Chem 59-651 Symmetry and Introduction to Group Theory

Total Page:16

File Type:pdf, Size:1020Kb

Chem 59-651 Symmetry and Introduction to Group Theory Chem 59-651 Symmetry and Introduction to Group Theory Symmetry is all around us and is a fundamental property of nature. Chem 59-651 Symmetry and Introduction to Group Theory The term symmetry is derived from the Greek word “symmetria” which means “measured together”. An object is symmetric if one part (e.g. one side) of it is the same* as all of the other parts. You know intuitively if something is symmetric but we require a precise method to describe how an object or molecule is symmetric. Group theory is a very powerful mathematical tool that allows us to rationalize and simplify many problems in Chemistry. A group consists of a set of symmetry elements (and associated symmetry operations) that completely describe the symmetry of an object. We will use some aspects of group theory to help us understand the bonding and spectroscopic features of molecules. Chem 59-651 We need to be able to specify the symmetry of molecules clearly. F H No symmetry – CHFClBr Br Cl F H Some symmetry – CHFCl2 H H Cl Cl More symmetry – CH2Cl2 Cl Cl H Cl More symmetry ? – CHCl3 Cl Cl What about ? Point groups provide us with a way to indicate the symmetry unambiguously. Chem 59-651 Symmetry and Point Groups Point groups have symmetry about a single point at the center of mass of the system. Symmetry elements are geometric entities about which a symmetry operation can be performed. In a point group, all symmetry elements must pass through the center of mass (the point). A symmetry operation is the action that produces an object identical to the initial object. The symmetry elements and related operations that we will find in molecules are: Element Operation Rotation axis, Cn n-fold rotation Improper rotation axis, Sn n-fold improper rotation Plane of symmetry, σ Reflection Center of symmetry, i Inversion Identity, E The Identity operation does nothing to the object – it is necessary for mathematical completeness, as we will see later. Chem 59-651 ∞ n-fold rotation - a rotation of 360°/n about the Cn axis (n = 1 to ) O(1) 180° O(1) H(2) H(3) H(3) H(2) In water there is a C2 axis so we can perform a 2-fold (180°) rotation to get the identical arrangement of atoms. H(3) H(4) H(2) 120° 120° N(1) N(1) N(1) H(4) H(2) H(4) H(3) H(2) H(3) In ammonia there is a C3 axis so we can perform 3-fold (120°) rotations to get identical arrangement of atoms. Chem 59-651 Notes about rotation operations: - Rotations are considered positive in the counter-clockwise direction. - Each possible rotation operation is assigned using a superscript integer m m of the form Cn . n - The rotation Cn is equivalent to the identity operation (nothing is moved). H(3) H(2) H(4) 1 C 2 C3 3 N(1) N(1) N(1) H(2) H(4) H(4) H(3) H(3) H(2) H(2) 3 C3 = E N(1) H(4) H(3) Chem 59-651 m Notes about rotation operations, Cn : - If n/m is an integer, then that rotation operation is equivalent to an n/m - fold rotation. 2 1 2 1 3 1 e.g. C4 = C2 , C6 = C3 , C6 = C2 , etc. (identical to simplifying fractions) Cl(5) Cl(2) Cl(3) 1 2 1 C4 C4 = C2 Cl(2) Ni(1) Cl(3) Cl(4) Ni(1) Cl(5) Cl(5) Ni(1) Cl(4) Cl(4) Cl(3) Cl(2) 3 C4 Cl(4) Cl(3) Ni(1) Cl(2) Cl(5) Chem 59-651 m Notes about rotation operations, Cn : - Linear molecules have an infinite number of rotation axes C∞ because any rotation on the molecular axis will give the same arrangement. C(1) O(2) O(2)C(1) O(3) C(1) O(2) N(1)N(2) N(1) N(2) Chem 59-651 The Principal axis in an object is the highest order rotation axis. It is usually easy to identify the principle axis and this is typically assigned to the z-axis if we are using Cartesian coordinates. Ethane, C2H6 Benzene, C6H6 The principal axis is the three-fold The principal axis is the six-fold axis axis containing the C-C bond. through the center of the ring. The principal axis in a tetrahedron is a three-fold axis going through one vertex and the center of the object. Chem 59-651 Reflection across a plane of symmetry, σ (mirror plane) σ O(1) v O(1) H(2) H(3) H(3) H(2) These