The Synthesis and Characterization of Novel Group 13 Nanostructured Building Block Heterogeneous Silicate Catalysts

Total Page:16

File Type:pdf, Size:1020Kb

The Synthesis and Characterization of Novel Group 13 Nanostructured Building Block Heterogeneous Silicate Catalysts University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 The Synthesis and Characterization of Novel Group 13 Nanostructured Building Block Heterogeneous Silicate Catalysts Joshua G. Abbott Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Catalysis and Reaction Engineering Commons, Inorganic Chemistry Commons, and the Materials Chemistry Commons Recommended Citation Abbott, Joshua G., "The Synthesis and Characterization of Novel Group 13 Nanostructured Building Block Heterogeneous Silicate Catalysts. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1430 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Joshua G. Abbott entitled "The Synthesis and Characterization of Novel Group 13 Nanostructured Building Block Heterogeneous Silicate Catalysts." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Craig E. Barnes, Major Professor We have read this dissertation and recommend its acceptance: Craig E. Barnes, Zi-ling Xue, Michael Best, Joseph J. Bozell Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) The Synthesis and Characterization of Novel Group 13 Nanostructured Building Block Heterogeneous Silicate Catalysts A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Josh G. Abbott August 2012 Dedication To Julia. Without your unwavering support and unconditional love the completion of this journey would not have been possible. ii Acknowledgements No endeavor this large can be the work of one person. As such, a great number of individuals have shared in the incredible journey that has led to the completion of this body of work. In doing so they have placed their collective imprint, not only on the dissertation presented here, but on the way I see and interact in the laboratory, and the surrounding world. Foremost among these is my advisor Dr. Craig E. Barnes. It is through him that I have become the chemist I am today. His never ending curiosity and his attention to detail are infectious while his calm persona and sustained patience have shown me that great chemistry can happen in a low stress, relaxed atmosphere. I must thank my committee members, Dr. Michael Best, Dr. Zi-ling Xue, and Dr. Joseph J. Bozell for agreeing to commit their time and energy to be a part of my committee in addition to the time they have spent expanding my knowledge of chemistry through their classes and collaborative efforts. I would also like to thank Dr. Carlos Steren for his sustained involvement in my education as an NMR operator. His knowledge has led to my sincere affection for the technique and pushed me to see how deep ones understanding of an analytical technique can go. I am eternally grateful to current and former group members, Dr. Ming-Yung Lee, Dr. Richard Mayes, Dr. Michael Peretich, Dr. Shujian Chen, Dr. Jiri Pinkas, Nan Chen, James Humble, Austin Albert, Daniel Taylor, Matt Dembo, Lena Elenchin and Desta Bume for helpful discussions about research, generally keeping the mood in the lab light, and for certainly making life interesting. Thanks are also in order for the staff of the Department of Chemistry. The staff of the stock room and business office has helped in immeasurable ways. Special thanks to Sharon Marshall, Gail Cox, Darrel Lay, Beverly Rosenbalm, Tray Allen, and Sherri Dugger. Art Pratt is a wizard with glass, and a patient and understanding soul. I can’t imagine how difficult things would have been without his services. Tim Free, Gene French, and Eddie Wilson of the Machine Shop were instrumental to the production, modification, and maintenance of a great number of things that keep the lab running. iii Bill Gurley, Johnny Jones, and Gary Wynn of the Electronics shop were instrumental in assisting with electronic and computer issues throughout my tenure. I owe a great deal of thanks to the Department of Energy Office of Basic Energy Sciences and C3Bio EFRC for funding my research the past six years. Finally I must thank my wife and family for believing in me and never doubting my success. Even when I had doubts, their strength and support pushed me to continue to strive for success. iv Abstract A building block approach and sequential addition methodology was utilized to prepare heterogeneous silicate catalysts containing atomically dispersed group 13 metal (B, Al, Ga) centers. The octa(trimethyltin) silsequioxane, Si8[sub]O12[sub](OSnMe3[sub])8[sub], was used as the building block for the synthesis of these materials. Reaction of the building block with a variety of group 13 metal chlorides led to the formation of cross-linked matrices. All prepared materials were characterized by gravimetric analysis, gas absorption, IR, and NMR. In addition, aluminum and boron samples where characterized by 27[sup]Al and 11[sup]B solid state NMR, and gallium samples were studied using x-ray absorption techniques. Studies found the nature of the reaction for the aluminum and gallium species to be more complex than expected. This was manifested most prominently in the formation of tetramethyltin, Me4[sub]Sn, an