International Strategic Minerals Inventory Summary Report-Niobium (Columbium) and Tantalum

Total Page:16

File Type:pdf, Size:1020Kb

International Strategic Minerals Inventory Summary Report-Niobium (Columbium) and Tantalum U.S. GEOLOGICAL SURVEY CIRCULAR 930-M International Strategic Minerals Inventory Summary Report-Niobium (Columbium) and Tantalum Prepared as a cooperative effort among earth­ science and mineral-resource agencies of Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America Geologic Time Scale I Million years Age before present Holocene Quaternary - 0.01 Pleistocene u I- 2 Pliocene 0 N r- 5 Miocene 0 z r- 24 Oligocene Tertiary w u I- 38 Eocene - 55 Paleocene I 63 Late Cretaceous Cretaceous u - 96 Early Cretaceous 0 N I- 138 0 Jurassic (/) w :E r- 205 Triassic -240 Permian I- 290 Pennsylvanian - Carboniferous I- -330 Mississippian u 0 I- 360 N Devonian 0 w ....1 I- 410 <( Silurian a.. I- 435 Ordovician I- 500 Cambrian u -570 Late Proterozoic 0 N - 900 a:0 z Middle Proterozoic w 1- I- 1600 <( 0 a: a: Early Proterozoic a.. co -2500 :E <( z u <( w w a: J: a.. u a: <( I International Strategic Minerals Inventory Summary Report-Niobium (Columbium) and Tantalum By Richard N. Crockett and David M. Sutphin U.S. GEOLOGICAL SURVEY CIRCULAR 930-M Prepared as a cooperative effort among earth­ science and mineral-resource agencies of Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas l. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1993 Free on application to U.S. Geological Survey, Map Distribution Box 25286, Bldg. 810, Federal Center Denver, CO 80225 Library of Congress Cataloging in Publication Data Crockett, R.N. International strategic minerals inventory summary report-niobium (columbium) and tantalum I by Richard N. Crockett and David M. Sutphin. p. em. - (U.S. Geological Survey circular; 930-M) "Prepared as a cooperative effort among earth-science and mineral-resource agencies of Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America." Includes bibliographical references. 1. Niobium ores. 2. Tantalum ores. 3. Strategic materials. I. Sutphin, David M. IT. Title. ill. Series. TN490.N65C68 1993 333.8'5465-dc20 92-41231 CIP FOREWORD Earth-science and mineral-resource agencies from several countries started the International Strategic Minerals Inventory in order to cooperatively gather information about major sources of strategic mineral raw materials. This circular summarizes inventory information about major deposits of niobium and tantalum, two of the mineral commodities selected for the inventory. The report was prepared by Richard N. Crockett of the British Geological Survey (BGS) of the Natural Environment Research Council and David M. Sutphin of the U.S. Geological Survey (USGS). David G. Bate, BGS, provided bibliographi~ assistance, and the report was transcribed by Dorothy J. Manley, USGS. The niobium and tantalum inventory information was compiled by Richard N. Crockett, BGS, with assistance from Richard J. Pantel, U.S. Bureau of Mines (USBM). Inventory records were additionally supplied by David A. Buckingham, USBM; Ian S. McNaught, Australian Bureau of Resource Sciences (BRS); and D. MacRobbie and J. Lepinis, Energy, Mines & Resources, Canada (EMR), Mineral Policy Sector (MPS). Additional contributions to the report were made by David A. Buckingham, USBM; Theodore J. Armbrustmacher, USGS; Ian R. McLeod, BRS; David C. Findlay, EMR, Geological Survey of Canada; and Antony B. T. Werner, EMR, MPS. Director m CONTENTS Page Fo~word------------------------------------------------------------------------------ TIU Abstract------------------------------------------------------------------------------- 1 Part I-Overview ----------------------------------------------------------------------- 1 Introduction----------------------------------------------------------------------- 1 Background and summary of uses ----------------------------------------------------- 3 Uses of niobium ---- ---- -- -- -- -- ------------ -- -- ---- - --- -------- --- - -- ---- -- - 4 Uses of tantalum------------------------------------------------------------- 4 Recent aspects of supply and demand- - ----- ------------ --- ------- --- ------ -- - -- - --- - - - 4 Geology and mineralogy of niobium and tantalum---------------------------------------- 6 Mining and processing -------------------------------------------------------------- 7 Niobium mining and processing ------------------------------------------------ 