Primary Energy Metabolism in Geothermal Environments:The Role

Total Page:16

File Type:pdf, Size:1020Kb

Primary Energy Metabolism in Geothermal Environments:The Role *À>ÀÞÊ iÀ}ÞÊiÌ>LÃÊÊiÌ iÀ>Ê ÛÀiÌÃ\Ê / iÊ,iÊvÊ >ÀLÊÝ`i &RANK42OBB \*UAN-'ONZALEZ\4ATYANA3OKOLOVA\3TEPHEN-4ECHTMANN\.ICOLAI#HERNYH !LEXANDER,EBEDINSKI\,UKE*4ALLON\+RISTIE*ONES\-ARTIN7U\*ONATHAN!%ISEN 4HE#ENTEROF-ARINE"IOTECHNOLOGY "ALTIMORE -$ )NSTITUTODE2ECURSOS.ATURALESY!GROBIOLOGIA #3)# 3EVILLA 3PAIN 7INOGRADSKY)NSTITUTEOF-ICROBIOLOGY 2USSIAN!CADEMYOF3CIENCES -OSCOW 4HE)NSTITUTEFOR'ENOMIC2ESEARCH 2OCKVILLE -$ #ORRESPONDING!UTHOR #ENTEROF-ARINE"IOTECHNOLOGY 5NIVERSITYOF-ARYLAND"IOTECHNOLOGY)NSTITUTE %0RATT3T "ALTIMORE-$ 0HONE&AX%MAILROBB UMBIUMDEDU £È{ "/ ,Ê ""9Ê Ê " -/,9Ê Ê9 "7-/" Ê /" Ê*, -/, / #HEMOLITHOTROPHICMETABOLISMFUELSPRIMARYPRODUCTIONINMANYHYDROTHERMALECOSYSTEMS REPRESENTINGENERGYCONSERVATION STRATEGIESTHATMAYBEINDEPENDENTOFSUNLIGHT-ANYAUTOTROPHICMETABOLICPATHWAYSINGEOTHERMALCOMMUNITIESDEPEND ON(HOWEVER INTHISPAPERWEFOCUSONANAEROBICCARBOXYDOTROPHSTHATARECAPABLEOFUSING#/ASACARBONANDENERGY SOURCE PRODUCING ( AND #/ 7E HAVE RECENTLY COMPLETED THE GENOME SEQUENCE OF AN AUTOTROPHIC CARBOXYDOTROPH #ARBOXYDOTHERMUSHYDROGENOFORMANS WHICHAPPEARSTOBEASPECIALISTIN#/ OXIDATION ENCODINGlVEUNLINKEDGENETICLOCI CAPABLEOFEXPRESSING#/DEHYDROGENASE"ECAUSEOFTHEIRGLOBALOCCURRENCEINGEOTHERMALENVIRONMENTS WEPROPOSETHAT #/ UTILIZINGORGANISMSPLAYIMPORTANTROLESINANAEROBICMICROBIALCONSORTIA4OUNDERSTANDTHEROLEOF#/ UTILIZINGBACTERIA IN9ELLOWSTONEHOTSPRINGSWEISOLATEDANDDESCRIBEDANOVEL( PRODUCINGBACTERIUMSTRAIN.OR FROMAN&E RICHSITEIN .ORRIS'EYSER"ASIN 9.03TRAIN.ORISALOW ' #'RAM POSITIVEBACTERIUMBELONGINGTOTHEDIVISION&IRMICUTES AND O GROWSCHEMOLITHOTROPHICALLYAT #ON#/GENERATIONTIMEH PRODUCINGEQUIMOLARQUANTITIESOF(AND#/3TRAIN .ORISALSOCAPABLEOFCHEMOAUTOTROPHICGROWTHON&E)))AND3E ASWELLASGROWINGHETEROTROPHICALLYONGLUCOSEANDSEVERAL SUGARS PRODUCINGACETATE ( AND#/7EHAVEPROPOSEDTHATSTRAIN.ORBEASSIGNEDTOANEWGENUS 4HERMOSINUSGENNOV 4HETYPESPECIESIS4HERMOSINUSCARBOXYDIVORANSSPNOVTYPESTRAIN .OR4$3-43OKOLOVAETAL )TISEVIDENT THAT#/ DEPENDENTHYDROGENOGENICMETABOLISMOCCURSINADIVERSEPHYLOGENETICCONTEXTANDCANBEACCOMPANIEDBYAVARIED REPERTOIREOFALTERNATIVETROPHICSTRATEGIES iÞÊ7À`à >>iÀLV V>ÀLÊÝ`i V>ÀLÊÝ`iÊ`i Þ`À}i>Ãi Þ`À}i ÀÊÀi`ÕVÌ ÀÀÃÊiÞÃiÀÊ >à Primary Energy Metabolism in Geothermal Environments 165 1.0 INTRODUCTION darkness will ensue each day at sunset in the natural Over the past two decades, there has been an enormous environment! The CO dehydrogenase and associated increase in the number of new thermophilic isolates with hydrogenase components are repressed by light and diverse metabolic strategies, consistent with the diversity induced by CO and darkness, and growth proceeds at of geochemical energy sources associated with continental a slow rate in the absence of light with a relatively low and submerged hydrothermal vents (reviewed in growth yield coefficient of 3.7 g (dry wt.) of cells per mol Reysenbach and Shock 2002). These metabolic pathways of CO oxidized (Champine and Uffen 1987). fuel chemolithoautotrophic primary production in many Thermophilic CO-utilizers produce H , acetate, or hydrothermal ecosystems such as hot springs in Yellowstone 2 methane as