mirror planes are called “vertical” mirror σ planes, v, because they contain the principal axis. σ O(1) v O(1) The reflection illustrated in the top diagram is through a mirror plane H(2) H(3) H(2) H(3) perpendicular to the plane of the water molecule. The plane shown on the bottom is in the same plane as the Handedness is changed by reflection! water molecule. Chem 59-651 Notes about reflection operations: - A reflection operation exchanges one half of the object with the reflection of the other half. σ - Reflection planes may be vertical, horizontal or dihedral (more on d later). - Two successive reflections are equivalent to the identity operation (nothing is moved). σ σ h A “horizontal” mirror plane, h, is perpendicular to the principal axis. This must be the xy-plane if the z- axis is the principal axis. σ σ σ In benzene, the h is in the plane d d of the molecule – it “reflects” each atom onto itself. σ h Vertical and dihedral mirror σ σ planes of geometric shapes. v v Chem 59-651 Inversion and centers of symmetry, i (inversion centers) In this operation, every part of the object is reflected through the inversion center, which must be at the center of mass of the object. 1 F Cl 22F Cl 1 2 Br i Br 1 1 221 1Br 2 Br 1 Cl F2 2 Cl F1 i [x, y, z] [-x, -y, -z] We will not consider the matrix approach to each of the symmetry operations in this course but it is particularly helpful for understanding what the inversion operation does. The inversion operation takes a point or object at [x, y, z] to [-x, -y, -z]. Chem 59-651 m n-fold improper rotation, Sn (associated with an improper rotation axis or a rotation-reflection axis) This operation involves a rotation of 360°/n followed by a reflection perpendicular to the axis. It is a single operation and is labeled in the same manner as “proper” rotations. F1 F2 H1 F F4 1 1 S4 H4 C H2 H3 F F 2 F 3 1 2 S4 F3 F4 F1 H2 σ 90° h H C H 1 1 3 C2 F3 H4 2 F4 S4 H3 H2 C H4 H1 σ Note that: S1 = , S2 = i, and sometimes S2n = Cn (e.g. in box) this makes more sense when you examine the matrices that describe the operations. Chem 59-651 Identifying point groups We can use a flow chart such as this one to determine the point group of any object. The steps in this process are: 1. Determine the symmetry is special (e.g. octahedral). 2. Determine if there is a principal rotation axis. 3. Determine if there are rotation axes perpendicular to the principal axis. 4. Determine if there are mirror planes. 5. Assign point group. Chem 59-651 Identifying point groups Chem 59-651 Identifying point groups Special cases: Perfect tetrahedral (Td) e.g. P4, CH4 -2 Perfect octahedral (Oh) e.g. SF6, [B6H6] -2 Perfect icosahedral (Ih) e.g. [B12H12] , C60 Chem 59-651 Identifying point groups Low symmetry groups: Only* an improper axis (Sn) e.g. 1,3,5,7-tetrafluoroCOT, S4 F1 F4 F2 F3 Only a mirror plane (Cs) e.g. CHFCl2 F H Cl Cl Chem 59-651 Identifying point groups Low symmetry groups: Only an inversion center (Ci) e.g. (conformation is important !) F Cl Br Br Cl F No symmetry (C1) e.g. CHFClBr F H Br Cl Chem 59-651 Identifying point groups Cn type groups: σ A Cn axis and a h (Cnh) e.g. B(OH)3 (C3h, conformation is important !) H O B H O O H e.g. H2O2 (C2h, conformation is important !) H O O H Note: molecule does not have to be planar e.g. B(NH2)3 (C3h, conformation is important !) Chem 59-651 Identifying point groups Cn type groups: Only a Cn axis (Cn) e.g. B(NH2)3 (C3, conformation is important !) H H N B H N N H H H e.g. H2O2 (C2, conformation is important !) H O O H Chem 59-651 Identifying point groups Cn type groups: σ A Cn axis and a v (Cnv) e.g. NH3 (C3v) H N H H e.g. H2O2 (C2v, conformation is important !) O O H H Chem 59-651 Identifying point groups Cn type groups: σ A Cn axis and a v (Cnv) e.g. NH3 (C3v, conformation is important !) H H e.g. carbon monoxide, CO (C∞v) H There are an infinite number of possible N C axes and σ mirror planes. H H n v H H H H C O - e.g. trans-[SbF4ClBr] (C4v) Cl F F F Sb OC F SbBrCl F F F Br F Chem 59-651 Identifying point groups Dn type groups: A Cn axis, n perpendicular C2 axes σ and a h (Dnh) e.g.