unexpected byproduct that led to unpredictably high connectivity of the metal centers to the silicate matrix. This in turn gave rise to questions regarding the true structural nature of the metal sites. Characterization of the aluminum systems indicated that multiple types of aluminum sites (4, 5 and 6 coordinate) were present in the matrix. Increased coordination was found to result in part from the in situ formation and reaction of the [Me3[sub]Sn][AlCl4[sub]] species. It was determined that the trimethyltin cation in this ionic species was responsible for formation of Me4[sub]Sn through abstraction of a methyl group from unreacted –OSnMe3[sub] groups remaining on the corners of the silicate building block. While the gallium analogues showed similar behavior, XANES and EXAFS analyses showed that in nearly every material, gallium had achieved 4-coordinate tetrahedral geometry. The boron systems behave quite differently than Al and Ga, producing no secondary byproduct, and forming stable 3-coordinate trigonal geometries. Pyridine adsorption studies showed that these trigonal species could at least in part be converted back and forth to pseudo tetrahedral structures. v Table of Contents 1. Introduction & Review of Heterogeneous Catalysis ................................................................. 1 1.1 Introduction ....................................................................................................................... 1 1.2 Definition of a catalyst ....................................................................................................... 2 1.3 Heterogeneous vs. Homogeneous Catalysts .................................................................... 4 1.4 Classes of Heterogeneous Catalysts ................................................................................ 5 1.4.1 – Pure Metals ............................................................................................................. 5 1.4.2 – Metal Oxides ........................................................................................................... 5 1.4.3 – Supported Homogeneous Analogues ...................................................................... 7 1.4.4 – Solid Acids .............................................................................................................11 1.5 Aluminosilicates ...............................................................................................................14 1.5.1 – Industrial Applications ............................................................................................14 1.5.2 – Classes of Aluminosilicates ....................................................................................17 1.5.3 – Nature of the Active Sites in Aluminosilicates .........................................................21 1.5.4 – Methods for the Synthesis of Aluminosilicates ........................................................25 1.6 Building Block Approach to Aluminosilicate Synthesis .....................................................28 1.7 Gallium, Boron, & POSS Analogues ................................................................................39 1.8 Characterization Methods ................................................................................................40 1.8.1 – Gravimetric Analysis...............................................................................................40 1.8.2 – Gas Adsorption Measurements ..............................................................................42 1.8.3 – Infrared Spectroscopy (IR) .....................................................................................42 1.8.4 – Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) .............42
Recommended publications
  • Preparation of Aromatic Carbonyl Compounds
    ~" ' MM II II II Ml I III II II I Ml II I II J European Patent Office © Publication number: 0 178 184 B1 Office_„. europeen- desj brevets^ » © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 28.04.93 © Int. CI.5: C07C 45/45, C07C 49/76, C07C 51/58 © Application number: 85307320.3 @ Date of filing: 11.10.85 © Preparation of aromatic carbonyl compounds. © Priority: 11.10.84 US 659598 (73) Proprietor: RAYCHEM CORPORATION (a Dela- ware corporation) @ Date of publication of application: 300 Constitution Drive 16.04.86 Bulletin 86/16 Menlo Park, California 94025(US) © Publication of the grant of the patent: @ Inventor: Horner, Patrick James 28.04.93 Bulletin 93/17 139 Buckthorn Way Menlo Park California 94025(US) © Designated Contracting States: Inventor: Jansons, Vlktors AT BE CH DE FR GB IT LI NL SE 123 New York Avenue Los Gatos California 95030(US) References cited: Inventor: Gors, Helnrlch Carl EP-A- 0 024 286 EP-A- 0 069 598 2508 Mardell Way DE-A- 2 014 514 GB-A- 1 420 506 Mountain View California, 94043(US) GB-A- 2 103 604 US-A- 1 874 580 US-A- 3 282 989 Representative: Jay, Anthony William et al Raychem Limited Intellectual Property Law Department Faraday Road Dorcan Swindon Wiltshire (GB) 00 00 00 Note: Within nine months from the publication of the mention of the grant of the European patent, any person ® may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition CL shall be filed in a written reasoned statement.