their primary end products, and it seems National Park (YNP) where opportunistic microbial reasonable to assume that they are involved in cross- metabolic adaptation is on display, often in brilliant color. feeding other chemolithotrophs such as methanogens, Carboxydotrophic bacterial thermophiles capable of using acetoclastic methanogens, methanotrophs, H2-oxidizers, or CO(g) as their only source of energy and carbon have S-reducers. This chapter reviews the distribution of several been isolated from diverse geothermal habitats worldwide CO-utilizing thermophiles and describes the isolation of a (Sokolova et al. 2004; Table 1). This unique physiology CO-utilizing organism from Norris Geyser Basin, YNP. is not new to microbiology. First described by Uffen (1976), many phototrophic purple nonsulfur bacteria, 2.0 MATERIALS AND METHODS when cultured anaerobically in the dark, produce H at the 2 2.1 Strains expense of CO, which is converted to CO2. Using tritiated Carboxydothermus hydrogenoformans DSM 6008 water, Uffen showed that H2 was the product in what is and Thermoterrabacterium ferrireducens DSM 11255 now known as the water-gas shift reaction [CO + H2O = were obtained from the Deutsche Sammlung von CO2 + H2]. In these phototrophs, the oxidation of CO appears to be a backup metabolic strategy allowing the Mikroorganismen und Zellkulturen (Braunschweig, cells to maintain a slow growth rate on CO. In effect, the Germany). T. ferrireducens was cultured under strictly capacity for using an alternative energy source represents anaerobic conditions on modified freshwater medium, an important adaptation that, in the case of phototrophs, containing 30 mM glycerol as an electron donor and appears to be justified by the reliable assumption that carbon source, and 20 mM Na-fumarate as an electron Table 1. CO-oxidizing hydrogenogenic microorganisms and their isolation locales. GenBank Organism Isolation Locale Habitat Reference Accession No. Kunashir, Kuril Islands Mud from hot Svetlichnyi et al. Carboxydothermus hydrogenoformans NC_002972 Kamchatka swamp, 68°C, pH 5.5 1991 Raoul Island, Kermadeck Littoral hydrothermal Svetlichnyi et al. Carboxydothermus restrictus Not Available Archipelago sample 1994 Gezyer Valley, Terrestrial hot spring, Carboxydocella thermautotrophica AY061974 Sokolova et al. 2002 Kamchatka 60°C, pH 8.6 Terrestrial hot spring, Thermosinus carboxydivorans AY519200 Norris Basin, YNP, USA Sokolova et al. 2004 50°C, pH 7.5 Thermococcus sp. AM4 AJ583507 East Pacific Rise (13o N) Hydrothermal vent Sokolova et al. 2004 Caldanaerobacter subterraneus subsp. Marine hydrothermal Sokolova et al. 2001; AF120479 Okinawa Trough pacificus vent, 110-130°C Fardeau et al. 2004 Caldanaerobacter subterraneus Not Available Kunashir, Kuril Islands Terrestrial hot spring Subbotina et al. 2003 strain 2707 166 GEOTHERMAL BIOLOGY AND GEOCHEMISTRY IN YELLOWSTONE NATIONAL PARK acceptor. C. hydrogenoformans strain Z-2901 (DSM 6008) the cooS gene from C. hydrogenoformans. Phylogenetic was grown as previously described (Svetlichny et al. 1991). analyses were performed by the program Pileup (Genetic T. ferrireducens was mass cultured in a 200 L fermentor Computer Group) and CLUSTAL W. Bootstrap values at the Center of