Recommended publications
  • Symmetry and Tensors Rotations and Tensors
    Symmetry and tensors Rotations and tensors A rotation of a 3-vector is accomplished by an orthogonal transformation. Represented as a matrix, A, we replace each vector, v, by a rotated vector, v0, given by multiplying by A, 0 v = Av In index notation, 0 X vm = Amnvn n Since a rotation must preserve lengths of vectors, we require 02 X 0 0 X 2 v = vmvm = vmvm = v m m Therefore, X X 0 0 vmvm = vmvm m m ! ! X X X = Amnvn Amkvk m n k ! X X = AmnAmk vnvk k;n m Since xn is arbitrary, this is true if and only if X AmnAmk = δnk m t which we can rewrite using the transpose, Amn = Anm, as X t AnmAmk = δnk m In matrix notation, this is t A A = I where I is the identity matrix. This is equivalent to At = A−1. Multi-index objects such as matrices, Mmn, or the Levi-Civita tensor, "ijk, have definite transformation properties under rotations. We call an object a (rotational) tensor if each index transforms in the same way as a vector. An object with no indices, that is, a function, does not transform at all and is called a scalar. 0 A matrix Mmn is a (second rank) tensor if and only if, when we rotate vectors v to v , its new components are given by 0 X Mmn = AmjAnkMjk jk This is what we expect if we imagine Mmn to be built out of vectors as Mmn = umvn, for example. In the same way, we see that the Levi-Civita tensor transforms as 0 X "ijk = AilAjmAkn"lmn lmn 1 Recall that "ijk, because it is totally antisymmetric, is completely determined by only one of its components, say, "123.
    [Show full text]
  • Properties of the Single and Double D4d Groups and Their Isomorphisms with D8 and C8v Groups A
    Properties of the single and double D4d groups and their isomorphisms with D8 and C8v groups A. Le Paillier-Malécot, L. Couture To cite this version: A. Le Paillier-Malécot, L. Couture. Properties of the single and double D4d groups and their isomorphisms with D8 and C8v groups. Journal de Physique, 1981, 42 (11), pp.1545-1552. 10.1051/jphys:0198100420110154500. jpa-00209347 HAL Id: jpa-00209347 https://hal.archives-ouvertes.fr/jpa-00209347 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Physique 42 (1981) 1545-1552 NOVEMBRE 1981, 1545 Classification Physics Abstracts 75.10D Properties of the single and double D4d groups and their isomorphisms with D8 and C8v groups A. Le Paillier-Malécot Laboratoire de Magnétisme et d’Optique des Solides, 1, place A.-Briand, 92190 Meudon Bellevue, France and Université de Paris-Sud XI, Centre d’Orsay, 91405 Orsay Cedex, France and L. Couture Laboratoire Aimé-Cotton (*), C.N.R.S., Campus d’Orsay, 91405 Orsay Cedex, France and Laboratoire d’Optique et de Spectroscopie Cristalline, Université Pierre-et-Marie-Curie, Paris VI, 75230 Paris Cedex 05, France (Reçu le 15 mai 1981, accepté le 9 juillet 1981) Résumé.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • Symmetry in Chemistry