    [Show full text]
  • Beitrag Zur Chemie Des Galliums the Synthesis and Some Properties of Gallium Ethoxide
    52 4 R. REINMANN UND A. TANNER Beitrag zur Chemie des Galliums The Synthesis and some Properties of Gallium Ethoxide R . R e in m a n n u n d A . T anner Forschungsinstitut der Schweizerischen Aluminium A.G., Neuhausen am Rheinfall/Schweiz (Z. Naturforsdig. 20 b, 524—525 [1965] ; eingegangen am 6. März 1965) Experimental amounts in the range of 50 g each of gallium triethoxide have been prepared by reacting gallium trichloride with freshly prepared sodium ethoxide in absolute alcohol. Chloride, always present in the raw product, can be eliminated by precipitation with silver nitrate. Gallium triethoxide crystallizes in colourless needles, melting at 144.5 °C. The density of the very hygro­ scopic product is 1.23 g/cc. It is volatile at elevated temperature in vacuum. By alcohol interchange, the ethoxide can easily be transformed to the isopropoxide. Although many of the various alkoxides are Sodium metal is carefully freed from its superficial described in the literature, those of gallium were crust in a glove box under dry nitrogen, weighed, and lacking until recently. dissolved in ethanol under reflux. The stoichiometric amount of gallium trichloride, dissolved in cooled etha­ The purpose of this investigation was to find a nol, is added dropwise to the sodium ethoxide solution. suitable method for the preparation of gallium The mixture is finally heated to ebullition for about ethoxide, and to evaluate also some properties of 30 minutes. After cooling, when the NaCl and the the new compound. major part of the Gallium ethoxide are precipitated, benzene is added to about 30 — 40% of the final When writing this manuscript, we came across the mixture.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 16-May-2011 Revision Date 18-Jan-2021 Revision Number 2 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Gallium(III) chloride, ultra dry Cat No. : 45026 CAS-No 13450-90-3 EC-No. 236-610-0 Molecular Formula GaCl3 Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met Health hazards ______________________________________________________________________________________________ ALFAA45026 Page 1 / 10 SAFETY DATA SHEET Gallium(III) chloride, ultra dry Revision Date 18-Jan-2021 ______________________________________________________________________________________________ Skin Corrosion/Irritation Category 1 B (H314) Serious Eye Damage/Eye Irritation Category 1 (H318) Environmental hazards Based on available data, the classification criteria are not met Full text of Hazard Statements: see section 16 2.2. Label elements Signal Word Danger Hazard Statements H314 - Causes severe skin burns and eye damage EUH014 - Reacts violently with water Precautionary Statements P280 - Wear protective gloves/protective clothing/eye protection/face protection P301 + P330 + P331 - IF SWALLOWED: Rinse mouth.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Gallium in 2017 (PDF)
    2017 Minerals Yearbook GALLIUM [ADVANCE RELEASE] U.S. Department of the Interior April 2020 U.S. Geological Survey Gallium By Brian W. Jaskula Domestic survey data and tables were prepared by Wanda G. Wooten, statistical assistant. Low-grade primary gallium was recovered globally as a gallium production was 5% from 2007 through 2017. World byproduct of processing bauxite and zinc ores. No domestic high-grade secondary refined gallium production increased at a low-grade primary gallium was recovered in 2017. Imports CAGR of 7%. World gallium consumption, which increased at of gallium metal and gallium arsenide (GaAs) wafers plus a CAGR of 6% from 2007 through 2017, was estimated to have domestically refined and recycled gallium continued to account been 355 t in 2017. for all U.S. gallium consumption (metal and gallium in GaAs). Metal imports were 93% higher than those in 2016 (table 1). Production The leading sources of imported gallium metal were, in No domestic production of low-grade primary gallium was descending order, China (including Hong Kong), the United reported in 2017. Neo Performance Materials Inc. (Canada) Kingdom, France, Ukraine, Russia, and the Republic of Korea recovered gallium from new scrap materials, predominantly (table 4). A significant portion of imports was thought to be those generated during the production of GaAs ingots and low-grade gallium that was refined in the United States and wafers. Neo’s facility in Blanding, UT, had the capability to shipped to other countries. Data on refined gallium exports, produce about 50 metric tons per year of high-grade gallium. however, were not available.