7 Tantalum mining and processing- ----------------------------------------------- 8 Distribution of niobium and tantalum deposits -- -- -- ---------- ------------ ---- - ----- - --- - 8 Carbonatites and other alkaline igneous deposits ----------------------------------- 8 Pegmatite deposits and tin placers- --- --- -- ---------------- -- - -- - -- ---- ---- ------ 10 Niobium and tantalum ~sources -------- -- ---- -- -- -- --------- -- - ---- -- -- ---- -- -------- 10 Niobium ~sources ---- --- -- ---- --- -- ---------- -- ---- -- -- ---- ---------- ------ - 11 Tantalum ~sources----------------------------------------------------------- 12 Niobium and tantalum production ----------------------------------------------------- 13 Niobium and tantalum exports -- ---- ----- - -- ------------- -- -- ---- ---------- ---- -- -- --- 14 Conclusions----------------------------------------------------------------------- 16 Part II-Selected inventory information for niobium and tantalum deposits and districts- ------------- 17 Refe~nces cited ------------------------------------------------------------------------ 34 Additional ~fe~nces on niobium and tantalum resources--------------------------------------- 35 References on named deposits and districts ----------- -- ---- -- -- ---- ------ -- -- -- --- - ---- 35 Refe~nces on exploration, mining, and processing --------------------------------------- 36 ILLUSTRATIONS Page FIGURE 1. Diagram showing United Nations ~source categories used in this ~port- --- -- - - - - - - - - - 3 2. Graph showing world mine production of niobium concentrate, for selected years 1950-90--------------------------------------------------------------- 5 3. Diagram showing schematic cross section through a carbonatite complex - - - - - - - ----- - - 8 4. Map showing location and geologic deposit type of the world's major niobium and tantalum deposits and districts --------------------------------------------- 9 5-7. Graphs showing the distribution of world- 5. Niobium ~sources in pyrochlo~-------------------------------------------- 12 6. Niobium ~sources in o~s other than pyrochlore ------------------------------- 12 7. Tantalum resources including an assessment of ~sources associated with tin placers-- 12 8. Map showing location of major niobium and tantalum post-mill processing facilities----- 15 v TABLES Page TABLE 1. World niobium resources in 1989- --------------- - ---------- - -------------------- 11 2. World tantalum resources in 1989 ------- - --------------------------------------- 11 3. Estimated cumulative production of niobium and tantalum contained in concentrates, listed by country -------------------------------------------------------------- 13 4. World production of ores and concentrates, other than pyrochlore, containing niobium and tantalum in 1988------------------------------------------------------ 14 5. World production of pyrochlore concentrates in 1988-------------------------------- 14 6. World exports of partially processed niobium and tantalum materials in 1988 - - - - - - - - - - - - 16 7. Selected information for niobium-tantalum post-mill production facilities- -- - - - - - -- ------ 18 8. Selected geologic and location information from ISMI records for niobium and tantalum deposits and districts ------------------------------------------------------ 22 9. Selected production and mineral-resource information from ISMI records for niobium and tantalum deposits and districts - - - - - - - - - - - - - - - - - - - - - - ---- - - - - - - - - - - - ----- - 28 VI INTERNATIONAL STRATEGIC MINERALS INVENTORY SUMMARY REPORT NIOBIUM (COLUMBIUM) AND TANTALUM By Richard N. Crockett1 and David M. Sutphin2 Abstract production, has been captive to the fluctuations of that market, but resources in pegmatite in Canada and Australia Major world resources of niobium and tantalum are make it likely that future increases in the present modest described in this summary report of information in the Inter­ demand will be met. national Strategic Minerals Inventory (ISMI). ISMI is a co­ operative data-collection effort of earth-science and mineral­ resource agencies in Australia, Canada, the Federal Republic PART I-OVERVIEW of Germany, the Republic of South Africa, the United King­ dom, and the United States of America. Part I of this report presents an overview of the resources and potential supply INTRODUCTION of niobium and tantalum based on inventory information; Part II contains tables of both geologic and mineral-resource The reliability of future supplies of so-called stra­ information and includes production data collected by ISMI tegic minerals is of concern to many nations. This participants. Niobium is used principally as an alloying element in widespread concern led to duplication of effort in the special steels and superalloys, and tantalum
