Aerospace-Facts-And-Figures-1998

Total Page:16

File Type:pdf, Size:1020Kb

Aerospace-Facts-And-Figures-1998 I Aero!ipace Fact:!i & Figure!i ga,gg ! Compiled by: Economic Data Service Aerospace Research Center Aerospace Industries Association of America, Inc. Director, Research Center David H. Napier Manager, Economic Data Service David H. Napier Editorial Consultant Dr. Stephen P. Aubin Design AAH Graphics, Inc. Published by: Aerospace Industries Association of America, Inc. 1250 Eye Street, N.W., #1200 Washington, D.C. 20005-3924 FAX (202) 371-8470 For information about orders, call (202) 3 71-8407 For information about content, call (202) 371-8563 Copyright ©1998 by Aerospace Industries Association of America, Inc. Library of Congress Catalog No. 46-25007 International Standard Serial No. 0898-4425 2 Acknowledgmenl:s Air Transport Association of America Council of Economic Advisers Export-Import Bank of the United States Exxon International Company General Aviation Manufacturers Association ~elicopter Association International International Civil Aviation Organization National Aeronautics and Space Administration National Science Foundation Office of Management and Budget U.S. Department of Commerce (Bureau of Economic Analysis; Bureau of the Census; International Trade Administration) U.S. Department of Defense (Air Force; Army; Ballistic Missile Defense Organization; Cq_mptroller; Directorate for Information, Operations, and Reports; Navy) U.S. Department of Labor (Bureau of Labor Statistics) U.S. Department of Transportation (Federal Aviation Administration, Office of Airline Statistics) 3 Cont:ent:s Foreword . 6 Aerospace Summary . 8 Aircraft Production . 26 Missile Programs . 48 ~pace Programs . 58 Air Transportation . 72 I Research and Development . 98 Foreign Trade.................................... 112 Employment . 134 Finance . 148 Glossary . 157 Index . 164 5 Farewward------------------------------------- THE U.S. AEROSPACE INDUSTRY'S thy. Aerospace exports jumped by recovery picked up more steam in 25%, reaching an all-time high of 1997 with a strong jump in sales. $50 billion. Exports outpaced the This second straight year of growth growth in imports resulting in a posi­ signals a turnaround from the reces­ tive trade balance of $32 billion, a sion that hit the aerospace industry 21% gain. in 1992 and bottomed out in 1995. There were also signs that the The engine that drove the recovery long slide in defense spending may was the commercial market. And, as have bottomed out. Although most commercial sales soared, the govern­ analysts had been predicting flat or ment market held steady, registering declining defense budgets in the only a slight drop in inflation­ years ahead, a greater awareness of adjusted dollars. military readiness problems and Overall industry sales increased underfunded modernization by 12% in 1997, reaching $134 bil­ accounts, alongside a federal budget lion. Behind that growth was a dra­ surplus, led to a $9 billion add-on to matic 29% boost in sales to non­ the Defense Department's budget for U.S. government customers-mainly Fiscal Year (FY) 1999. Of that, $1 bil­ airlines. The industry also recorded lion was earmarked for Research, its first significant increase in employ­ Development, Test, and Evaluation ment since 1989 with 62,000 work­ (RDT&E) funding of missile defense ers being added to the industry's programs. Future increases are by no work force. In other good news, the means assured, but the level of mod­ industry's backlog grew and exports ernization funding will continue to surged. be the subject of debate in the Of special note in the 1997 sales 106th Congress, and there is a figures is the strong market for civil strong case to be made for reversing transport aircraft, which accounted the long decline in defense spending. for 85% of the value of civil aircraft The space market enjoyed a third shipments. The industry delivered year of steady growth with $32 bil­ 3 7 4 jetI i ners, 1OS more than the pre­ lion in sales of space systems and vious year, for a total of $27 billion services. Expanding activity in the in sales. The backlog for civil trans­ areas of communications services ports also increased, rising to 1,744 and space infrastructure pushed the planes from 1,617. level of sales beyond the peak year The industry's performance in of 1992, when sales mounted to international trade is also notewor- $30 billion. With government spend- 6 tury. Today, the U.S. aerospace industry is smaller, leaner, and john W. Douglass more efficient than it President and Chief was w hen troubles in Exec utive Officer, the U.S . airline indus­ Aerospace Industries try depressed the Association commercial market in the early 1990s. Th e aerospace mar­ ket is also more ing leveling out, the commercial evenl y distributed space gains should continue to drive and