    [Show full text]
  • (2006.0 1) (21) International Application Number: PCT/EP20 18/083 934 (22) International Filing Date: 07 December 2018 (07
    ( (51) International Patent Classification: C07F 5/00 (2006.0 1) C07F 5/06 (2006.0 1) (21) International Application Number: PCT/EP20 18/083 934 (22) International Filing Date: 07 December 2018 (07. 12.2018) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 17207086.4 13 December 2017 (13. 12.2017) EP (71) Applicant: AKZO NOBEL CHEMICALS INTER¬ NATIONAL B.V. [NL/NL]; Velperweg 76, 6824 BM Arn¬ hem (NL). (72) Inventors: TE NIJENHUIS, Marcellinus Antonius Maria; Het Boschloo 12, 7232 GK Warnsveld (NL). WOUDENBERG, Richard Herman; Stijne van Sallandt- straat 58, 743 1 GS Diepenveen (NL). (74) Agent: AKZO NOBEL CHEMICALS IP GROUP; Velperweg 76, 6824 BM Arnhem (NL). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • A Simple High-Yield Synthesis of Gallium(I) Tetrachlorogallate(III) and the Reaction of Digallium Tetrachloride Tetrahydrofuran Solvate with 1,2-Diols Eva S
    A Simple High-Yield Synthesis of Gallium(I) Tetrachlorogallate(III) and the Reaction of Digallium Tetrachloride Tetrahydrofuran Solvate with 1,2-Diols Eva S. Schmidt, Annette Schier, Norbert W. Mitzel, and Hubert Schmidbaur Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany Reprint requests to Prof. Dr. H. Schmidbaur. E-mail: [email protected] Z. Naturforsch. 56 b, 337-341 (2001); received March 23, 2001 Gallium Halides, Gallium Diolates, Oxidative Addition Gallium(I) tetrachlorogallate(III) Ga[GaCU] was prepared in quantitative yield by thermal de­ composition of dichlorogallane [HGaChk, which is readily available from EtsSiH and [GaCl 3]2. The reaction of catechol with solutions of this gallium(I) tetrachlorogallate(III) in tetrahydro­ furan leads to the evolution of hydrogen gas and affords a dinuclear gallium(III) complex with penta-coordinate metal atoms chelated and bridged by mono-deprotonated catechol ligands. In the crystalline phase tetrahydrofuran molecules are hydrogen-bonded to the hydroxy groups: [Ga(l,2 -0 CöH 4 0 H)Cl2(C4H8 0 )]2. The reaction with pinacol also gives hydrogen and the anal­ ogous product [Ga( 0 CMe2CMe2 0 H)Cl2(C4Hg 0 )]2. The structures of the two compounds have been determined by X-ray diffraction. A mechanism of the new reaction has been proposed which involves oxidative addition of the diol to the solvate (THF)Cl 2Ga-GaCl2(THF) present in the tetrahydrofuran solution to give a gallium hydride intermediate. Introduction limited [4,5], This is particularly true for low-valent gallium complexes. Reports in the literature about In the course of our current investigations in the preparative routes to gallium alkoxides reflect con­ chemistry of low-valent and low-coordinate gallium siderable difficulties in the synthesis of pure and we became interested in heterocycles with the metal well-defined products [6 , 7].