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The Mineral Industry of Burundi in 2016
    2016 Minerals Yearbook BURUNDI [ADVANCE RELEASE] U.S. Department of the Interior January 2020 U.S. Geological Survey The Mineral Industry of Burundi By Thomas R. Yager In 2016, the production of mineral commodities—notably can be found in previous editions of the U.S. Geological Survey gold, tantalum, tin, and tungsten—represented only a minor Minerals Yearbook, volume III, Area Reports—International— part of the economy of Burundi (United Nations Economic Africa, which are available at https://www.usgs.gov/centers/ Commission for Africa, 2017). The legislative framework for nmic/africa-and-middle-east. the mineral sector in Burundi is provided by the Mining Code of Burundi (law No. 1/21 of October 15, 2013). The legislative Reference Cited framework for the petroleum sector is provided by the Mining United Nations Economic Commission for Africa, 2017, Burundi, in African and Petroleum Act of 1976. Data on mineral production are statistical yearbook 2017: United Nations Economic Commission for Africa, in table 1. Table 2 is a list of major mineral industry facilities. p. 113–117. (Accessed November 7, 2018, at https://www.uneca.org/sites/ More-extensive coverage of the mineral industry of Burundi default/files/PublicationFiles/asyb-2017.pdf.) TABLE 1 BURUNDI: PRODUCTION OF MINERAL COMMODITIES1 (Metric tons, gross weight, unless otherwise specified) Commodity2 2012 2013 2014 2015 2016 METALS Gold, mine, Au contente kilograms 500 400 500 500 500 Niobium and tantalum, mine, columbite-tantalite concentrate: Gross weight do. 258,578 73,518 105,547 53,093 r 31,687 Nb contente do. 51,000 14,000 21,000 10,000 r 6,200 Ta contente do.
    [Show full text]
  • Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
    1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣ ␤ ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in ␤ obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4), ␤ 103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4.
    [Show full text]
  • Tin, Tungsten, and Tantalum Deposits of South Dakota
    TIN, TUNGSTEN, AND TANTALUM DEPOSITS OF SOUTH DAKOTA. By FRANK L. HESS. INTRODUCTION. Many articles have been written 011 the tin deposits of the Black Hills, and an excellent paper by J. D. Irving a on the tungsten deposits at Lead was published in 1901. Nothing is known to have been pub­ lished on the tungsten deposits of the southern Black Hills, but several articles have been written on the deposits of tantalum. Nearly all the papers on these different deposits, however, are a num­ ber of years old, and later developments have given several of the deposits an aspect somewhat different from their appearance at the time they were described. It therefore seems well to give a brief account of observations made by the writer during a short reconnais­ sance trip in September, 1908, together with such reviews of the his­ tory and the literature of the region as may seem advisable. All the known deposits of tin, tungsten, and tantalum in South Dakota occur in the Black Hills, in Lawrence and Pennington coun­ ties, in the southwestern part of the State. Although designated as "hills," these elevations reach a height of 7,216 feet in Harney Peak, 500 feet above the highest of the Appalachians (Mount Mitchell, 6,711 feet) and almost a thousand feet above the highest of the White Mountains (Mount Washington, 6,279 feet). They are about 60 to 75 miles long by 50 miles wide, the longer axis lying nearly north and south. There is a considerable diversity of topography in the different parts of the area to be considered.
    [Show full text]
  • Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia
    minerals Article Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia Lia Kogarko 1,* and Troels F. D. Nielsen 2 1 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 2 Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark; [email protected] * Correspondence: [email protected] Received: 23 September 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore.