Marine Biotechnology ExSUF facility, were the percentages from a sampling of 1000. The genome o under a gas phase of 100% CO2 at 65 C. Late exponential sequencing project was conducted in collaboration with phase cells were harvested by centrifugation. The cell J. Eisen and colleagues at The Institute for Genomic paste, containing 150 g of cells (wet wt.), was frozen at Research (TIGR), and the primers devised by A. Lebedinski -80oC for purification of the Fe reductase. at the Russian Academy of Sciences in Moscow. 2.2 Sequencing Studies 2.3 Sampling An earlier study presented results of a genome survey Samples were collected from Norris Geyser Basin, within of C. hydrogenoformans strain Z-2901 (Gonzalez and the One Hundred Spring Plain, during June 2000 (Figure Robb 2000). Genomic DNA was extracted from cultures 1). A sample of sediment and geothermal water was of C. hydrogenoformans strain Z-2901 (DSM 60008), collected from a small geothermal pool containing visible and a genomic library was prepared using lambda Zip- organic matter, at ~ neutral pH (7.5) and a temperature Lox, EcoRI arms (Gibco BRL). Gene walking using the of 50oC (lat 44o43ʹ797ʺN, long 110o42ʹ506ʺW). The Vectorette II system (Genosys) and the CooS specific samples were used as inoculum for the isolation of CO- primer 5ʹ-CCA TCG ATA CTT TCA AAC GGC utilizing organisms using cultivation strategies defined GC-3ʹ was performed to complete the sequence of previously (Sokolova et al. 2004). A B 3.0 RESULTS AND DISCUSSION 3.1 Insights from Sequencing Studies The complete genome sequence of C. hydrogenoformans has provided a gene inventory of a specialized thermophilic carboxydotroph. C. hydrogenoformans was originally described as growing only on CO and pyruvate (Svetlichny et al. 1991). A recent study (Henstra and Stams 2004) C D indicates that C. hydrogenoformans displays more versatile substrate utilization than previously suspected. For example, 9,10- anthraquinone-2,6-disulfonate (AQDS) can act as an alternative to protons as an electron acceptor, where the strain utilizes CO and grows at the normal rate but produces no H2. One of the most unusual features of the annotated C. hydrogenoformans Z-2901 Figure 1. Sampling locations in Yellowstone National Park used for genome sequence is the presence of five enrichment of anaerobic CO-oxidizing strains. A, B. One Hundred Spring Plain, Norris Geyser Basin, showing the hot spring (80-95oC) containing FeIII oxides from dissimilar and apparently paralogous cooS which Thermosinus carboxydovorans was isolated. Sampling equipment shown genes (Figure 2). The operon encoding in B includes temperature probe, pH meter, and altimeter/barometer. C. Sampling CODH I is homologous and similar in location at Potts Basin. D. High temperature sampling with telescopic probe at full extension. gene order and content to the locus in Primary Energy Metabolism in Geothermal Environments 167 Rhodospirillum rubrum, which is induced # 1 2 3 4 5 by growth in the dark in the presence of 0 0.5 1.0 1.5 2.0 2.5 Mb CO. The occurrence of a cooA gene that cooS encodes a heme-containing transcriptional activator protein with marked similarity to a family of cAMP sensor proteins is of significant interest (Roberts et al.
