctive collection, of Human Space Flight. the United Nations Office for Outer Space Affairs (UNOOSA), is inviting past and present space explorers to sign an autograph sheet and to provide a message that might inspire future generations. This autograph album contains a copy of the signed sheets received from participating space explorers. The album also contains a copy of the autographs of Yuri Gagarin and Edward H. White on their visit to the United Nations. by by by year name country Messages from Space Explorers to future generations 1961 [ Yuri GAGARIN ] 1965 [ Edward H. WHITE II ] 1972 [ Charlie DUKE ] 1976 [ Vladimir Viktorovich AKSENOV ] 1978 [ Miroslaw HERMASZEWSKI ] 1979 [ Georgi Ivanov IVANOV ] 1980 [ Vladimir Viktorovich AKSENOV ] 1981 [ Jugderdemid GURRAGCHAA • Dumitru-Dorin PRUNARIU ] 1983 [ John FABIAN • Ulf MERBOLD ] 1984 [ Charles David WALKER ] 1985 [ Loren W. ACTON • Sultan Salman ALSAUD • Patrick BAUDRY • Bonnie J. DUNBAR • John FABIAN • Charles David WALKER ] 1988 [ Aleksandar Panayotov ALEKSANDROV ] 1989 [ Richard N. RICHARDS ] 1990 [ Bonnie J. DUNBAR Richard N. RICHARDS ] 1991 [ Ken REIGHTLER • Toktar AUBAKIROV • Helen SHARMAN • Franz VIEHBÖCK • James Shelton VOSS ] 1992 [ Bonnie J. DUNBAR • Ulf MERBOLD • Richard N. RICHARDS James Shelton VOSS ] 1994 [ Ulf MERBOLD • Ken REIGHTLER • Richard N.
    [Show full text]
  • Redalyc.Status and Trends of Smallsats and Their Launch Vehicles
    Journal of Aerospace Technology and Management ISSN: 1984-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil Wekerle, Timo; Bezerra Pessoa Filho, José; Vergueiro Loures da Costa, Luís Eduardo; Gonzaga Trabasso, Luís Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Journal of Aerospace Technology and Management, vol. 9, núm. 3, julio-septiembre, 2017, pp. 269-286 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309452133001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.v9i3.853 Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Timo Wekerle1, José Bezerra Pessoa Filho2, Luís Eduardo Vergueiro Loures da Costa1, Luís Gonzaga Trabasso1 ABSTRACT: This paper presents an analysis of the scenario of small satellites and its correspondent launch vehicles. The INTRODUCTION miniaturization of electronics, together with reliability and performance increase as well as reduction of cost, have During the past 30 years, electronic devices have experienced allowed the use of commercials-off-the-shelf in the space industry, fostering the Smallsat use. An analysis of the enormous advancements in terms of performance, reliability and launched Smallsats during the last 20 years is accomplished lower prices. In the mid-80s, a USD 36 million supercomputer and the main factors for the Smallsat (r)evolution, outlined.
    [Show full text]
  • 5.0 Launch Vehicle Performance
    Final Design Report on Converting the Minuteman Missile into a Small Satellite Launch System Submitted to Dr. George W. Botbyl USRA Design Professor Department of Aerospace Engineering The University of Texas at Austin by The Minotaur Design Team Rodrick McHaty - Team Leader Rodolfo Gonzalez - Chief Engineer Vu Pham - Chief Administrative Officer Engineers: Gordon MacKay Greg Humble Bill Alexander November 24, 1993 EXECUTIVE SUMMARY m Introduction Due to the Strategic Arms Reduction Talks (START) treaty between the United States and Ex-Soviet Union, 450 Stage III Minuteman II (MMII) missiles were -q recently taken out of service. Minotaur Designs Incorporated (MDI) intends to StagelI convert the MMII ballistic missile from a "" nuclear" warhead carrier into a small- "] L__________ satellite launcher. MDI will perform this conversion by acquiring the Minuteman Stage I stages, purchasing currently available control wafers, and designing a new ] shroud and interfaces for the satellite. Figure 1. MDI missile MDI is also responsible for properly integrating all systems. The new MDI system still System Description incorporates the original range-safety raceway and attitude-control actuators. MDI plans to purchase the 52 inch Figure 1 shows a representation of diameter avionics, range-safety, and the MDI missile. The stages that MDI attitude-control wafers from Martin will acquire from the Air Force are the Marietta's Multi-Service Launch System MMII stage I and II, and the MMIII stage (MSLS), "D" configuration missile, III. These stages define the propulsion which is currently under development. system of the MDI missile, and an MDI has designed a mechanical analysis of attainable orbits is performed.