    SYMMETRY IN CHEMISTRY Professor MANOJ K. MISHRA CHEMISTRY DEPARTMENT IIT BOMBAY ACKNOWLEGDEMENT: Professor David A. Micha Professor F. A. Cotton 1 An introduction to symmetry analysis WHY SYMMETRY ? Hψ = Eψ For H – atom: Each member of the CSCO labels, For molecules: Symmetry operation R CSCO H is INVARIANT under R ( by definition too) 2 An introduction to symmetry analysis Hψ = Eψ gives NH3 normal modes = NH3 rotation or translation MUST be A1, A2 or E ! NO ESCAPING SYMMETRY! 3 Molecular Symmetry An introduction to symmetry analysis (Ref.: Inorganic chemistry by Shirver, Atkins & Longford, ELBS) One aspect of the shape of a molecule is its symmetry (we define technical meaning of this term in a moment) and the systematic treatment and symmetry uses group theory. This is a rich and powerful subject, by will confine our use of it at this stage to classifying molecules and draw some general conclusions about their properties. An introduction to symmetry analysis Our initial aim is to define the symmetry of molecules much more precisely than we have done so far, and to provide a notational scheme that confirms their symmetry. In subsequent chapters we extend the material present here to applications in bonding and spectroscopy, and it will become that symmetry analysis is one of the most pervasive techniques in inorganic chemistry. Symmetry operations and elements A fundamental concept of group theory is the symmetry operation. It is an action, such as a rotation through a certain angle, that leave molecules apparently unchanged. An example is the rotation of H2O molecule by 180 ° (but not any smaller angle) around the bisector of HOH angle.
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • A Short Math Guide
    University of Alabama Department of Physics and Astronomy PH 125 / LeClair Spring 2009 A Short Math Guide Contents 1 Coordinate systems 2 1.1 2D systems . 2 1.2 3D systems . 3 1.3 Rotation of coordinate systems . 3 1.3.1 Two dimensions . 3 1.3.2 Three dimensions . 6 1.3.3 Proper and Improper Rotations: Handedness . 6 2 Vectors 7 2.1 What is a vector? . 7 2.2 Representing vectors . 8 2.3 Adding vectors . 10 2.4 Unit vectors . 12 2.5 Scalar multiplication . 14 2.6 Scalar products . 15 2.7 Scalar Products of Unit Vectors . 16 2.8 Vector products . 17 2.9 Polar and Axial Vectors . 21 2.10 How Vectors Transform under Rotation, Inversion, and Translation . 23 3 Vector Calculus 24 3.1 Derivatives of unit vectors in non-cartesian systems . 24 3.2 Line, surface, and volume elements in different coordinate systems. 24 3.3 Partial Derivatives . 26 3.3.1 Example . 28 3.3.2 Tangents to 3D curves . 30 3.3.3 Equality of second-order partial derivatives . 30 3.3.4 Anti-partial-derivatives . 31 3.3.5 Common Notations . 32 3.4 The Gradient . 33 3.4.1 Vector Functions . 35 1 3.5 Divergence . 36 3.6 Curl . 36 4 Miscellaneous: Solving systems of linear equations 36 1 Coordinate systems Note that we use the convention that the cartesian unit vectors are x^, y^, and ^z, rather than ^{, ^|, and k^, using the substitutions x^ = ^{, y^ = ^|, and ^z = k^. 1.1 2D systems In two dimensions, commonly use two types of coordinate systems: cartesian (x−y) and polar (r−θ).