    [Show full text]
  • The Journal of Gemmology Editor: Dr R.R
    he Journa TGemmolog Volume 25 No. 8 October 1997 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London Eel N SSU Tel: 0171 404 1134 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uklgagtl President: Professor R.A. Howie Vice-Presidents: LM. Bruton, Af'. ram, D.C. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Inr, K. Nassau Honorary Life Members: D.). Callaghan, LA. lobbins, H. Tillander Council of Management: C.R. Cavey, T.]. Davidson, N.W. Decks, R.R. Harding, I. Thomson, V.P. Watson Members' Council: Aj. Allnutt, P. Dwyer-Hickey, R. fuller, l. Greatwood. B. jackson, J. Kessler, j. Monnickendam, L. Music, l.B. Nelson, P.G. Read, R. Shepherd, C.H. VVinter Branch Chairmen: Midlands - C.M. Green, North West - I. Knight, Scottish - B. jackson Examiners: A.j. Allnutt, M.Sc., Ph.D., leA, S.M. Anderson, B.Se. (Hons), I-CA, L. Bartlett, 13.Se, .'vI.phil., I-G/\' DCi\, E.M. Bruton, FGA, DC/\, c.~. Cavey, FGA, S. Coelho, B.Se, I-G,\' DGt\, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, f1GA, Cj.E. Halt B.Sc. (Hons), FGr\, G.M. Howe, FG,'\, oo-, G.H. jones, B.Se, PhD., FCA, M. Newton, B.Se, D.PhiL, H.L. Plumb, B.Sc., ICA, DCA, R.D. Ross, B.5e, I-GA, DGA, P..A.. Sadler, 13.5c., IGA, DCA, E. Stern, I'GA, DC/\, Prof. I.
    [Show full text]
  • Geology of the South Pass Area, Fremont County, Wyoming
    Geology of the South Pass Area, Fremont County, Wyoming By RICHARD W. BAYLEY, PAUL DEAN PROCTOR,· and KENT C. CONDIE GEOLOGICAL SURVEY PROFESSIONAL PAPER 793 Describes the stratigraphy) structure) and metamorphism of the South Pass area) and the iron and gold deposits UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600101 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price $1.10 (paper cover) Stock Number 240l-02398 CONTENTS Page Page Abstract 1 Intrusive igneous rocks-Continued Introduction ------------------------------------- 1 Louis Lake batholith ------------------------­ 17 Geography -----------------------·----------- 1 Diabasic gabbro dikes ------------------------ 24 Human his,tory ------------------------------­ 2 Structure --------------------------------------- 24 Previous investigations ----·------------------­ 3 Metamorphism ----------------------------------- 26 Recent investigations ------------------------­ 4 Geochronology ----------------------------------­ 28 Acknowledgments ---------------------------- 4 Economic geology -------------------------------- 2~ Geologic setting --------------------------------­ 4 Gold ----------·------------------------------ 28 Stratigraphy ------------------------------~----­ 6 Quartz veins ---------------------------..:. 29 Goldman Meadows Formation ----------------­ 6
    [Show full text]
  • Ralstonite Renamed Hydrokenoralstonite, Coulsellite Renamed Fluornatrocoulsellite, and Their Incorporation Into the Pyrochlore Supergroup
    115 The Canadian Mineralogist Vol. 55, pp. 115-120 (2017) DOI: 10.3749/canmin.1600056 RALSTONITE RENAMED HYDROKENORALSTONITE, COULSELLITE RENAMED FLUORNATROCOULSELLITE, AND THEIR INCORPORATION INTO THE PYROCHLORE SUPERGROUP § DANIEL ATENCIO Instituto de Geociencias,ˆ Universidade de S˜ao Paulo, Rua do Lago, 562, 05508-080, S˜ao Paulo, SP, Brazil MARCELO B. ANDRADE S˜ao Carlos Institute of Physics, University of S˜ao Paulo, PO Box 369, 13560-970, S˜ao Carlos, SP, Brazil ARTUR C. BASTOS NETO AND VITOR P. PEREIRA Instituto de Geociencias,ˆ Universidade Federal do Rio Grande do Sul. Avenida Bento Gon¸calves 9500, CEP 91501-970, Porto Alegre, RS, Brazil ABSTRACT Ralstonite is renamed hydrokenoralstonite, ideally A2Al2F6(H2O). ‘‘Atroarite’’ and the ‘‘AHF’’ phase (hydrated aluminum hydroxy-fluoride, a ‘‘ralstonite-like mineral’’) are also hydrokenoralstonite. The name ralstonite is transferred to the group, where M3þ cations are dominant at the B site, and Al is dominant among them, and F1– is the dominant anion at the X site. Hydrokenoralstonite from the Pitinga mine, Presidente Figueiredo, Amazonas, Brazil, is intimately associated with galena and sphalerite. It forms chemically homogeneous octahedral crystals, from 0.1 to 1 mm in size. The mineral is colorless with white 3 streak, vitreous luster, transparent, density (calc.): 2.554 g/cm . Its empirical formula is (A1.87Na0.12Rb0.01)R2.00 ˚ ˚ 3 (Al1.86Mg0.14)R2.00[F3.46(OH)2.54]R6.00(H2O). The mineral is cubic, Fd3m (#227), a 9.8455(7) A, V 954.36 (12) A , Z ¼ 8. Hydrokenoralstonite exhibits (Al,Mg) cations with octahedral coordination and Na cations located within distorted cubes.