    [Show full text]
  • Solutions of Gallium Trichloride in Ethers
    Solutions of Gallium Trichloride in Ethers: A 71 Ga NMR Study and the X-Ray Structure of GaCl3 • Monoglyme Stefan Böck, Heinrich Nöth*, and Astrid Wietelmann Institute oflnorganic Chemistry, University of Munich, Meiserstraße 1, D-8000 München 2 Dedicated to Prof. Dr. G. Fritz on the occasion o f his 70 th birthday Z. Naturforsch. 45b, 979-984 (1990); received January 22, 1990 71Ga NMR Spectra, Gallium Trichloride-Ether, Gallium Trichloride-Tetrahydrofuran, rä-Dichloro-bis(dimethylglycolether)gallium-tetrachlorogallate Solutions of GaCl 3 in various ethers have been studied by 7lGa NMR spectroscopy. <S7lGa data indicate that the predominant species in diethylether and tetrahydrofuran solutions are G aC l3 0 (C 2H 5) 2 and G aC l3 -2 0 C 4Hg, respectively. However, in monoglyme solution disso­ ciation occurs and the product crystallizing from the solution is [c 7's-GaCl2(monoglyme)2]- G aCl4 as demonstrated by an X-ray structure determination of the solvate GaCl 3 • monoglyme. Introduction deduced from spectroscopic studies (IR, Raman, Aluminium trichloride, which crystallizes in an N M R ) [8]. Dissociation of A1C1 3 in diethylether ionic lattice, dissolves in many polar solvents and has been observed not only by the electrical con­ forms a large number of coordination compounds. ductance of its solution but also by : 7A1 N M R spectroscopy [1,9, 10], Dissociation processes are [Al(OH2)6]Cl3 crystallizes from acid aqueous solu­ increasingly favoured in the series diethylether, tions of A1C1 3 [1], The compound A1C1 3-2C H 3CN THF, dimethylglycolether (monoglyme), and di- can be obtained from solutions of A1C1 3 in acetoni- trile, and this compound was shown to be methyldiglycolether [10], Moreover, crown ethers L support ionization, as shown by the complex of [A1C1(NCCH3)5][A1C14]2 • CHjCN by X-ray struc­ 2 A1C1 -4-crown-12 [11] producing the salt ture determination [2].
    [Show full text]
  • Aluminium and Gallium Trihalide Adducts of 2,4,6-Triorganylborazines and the Synthesis of Triorganylborazinium Tetrabromoaluminates 1
    Issue in Honor of Prof Rosalinda Contreras Theurel ARKIVOC 2008 (v) 136-152 Aluminium and gallium trihalide adducts of 2,4,6-triorganylborazines and the synthesis of triorganylborazinium tetrabromoaluminates 1 B. Gemünda, B. Günthera, and H. Nöthb,* aDepartment of Chemistry and Biochemistry, University of Munich, Germany bDepartment of Chemistry, University of Munich, Butenandtstr. 5 – 13, D-81 377 München, Germany E-mail: [email protected] Dedicated to Prof. Dr. Rosalinda Contreras Theurel on the occasion of her 60th birthday Abstract Borazines of type R3B3N3H3 (R = Me, Et, i-Pr, t-Bu, Ph) add AlBr3 and GaCl3 in a 1:1 ratio to one of its N atoms. During this process the planarity of the borazine is lost. The ring system of . the adducts show a semi chair conformation. HBr gas reacts with R3B3N3H3 AlBr3 in toluene + with formation of hitherto unknown borazinium tetrabromo aluminates (R3B3N3H4) (AlBr4). The ring system of the cation is almost planar but it shows like the adducts three different B-N bond lengths. Keywords: 2,4,6-Triorganylborazine EX3 Adducts, 2,4,6-triorganylborazinium salts, IR, NMR, X-ray structures Introduction Borazines are isoelectronic and isolobal with benzenes but their chemical reactivity is grossly different.2-5 This is due to the inherent B-N bond polarity which places a partial negative charge on the nitrogen atoms and a partial positive charge on the boron atoms. For example: borazine 6 (HB=NH)3 adds 3 equivalents of HBr or HCl to form the cycloborazane [H(X)B-NH2]3 and 7 HCl adds to (ClB=NMe)3 with formation of (Cl2B-NHMe)3.