Recommended publications
  • New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach
    BIOTECHNOLOGY – Vol .III – New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach NEW OPPORTUNITIES REVEALED BY BIOTECHNOLOGICAL EXPLORATIONS OF EXTREMOPHILES Mircea Podar and Anna-Louise Reysenbach Department of Biology, Portland State University, Portland, OR 97201, USA. Keywords: extremophiles, genomics, biotechnology, enzymes, metagenomics. Contents 1. Introduction 2. Extremophiles and Biomolecules 3. Extremophile Genomics Exposing the Biotechnological Potential 4. Tapping into the Hidden Biotechnological Potential through Metagenomics 5. Unexplored Frontiers and Future Prospects Acknowledgements Glossary Bibliography Biographical Sketches Summary Over the past few decades the extremes at which life thrives has continued to challenge our understanding of biochemistry, biology and evolution. As more new extremophiles are brought into laboratory culture, they have provided a multitude of new potential applications for biotechnology. Furthermore, more recently, innovative culturing approaches, environmental genome sequencing and whole genome sequencing have provided new opportunities for biotechnological exploration of extremophiles. 1. Introduction Organisms that live at the extremes of pH (>pH 8.5,< pH 5.0), temperature (>45°C, <15°C), pressure (>500 atm), salinity (>1.0M NaCl) and in high concentrations of recalcitrant substances or heavy metals (extremophiles) represent one of the last frontiers for biotechnological and industrial discovery. As we learn more about the
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • Thermophilic Carboxydotrophs and Their Applications in Biotechnology Springerbriefs in Microbiology
    SPRINGER BRIEFS IN MICROBIOLOGY EXTREMOPHILIC BACTERIA Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology SpringerBriefs in Microbiology Extremophilic Bacteria Series editors Sonia M. Tiquia-Arashiro, Dearborn, MI, USA Melanie Mormile, Rolla, MO, USA More information about this series at http://www.springer.com/series/11917 Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology 123 Sonia M. Tiquia-Arashiro Department of Natural Sciences University of Michigan Dearborn, MI USA ISSN 2191-5385 ISSN 2191-5393 (electronic) ISBN 978-3-319-11872-7 ISBN 978-3-319-11873-4 (eBook) DOI 10.1007/978-3-319-11873-4 Library of Congress Control Number: 2014951696 Springer Cham Heidelberg New York Dordrecht London © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Process Performance and Microbial Community Structure in Thermophilic Trickling Biofilter Reactors for Biogas Upgrading
    Downloaded from orbit.dtu.dk on: Sep 24, 2021 Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading Porté, Hugo; Kougias, Panagiotis ; Alfaro, Natalia; Treu, Laura; Campanaro, Stefano; Angelidaki, Irini Published in: Science of the Total Environment Link to article, DOI: 10.1016/j.scitotenv.2018.11.289 Publication date: 2019 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Porté, H., Kougias, P., Alfaro, N., Treu, L., Campanaro, S., & Angelidaki, I. (2019). Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading. Science of the Total Environment, 655, 529-538. https://doi.org/10.1016/j.scitotenv.2018.11.289 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 Process performance and microbial community 2 structure in thermophilic trickling biofilter reactors for 3 biogas upgrading 4 5 Hugo Portéa+, Panagiotis G.