    [Show full text]
  • Tungsten Minerals and Deposits
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance.................................
    [Show full text]
  • Spring 2012 Gem News International
    Editor Brendan M. Laurs ([email protected]) Contributing Editors Emmanuel Fritsch, CNRS, Team 6502, Institut des Matériaux Jean Rouxel (IMN), University of Nantes, France ([email protected]) Michael S. Krzemnicki, Swiss Gemmological Institute SSEF, Basel, Switzerland ([email protected]) Franck Notari, GGTL GemLab –GemTechLab, Geneva, Switzerland ([email protected]) Kenneth Scarratt, GIA, Bangkok, Thailand ([email protected]) stones, many rarities such as pallasitic peridot (figure 1) and TUCSON 2012 hibonite (figure 2) were seen at the shows. Cultured pearls continued to have a strong presence, and particularly impres - This year’s Tucson gem and mineral shows saw brisk sales sive were the relatively new round beaded Chinese freshwater of high-end untreated colored stones (and mineral specimens) products showing bright metallic luster and a variety of natural as well as some low-end goods, but sluggish movement of colors (figure 3). An unusual historic item seen in Tucson is mid-range items. In addition to the more common colored the benitoite necklace suite shown in figure 4. Several additional notable items present at the shows are described in the following pages and will also be documented in future issues of G&G . The theme of this year’s Tucson Gem and Mineral Society show was “Minerals of Arizona” in honor of Arizona’s Centennial, and next year’s theme will be “Fluorite: Colors of the Rainbow.” Figure 2. This exceedingly rare faceted hibonite from Myanmar weighs 0.96 ct and was recently cut from a crystal weighing 0.47 g, which also yielded a 0.26 ct stone.
    [Show full text]
  • The Spirit of the Silk Road and the Nigerian M
    INVESTMENT OPPORTUNITY IN NIGERIAN MINERALS/ MINING SECTOR YAKUBU SILAS CONTENT Introduction Mineral Exploration/Data Acquisition Geosciences Data used by Industry Geology of Nigeria Mineral Resources Government Reforms Legislative and Regulatory Framework Investment Opportunities Conclusion. Introduction --Country Profile Landmass: :923,768 km2 Coastline: 853 km Capital: Abuja Official Language: English Major Languages: Igbo,Hausa, Yoruba. Others include: Fulani, Ijaw, Tiv, Ibibio, Kanuri,Idoma About 250 linguistic Groups Population: (2011):181,562,056 Currency: Naira Introduction (continued) A decline in the Oil Prices in Recent Years has Prompted the Government to Diversify the Economy, making the Development of the Mining Sector a Priority by carrying out Reforms in the Mining Sector. Hence, Effort are geared toward Geological, Geochemical and Geophysical Surveys, aimed at Producing needed Data/Information by Investors to make informed Decisions. EXPLORATION/ DATA AQUISITION Survey Outputs: Types of Geoscience Data used by Industry Geochemical Mapping ( 8 of 44 GRN Cells ) Geological Maps (95 of 337 nos. 1:100,000 100% Coverage on Airborne Geophysical Survey Survey Outputs: Types of Geoscience Data used by Industry Geological Maps Geochemical map (Gold – Koton Karfi Cel) Geophysical Map (Nigeria) 7 Geology of Nigeria Legend Simplified Geological Map of Nigeria Geology of Nigeria continued The geology of Nigeria is dominated by the Basement Complex Rocks which occur in the northeastern, southwestern and north-central region of the country and Sedimentary Rocks sequences that have filled up the Basins which are vast depressions between the Basement Complexes Nigerian Mineral Resources Mineral Resources Distributio n in Nigeria Nigerian Mineral Resources . Current exploratory studies revealed abundant Mineral Resources occurring in all the components of Nigerian Geology As at 2016, Over 40 known minerals were discovered in Nigeria.
    [Show full text]