    [Show full text]
  • Annual Report
    The 2008 Annual Report of the International Space Exploration Coordination Group Released March 2009 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 THIS PAGE INTENTIONALLY BLANK 1 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 CONTENTS Introduction …………………………………………………………………………… 4 Part 1: The Role of the ISECG 1.1 Overview …………………………………………………………………………. 6 1.2 Working Groups of the ISECG …………………………………………………… 7 1.2.1 Enhancement of Public Engagement …………………………………………… 7 1.2.2 Establishment of Relationships with Existing International Working Groups …. 7 1.2.3 The International Space Exploration Coordination Tool (INTERSECT) ……. 8 1.2.4 The Space Exploration Interface Standards Working Group (ISWG) ………….. 8 1.2.5 Mapping the Space Exploration Journey ………………………………………... 8 Part 2: Current and Near-Term Activities of ISECG Members 2.1 Low Earth Orbit (LEO) …………………………………………………………… 10 2.1.1 The International Space Station (ISS) …………………………………………… 10 2.1.2 Emerging Government Capabilities …………………………………………….. 10 2.1.3 Emerging Commercial Providers ……………………………………………….. 11 2.2 Beyond LEO – The Moon and Mars ……………………………………………….. 11 2.2.1 Moon ……………………………………………………………………………… 11 2.2.2 Mars ………………………………………………………………………………. 12 Part 3: Progress in 2008 towards Opportunities for Integrated and Collaborative Space Exploration 3.1 Robotic Network Science – The International Lunar Network ……………………… 16 3.2 Joint Development for Robotic Exploration – Mars Sample Return ………………………… 17 3.3 Collaborative
    [Show full text]
  • Small Satellite Access to ESPA Standard Service
    SSC10-IX-1 Small Satellite Access to ESPA Standard Service Mr. Ted Marrujo DoD Space Test Program (STP), Mission Design 3548 Aberdeen Ave. SE, Kirtland AFB NM 87117; (505) 853-3338 Ted. [email protected] Lt Jake Mathis Space and Missile Systems Center, Launch and Range Systems Wing, Engineering 483 N. Aviation Blvd, Los Angeles AFB, CA; (310) 653-3392 [email protected] Mr. Caleb C. Weiss United Launch Alliance, Mission Integration 12257 S. Wadsworth Blvd, TSB-B7140, Littleton, CO 80125; (303) 977-0843 [email protected] ABSTRACT The DoD Space Test Program (STP), the Air Force Launch and Range Systems Wing (LRSW), and United Launch Alliance (ULA) are teaming up to provide a rideshare service to small satellites (<400lb) using an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA). This rideshare service is an opportunity on EELV missions with margin to carry auxiliary payloads (APLs). This paper will define the ESPA, the standard rideshare service provided to APLs, and how APLs can access this service. We will discuss the roles and responsibilities the different government organizations, ULA, and the small satellite provider have in accessing and implementing ESPA Standard Service. In brief, ULA builds the EELV and performs the launch service, LRSW is responsible for developing and acquiring EELVs from ULA, and STP is responsible for identifying and manifesting APLs that meet ESPA Standard Service requirements. We will further define the processes and procedures required to implement ESPA Standard Service to include: how a particular EELV mission is selected to host ESPA Standard Service, the selection process for auxiliary satellites to utilize the capability, the requirements and timelines small satellites must meet to qualify, and the scope of services provided by ULA as part of Standard Service.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • HUMAN ADAPTATION to SPACEFLIGHT: the ROLE of FOOD and NUTRITION Second Edition
    National Aeronautics and Human Space Administration Adaptation to Spaceflight: The Role of Food and Nutrition Second Edition Scott M. Smith Sara R. Zwart Grace L. Douglas Martina Heer National Aeronautics and Space Administration HUMAN ADAPTATION TO SPACEFLIGHT: THE ROLE OF FOOD AND NUTRITION Second Edition Scott M. Smith Grace L. Douglas Nutritionist; Advanced Food Technology Lead Scientist; Manager for Nutritional Biochemistry Manager for Exploration Food Systems Nutritional Biochemistry Laboratory Space Food Systems Laboratory Biomedical Research and Human Systems Engineering and Environmental Sciences Division Integration Division Human Health and Performance Human Health and Performance Directorate Directorate NASA Johnson Space Center NASA Johnson Space Center Houston, Texas USA Houston, Texas USA Sara R. Zwart Martina Heer Senior Scientist; Nutritionist; Deputy Manager for Nutritional Program Director Nutritional Sciences Biochemistry IU International University of Nutritional Biochemistry Laboratory Applied Sciences Biomedical Research and Bad Reichenhall, Germany Environmental Sciences Division & Human Health and Performance Adjunct Professor of Nutrition Physiology Directorate Institute of Nutritional and Food Sciences NASA Johnson Space Center University of Bonn, Germany Houston, Texas USA & Preventive Medicine and Population Health University of Texas Medical Branch Galveston, Texas USA Table of Contents Preface .........................................................................................................................
    [Show full text]