    [Show full text]
  • Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella Thermoacetica and Moorella Thermoautotrophica
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella thermoacetica and Moorella thermoautotrophica Redl, Stephanie Maria Anna; Poehlein, Anja; Esser, Carola; Bengelsdorf, Frank R.; Jensen, Torbjørn Ølshøj; Jendresen, Christian Bille; Tindall, Brian J.; Daniel, Rolf; Dürre, Peter; Nielsen, Alex Toftgaard Published in: Frontiers in Microbiology Link to article, DOI: 10.3389/fmicb.2019.03070 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Redl, S. M. A., Poehlein, A., Esser, C., Bengelsdorf, F. R., Jensen, T. Ø., Jendresen, C. B., Tindall, B. J., Daniel, R., Dürre, P., & Nielsen, A. T. (2020). Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella thermoacetica and Moorella thermoautotrophica. Frontiers in Microbiology, 10, [3070]. https://doi.org/10.3389/fmicb.2019.03070 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • A Novel Cellulolytic, Anaerobic, and Thermophilic Bacterium, Moorella Sp
    Biosci. Biotechnol. Biochem., 67 (1), 183–185, 2003 Note A Novel Cellulolytic, Anaerobic, and Thermophilic Bacterium, Moorella sp. Strain F21 Shuichi KARITA,1,† Kengo NAKAYAMA,1 Masakazu GOTO,1 Kazuo SAKKA,1 Wan-Jae KIM,1 and Satoru OGAWA2 1Department of Sustainable Resource Science, Faculty of Bioresources, and 2Laboratory of Electron Microscope, School of Medicine, Mie University, Tsu 514-8507, Japan Received June 24, 2002; Accepted September 9, 2002 A cellulolytic and thermophilic anaerobe was isolated and fermenting cellulosic materials to organic acids from soil. This bacterium made a halo on a roll-tube was isolated. In this paper, we identiˆed the strain culture containing Avicel. Analysis of the PCR-based using DNA sequencing of the 16S rRNA coding 16S rRNA gene sequence showed that the bacterium was region and studied the enzyme activities and ferment- closely related to Moorella thermoacetica.Scanning ed products from the strain. electron microscopy showed the bacterium is a rod and Cellulolytic anaerobic bacteria were isolated in has no protuberant structure on the surface of cells anaerobic culture by the roll-tube method. The cul- growing on cellulose, suggesting that this strain is a non- ture medium for isolation was GS medium3) contain- cellulosomal cellulolytic bacterium. Carboxymethyl cel- ing Avicel as the sole carbon source. The bacteria lulase and xylanase activities were detected in the culture were grown at 609Cfor1week.Bacteriamaking broth. A major fermentation product from ball-milled haloes around their colonies were isolated as cellulo- cellulose was acetate. This strain has a potential to con- lyticanaerobes.Thesebacteriawerecultivatedwith vert cellulosic biomass to acetate, directly.
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • Title Genetic Engineering Studies of Ni-Carbon Monoxide Dehydrogenase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Genetic engineering studies of Ni-carbon monoxide Title dehydrogenase from a thermophilic carboxydotrophic bacterium( Dissertation_全文 ) Author(s) Inoue, Takahiro Citation Kyoto University (京都大学) Issue Date 2014-03-24 URL http://dx.doi.org/10.14989/doctor.k18339 Right Type Thesis or Dissertation Textversion ETD Kyoto University Genetic engineering studies of Ni-carbon monoxide dehydrogenase from a thermophilic carboxydotrophic bacterium Takahiro INOUE 2014 Table of contents Chapter 1 General introduction 1 Chapter 2 Over-expression systems for carbon monoxide dehydrogenases (CODHs) 11 2-1 A simple and large scale over-expression method for carbon monoxide dehydrogenase II from thermophilic bacterium Carboxydothermus hydrogenoformans 14 2-2 Over-expression of carbon monoxide dehydrogenase-I with an accessory protein co-expression: a key enzyme for carbon dioxide reduction 24 Chapter 3 Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster 45 Chapter 4 Integration and outlook 66 Acknowledgements 68 References 69 Publication list 86 1. General Introduction Chapter 1 General introduction Carbon monoxide utilizing microbes and carbon monoxide dehydrogenases Carbon monoxide (CO) is well known as a toxic gas, especially, CO is toxic for human being, binding strongly and almost irreversibly to hemoglobin (100). Despite the potent toxicity, many recent researches have suggested CO is key metabolic function and signal transduction in eukaryote, archea and bacteria. For example, in human CO is important molecule in neural signaling and human circadian rhythms are regulated by CO-responsive transcriptional regulators (19, 36, 78).