better ab le to handle a down­ growth in this market. turn in one sector than in the past Despite the good news, th ere are w hen military sales dominated. In some warning signs on the hori zon . fact, the space market is now nearly For example, industry ea rnings were equal to the military aircraft market flat in 1997, with profit margins and is forecast to continue to grow down slightly from the gains made into th e next deca de. Finally, the in 1996. Th ere was also a steep steady decline in military moderniza­ drop in new orders for military aero­ tion funding during th e 1990s may space systems, which pulled total be finally bottoming out. new orders down to $120 billion, an As th e new Pres ident an d CEO of overall 5% drop. Although civil AlA, I have enormou s respect for the orders actua ll y rose by a healthy $8 aerospace industry's tec hnologica I billion, U.S . commercia l aircraft mak­ capability, the quality of its prod­ ers have not yet experienced the fall­ ucts, and its overa ll competitiveness. out from the As ian economic crisis, Th e tremendous demand for services which could lead to canceled from space-based satellites, both in orders. Already, a number of Asian the military and commercial mar­ countri es have delayed or canceled kets, the increased awareness of the military and commerc ial aircraft need to adequately fund military orders, and more 'may follow. modern ization, and the continual Nevertheless, the industry is in a demand for efficient airline travel good position to weather the down­ are all positive signs for the U.S. turn in the Asian market, which had aerospace industry. been expected to provide new sales opportunities well into the next cen- 7 Aerospace !iurnrnary THE U.S. AEROSPACE INDUSTRY craft and $33 billion for military air­ enjoyed a strong 12% increase in craft, with civil aircraft sales dominat­ total sales in 1997 (in inflation­ ing military sales for the first time adjusted constant dollars), nearly since 1993. doubling the gains made in 1996. Sales of space systems and ser­ This significant boost was fueled by vices (civil and military) grew for the higher sales, up an inflation-adjusted third year in a row, reaching $32 bil­ 29%, to the "other customers" cate­ lion, up from $29 billion in 1996. gory-"other customers" include air There was also a gain in sales of carriers, foreign governments, corpo­ "related products and services," rations, and private citizens. Sales of where sales reached $22 billion, up "related products and services" also from $19 billion the previous year. rose 12%, while sales to U.S. govern­ Missile systems sales held steady at ment agencies held steady. $8 billion for a second year. Here are the highlights of the For 1997, aerospace industry sales industry's 1997 performance: amounted to 1.6% of the Gross Sales. Overall industry sales Domestic Product and 3.4% of total totaled $134 billion, compared with sales by all U.S. manufacturing $117 billion in 1996. The "other cus­ industries, rising from 1.5% and tomers" category jumped to $56 bil­ 3.1 %, respectively, in 1996. lion in sales, up from $42 billion in Earnings. Net income after taxes 1996. Sales to the Department of was $7.2 billion, the same as the Defense (DoD) fell slightly, when previous year. As a percentage of measured in inflation-adjusted dol­ sales, the industry's profit amounted lars, to $43 billion in 1997, marking to 5.2%, a drop from the 1996 aero­ the tenth year of decline. Total U.S. space profit-to-sales ratio of 5.6%. government sales reached $56 bil­ By comparison, the average for all lion, up from $55 billion the previ­ U.S. manufacturing industries was ous year, but down slightly after 6.2%. As a percentage of assets, inflation adjustments are made. aerospace profits amounted to 4.8%; As usual, aircraft sales led all as a percentage of equity, 17.3%. other product groups. Sales of air­ The aerospace industry reported craft, engines, and parts (civil and net working capital of $14.2 billion, military combined) totaled $71 bil­ down from $16 billion in 1996. lion, compared with $60 billion in Stockholders' equity also dropped 1996. Total aircraft sales break from $39.8 billion in 1 q96 to $39.3 down into $39 billion for civil air- billion in 1997, while tOtal assets 8 climbed substantially from $136 bil­ increased to 1,569 (up 439 units) lion to $150 billion. worth $4.7 billion (up $1.5 billion). Orders and Backlog. Net new This sales level marked another orders for aerospace systems totaled record year for general aviation. $120 billion, down from $126 bil­ Military Aircraft Production. The lion in 1996, a 5% drop, marking Census Bureau reported 1997 sales the first decrease after three years of of military aircraft and parts, includ­ growth. A drop in military orders, ing engines, to be $24.6 billion in from $62 billion in 1996 to $48 bil­ 1997.