    [Show full text]
  • A Derivation of the 32 Crystallographic Point Groups Using Elementary
    American Mineralogist, Volwne 61, pages 145-165, 1976 A derivationof the 32 crystallographicpoint groupsusing elementary group theory MoNrn B. Borsnu.Jn., nNn G. V. Gtsss Virginia PolytechnicInstitute and State Uniuersity Blacksburg,Virginia 2406I Abstract A rigorous derivation of the 32 crystallographic point groups is presented.The derivation is designed for scientistswho wish to gain an appreciation of the group theoretical derivation but who do not wish to master the large number of specializedtopics used in other rigorous group theoreticalderivations. Introduction have appealedto a number of interestingalgorithms basedon various geometricand heuristic arguments This paper has two objectives.The first is the very to obtain the 32 crystallographicpoint groups.In this specificgoal of giving a complete and rigorous deri- paper we present a rigorous derivation of the 32 vation of the 32 crystallographicpoint groups with crystallographicpoint groups that usesonly the most emphasisplaced on making this paper as self-con- elementarynotions of group theory while still taking tained as possible.The second is the more general advantageof the power of the theory of groups. objective of presenting several concepts of modern The derivation given here was inspired by the dis- mathematics and their applicability to the study of cussionsgiven in Klein (1884),Weber (1896),Zas- crystallography.Throughout the paper we have at- senhaus(1949), and Weyl (1952).The mathematical tempted to present as much of the mathematical the- approach usedin their discussionsis a blend of group ory as possible,without resortingto long digressions, theory and the theory of the equivalencerelation' so that the reader with only a modest amount of Each of these mathematical concepts is described mathematical knowledge will be able to appreciate herein and is used in the ways suggestedby these the derivation.
    [Show full text]
  • Group Theory
    Introduction to Group Theory with Applications in Molecular and Solid State Physics Karsten Horn Fritz-Haber-Institut der Max-Planck-Gesellschaft 030 8412 3100, e-mail [email protected] Symmetry - old concept, already known to Greek natural philosophy Group theory: mathematical theory, developed in 19th century Application to physics in the 1920’s : Bethe 1929, Wigner 1931, Kohlrausch 1935 Why apply group theory in physics? “It is often hard or even impossible to obtain a solution to the Schrödinger equation - however, a large part of qualitative results can be obtained by group theory. Almost all the rules of spectroscopy follow from the symmetry of a problem” E.Wigner, 1931 Outline 1. Symmetry elements and point groups 4.! Vibrations in molecules 1.1. Symmetry elements and operations 4.1. Number and symmetry of normal modes in ! molecules 1.2. Group concepts 4.2. Vibronic wave functions 1.3. Classification of point groups, including the Platonic Solids 4.3. IR and Raman selection rules 1.4. Finding the point group that a molecule belongs to 5.! Electron bands in solids 2.! Group representations 5.1. Symmetry properties of solids 2.1. An intuitive approach 5.2. Wave functions of energy bands 2.2. The great orthogonality theorem (GOT) 5.3. The group of the wave vector 2.3. Theorems about irreducible representations 5.4. Band degeneracy, compatibility 2.4. Basis functions 2.5. Relation between representation theory and quantum mechanics 2.6. Character tables and how to use them 2.7. Examples: symmetry of physical properties, tensor symmetries 3. ! Molecular Orbitals and Group Theory 3.1.