    [Show full text]
  • Community Analysis of Plant Biomass-Degrading Microorganisms from Obsidian Pool, Yellowstone National Park
    Microb Ecol DOI 10.1007/s00248-014-0500-8 ENVIRONMENTAL MICROBIOLOGY Community Analysis of Plant Biomass-Degrading Microorganisms from Obsidian Pool, Yellowstone National Park Tatiana A. Vishnivetskaya & Scott D. Hamilton-Brehm & Mircea Podar & Jennifer J. Mosher & Anthony V. Palumbo & Tommy J. Phelps & Martin Keller & James G. Elkins Received: 12 May 2014 /Accepted: 16 September 2014 # Springer Science+Business Media New York (outside the USA) 2014 Abstract The conversion of lignocellulosic biomass into (OBP), was examined for potential biomass-active microorgan- biofuels can potentially be improved by employing robust mi- isms using cultivation-independent and enrichment techniques. croorganisms and enzymes that efficiently deconstruct plant Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered polysaccharides at elevated temperatures. Many of the geother- 16S rRNA gene pyrosequences revealed that archaeal diversity mal features of Yellowstone National Park (YNP) are surrounded in the main pool was higher than bacterial; however, in the by vegetation providing a source of allochthonic material to vegetated area, overall bacterial diversity was significantly support heterotrophic microbial communities adapted to utilize higher. Of notable interest was a flooded depression adjacent to plant biomass as a primary carbon and energy source. In this OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush study, a well-known hot spring environment, Obsidian Pool commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the The submitted manuscript has been authored by a contractor of the U.S. plants was enriched in members of the Firmicutes including Government under contract DE-AC05-00OR22725. Accordingly, the potentially (hemi)cellulolytic bacteria from the genera U.S.
    [Show full text]
  • Microbiome Species Average Counts (Normalized) Veillonella Parvula
    Table S2. Bacteria and virus detected with RN OLP Microbiome Species Average Counts (normalized) Veillonella parvula 3435527.229 Rothia mucilaginosa 1810713.571 Haemophilus parainfluenzae 844236.8342 Fusobacterium nucleatum 825289.7789 Neisseria meningitidis 626843.5897 Achromobacter xylosoxidans 415495.0883 Atopobium parvulum 205918.2297 Campylobacter concisus 159293.9124 Leptotrichia buccalis 123966.9359 Megasphaera elsdenii 87368.48455 Prevotella melaninogenica 82285.23784 Selenomonas sputigena 77508.6755 Haemophilus influenzae 76896.39289 Porphyromonas gingivalis 75766.09645 Rothia dentocariosa 64620.85367 Candidatus Saccharimonas aalborgensis 61728.68147 Aggregatibacter aphrophilus 54899.61834 Prevotella intermedia 37434.48581 Tannerella forsythia 36640.47285 Streptococcus parasanguinis 34865.49274 Selenomonas ruminantium 32825.83925 Streptococcus pneumoniae 23422.9219 Pseudogulbenkiania sp. NH8B 23371.8297 Neisseria lactamica 21815.23198 Streptococcus constellatus 20678.39506 Streptococcus pyogenes 20154.71044 Dichelobacter nodosus 19653.086 Prevotella sp. oral taxon 299 19244.10773 Capnocytophaga ochracea 18866.69759 [Eubacterium] eligens 17926.74096 Streptococcus mitis 17758.73348 Campylobacter curvus 17565.59393 Taylorella equigenitalis 15652.75392 Candidatus Saccharibacteria bacterium RAAC3_TM7_1 15478.8893 Streptococcus oligofermentans 15445.0097 Ruminiclostridium thermocellum 15128.26924 Kocuria rhizophila 14534.55059 [Clostridium] saccharolyticum 13834.76647 Mobiluncus curtisii 12226.83711 Porphyromonas asaccharolytica 11934.89197
    [Show full text]