    [Show full text]
  • Arxiv:1912.11010V1 [Physics.App-Ph] 23 Dec 2019 Layers with a Diameter of 2 Inches Is Described
    This is the peer reviewed version of the following article: [Voronenkov, V., Bochkareva, N., Zubrilov, A., Lelikov, Y., Gorbunov, R., Latyshev, P. and Shreter, Y. (2019), Hydride Vapor-Phase Epitaxy Reactor for Bulk GaN Growth. Phys. Status Solidi A.], which has been published in final form at [doi:10.1002/pssa.201900629]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Hydride Vapor-Phase Epitaxy Reactor for Bulk GaN Growth Vladislav Voronenkov,∗ Natalia Bochkareva, Andrey Zubrilov, Yuri Lelikov, Ruslan Gorbunov, Philipp Latyshev, and Yuri Shreter Ioffe Institute, Politehnicheskaya 26, St. Petersburg, 194021, Russia An HVPE reactor for the growth of bulk GaN crystals with a diameter of 50 mm was developed. Growth rate non-uniformity of 1% was achieved using an axisymmetric vertical gas injector with stagnation point flow. Chemically-resistant refractory materials were used instead of quartz in the reactor hot zone. High-capacity external gallium precursor sources were developed for the non-stop growth of the bulk GaN layers. A load-lock vacuum chamber and a dry in-situ growth chamber cleaning were implemented to improve the growth process reproducibility. Freestanding GaN crystals with a diameter of 50 mm were grown with the reactor. I. INTRODUCTION used. Chemically resistant materials were used in the hot zone of the reactor to reduce possible crystal contamina- The chloride-hydride epitaxy is the primary method tion and to increase the lifetime of the reactor parts. The of bulk GaN substrate production. The HVPE method uniformity of the deposition rate and the V/III ratio of allows to grow epitaxial layers of high purity and to pro- less than 1% was obtained.
    [Show full text]
  • Beitrag Zur Chemie Des Galliums the Synthesis and Some Properties of Gallium Ethoxide
    52 4 R. REINMANN UND A. TANNER Beitrag zur Chemie des Galliums The Synthesis and some Properties of Gallium Ethoxide R . R e in m a n n u n d A . T anner Forschungsinstitut der Schweizerischen Aluminium A.G., Neuhausen am Rheinfall/Schweiz (Z. Naturforsdig. 20 b, 524—525 [1965] ; eingegangen am 6. März 1965) Experimental amounts in the range of 50 g each of gallium triethoxide have been prepared by reacting gallium trichloride with freshly prepared sodium ethoxide in absolute alcohol. Chloride, always present in the raw product, can be eliminated by precipitation with silver nitrate. Gallium triethoxide crystallizes in colourless needles, melting at 144.5 °C. The density of the very hygro­ scopic product is 1.23 g/cc. It is volatile at elevated temperature in vacuum. By alcohol interchange, the ethoxide can easily be transformed to the isopropoxide. Although many of the various alkoxides are Sodium metal is carefully freed from its superficial described in the literature, those of gallium were crust in a glove box under dry nitrogen, weighed, and lacking until recently. dissolved in ethanol under reflux. The stoichiometric amount of gallium trichloride, dissolved in cooled etha­ The purpose of this investigation was to find a nol, is added dropwise to the sodium ethoxide solution. suitable method for the preparation of gallium The mixture is finally heated to ebullition for about ethoxide, and to evaluate also some properties of 30 minutes. After cooling, when the NaCl and the the new compound. major part of the Gallium ethoxide are precipitated, benzene is added to about 30 — 40% of the final When writing this manuscript, we came across the mixture.
    [Show full text]
  • SAFETY DATA SHEET Revision Date 09/10/2021 Print Date 09/25/2021
    Version 6.5 SAFETY DATA SHEET Revision Date 09/10/2021 Print Date 09/25/2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : Gallium(III) chloride Product Number : 427128 Brand : Aldrich CAS-No. : 13450-90-3 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Synthesis of substances 1.3 Details of the supplier of the safety data sheet Company : Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES Telephone : +1 314 771-5765 Fax : +1 800 325-5052 1.4 Emergency telephone Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2: Hazards identification 2.1 Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Skin corrosion (Category 1B), H314 Serious eye damage (Category 1), H318 For the full text of the H-Statements mentioned in this Section, see Section 16. 2.2 GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H314 Causes severe skin burns and eye damage. H318 Causes serious eye damage. Aldrich - 427128 Page 1 of 9 The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada Precautionary statement(s) P260 Do not breathe dusts or mists. P264 Wash skin thoroughly after handling. P280 Wear protective gloves/ protective clothing/ eye protection/ face protection. P301 + P330 + P331 IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.
    [Show full text]