    [Show full text]
  • Part 1: Supplementary Material Lectures 1-4
    Crystal Structure and Dynamics Paolo G. Radaelli, Michaelmas Term 2013 Part 1: Supplementary Material Lectures 1-4 Web Site: http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option Contents 1 Frieze patterns and frieze groups 2 2 Symbols for frieze groups 3 2.1 A few new concepts from frieze groups . .4 2.2 Frieze groups in the ITC . .6 3 Wallpaper groups 8 3.1 A few new concepts for Wallpaper Groups . .8 3.2 Lattices and the “translation set” . .8 3.3 Bravais lattices in 2D . .9 3.3.1 Oblique system . .9 3.3.2 Rectangular system . .9 3.3.3 Square system . 10 3.3.4 Hexagonal system . 10 3.4 Primitive, asymmetric and conventional Unit cells in 2D . 10 3.5 The 17 wallpaper groups . 10 3.6 Analyzing wallpaper and other 2D art using wallpaper groups . 10 1 4 Point groups in 3D 12 4.1 The new generalized (proper & improper) rotations in 3D . 13 4.2 The 3D point groups with a 2D projection . 13 4.3 The other 3D point groups: the 5 cubic groups . 15 5 The 14 Bravais lattices in 3D 17 6 Notation for 3D point groups 19 6.0.1 Notation for ”projective” 3D point groups . 19 7 Glide planes in 3D 21 8 “Real” crystal structures 21 8.1 Cohesive forces in crystals — atomic radii . 21 8.2 Close-packed structures . 22 8.3 Packing spheres of different radii . 23 8.4 Framework structures . 24 8.5 Layered structures . 25 8.6 Molecular structures .
    [Show full text]
  • Molecular Symmetry 6
    Molecular symmetry 6 Symmetry governs the bonding and hence the physical and spectroscopic properties of molecules. An introduction to symmetry In this chapter we explore some of the consequences of molecular symmetry and introduce the analysis systematic arguments of group theory. We shall see that symmetry considerations are essential for 6.1 Symmetry operations, elements constructing molecular orbitals and analysing molecular vibrations. They also enable us to extract and point groups information about molecular and electronic structure from spectroscopic data. 6.2 Character tables The systematic treatment of symmetry makes use of a branch of mathematics called group Applications of symmetry theory. Group theory is a rich and powerful subject, but we shall confine our use of it at 6.3 Polar molecules this stage to the classification of molecules in terms of their symmetry properties, the con- 6.4 Chiral molecules struction of molecular orbitals, and the analysis of molecular vibrations and the selection 6.5 Molecular vibrations rules that govern their excitation. We shall also see that it is possible to draw some general conclusions about the properties of molecules without doing any calculations at all. The symmetries of molecular orbitals 6.6 Symmetry-adapted linear combinations 6.7 The construction of molecular orbitals An introduction to symmetry analysis 6.8 The vibrational analogy That some molecules are ‘more symmetrical’ than others is intuitively obvious. Our aim Representations though, is to define the symmetries of individual molecules precisely, not just intuitively, 6.9 The reduction of a representation and to provide a scheme for specifying and reporting these symmetries.
    [Show full text]
  • An Introduction to Molecular Symmetry
    Chapter 3 An introduction to molecular symmetry TOPICS & Symmetry operators and symmetry elements & Point groups & An introduction to character tables & Infrared spectroscopy & Chiral molecules the resulting structure is indistinguishable from the first; 3.1 Introduction another 1208 rotation results in a third indistinguishable molecular orientation (Figure 3.1). This is not true if we Within chemistry, symmetry is important both at a molecu- carry out the same rotational operations on BF2H. lar level and within crystalline systems, and an understand- Group theory is the mathematical treatment of symmetry. ing of symmetry is essential in discussions of molecular In this chapter, we introduce the fundamental language of spectroscopy and calculations of molecular properties. A dis- group theory (symmetry operator, symmetry element, point cussion of crystal symmetry is not appropriate in this book, group and character table). The chapter does not set out to and we introduce only molecular symmetry. For qualitative give a comprehensive survey of molecular symmetry, but purposes, it is sufficient to refer to the shape of a molecule rather to introduce some common terminology and its using terms such as tetrahedral, octahedral or square meaning. We include in this chapter an introduction to the planar. However, the common use of these descriptors is vibrational spectra of simple inorganic molecules, with an not always precise, e.g. consider the structures of BF3, 3.1, emphasis on using this technique to distinguish between pos- and BF2H, 3.2, both of which are planar. A molecule of sible structures for XY2,XY3 and XY4 molecules. Complete BF3 is correctly described as being trigonal planar, since its normal coordinate analysis of such species is beyond the symmetry properties are fully consistent with this descrip- remit of this book.
    [Show full text]