Recommended publications
  • General Information Summary
    The purpose of the Dutch Safety Board’s work is to prevent future accidents and incidents or to limit their after-effects. It is no part of the Board’s remit to try to establish the blame, responsibility or liability attaching to any party. Information gathered during the course of an investigation – including statements given to the Board, information that the Board has compiled, results of technical research and analyses and drafted documents (including the published report) – cannot be used as evidence in criminal, disciplinary or civil law proceedings. GENERAL INFORMATION Identification number: 2007044 Classification: Serious incident Date, time1 of occurrence: 18 May 2007, 20.53 hours Location of occurrence: Groningen Airport Eelde (EHGG) Aircraft registration: OO-VLI Aircraft model: Fokker F27 MK50 (Fokker 50) Type of aircraft: Passenger Aircraft Type of flight: Scheduled passenger transport Phase of operation: Landing Damage to aircraft: Minor Cockpit crew: Two Cabin crew: One Passengers: Eleven Injuries: None Other damage: One runway edge light and a runway end light destroyed Light conditions: Daylight (sunset at 21.32 hours) SUMMARY A Fokker 50 made a flight from Amsterdam Schiphol Airport to Groningen Airport Eelde. After executing a visual approach to runway 05, the aircraft landed long (approximately halfway along the runway) and at high speed. The crew was unable to stop the aircraft within the remaining runway length. Subsequently, it ran off the end of the runway and came to a halt in the grass. None of the fourteen persons on board was injured. The aircraft sustained minor damage. This report is mainly based on information from the flight data recorder and the cockpit voice recorder and interviews with the flight crew members.
    [Show full text]
  • Business & Commercial Aviation
    BUSINESS & COMMERCIAL AVIATION LEONARDO AW609 PERFORMANCE PLATEAUS OCEANIC APRIL 2020 $10.00 AviationWeek.com/BCA Business & Commercial Aviation AIRCRAFT UPDATE Leonardo AW609 Bringing tiltrotor technology to civil aviation FUEL PLANNING ALSO IN THIS ISSUE Part 91 Department Inspections Is It Airworthy? Oceanic Fuel Planning Who Says It’s Ready? APRIL 2020 VOL. 116 NO. 4 Performance Plateaus Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Electronic Flight Bag (EFB): 2010 Industry Survey
    Electronic Flight Bag (EFB): 2010 Industry Survey Scott Gabree Michelle Yeh Young Jin Jo U.S. Department of Transportation Research and Innovative Technology Administration John A. Volpe National DOT-VNTSC-FAA-10-14 Transportation Systems Center Cambridge, MA 02142 Air Traffic Organization Operations Planning Human Factors Research and Engineering Group September 2010 Washington, DC 20591 This document is available to the public through the National Technical Information Service, Springfield, Virginia, 22161 Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. Notice The United States Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES September 2010 COVERED Final Report 4. TITLE AND SUBTITLE 5.
    [Show full text]
  • Robust Gas Turbine and Airframe System Design in Light of Uncertain
    Robust Gas Turbine and Airframe System Design in Light of Uncertain Fuel and CO2 Prices Stephan Langmaak1, James Scanlan2, and András Sóbester3 University of Southampton, Southampton, SO16 7QF, United Kingdom This paper presents a study that numerically investigated which cruise speed the next generation of short-haul aircraft with 150 seats should y at and whether a con- ventional two- or three-shaft turbofan, a geared turbofan, a turboprop, or an open rotor should be employed in order to make the aircraft's direct operating cost robust to uncertain fuel and carbon (CO2) prices in the Year 2030, taking the aircraft pro- ductivity, the passenger value of time, and the modal shift into account. To answer this question, an optimization loop was set up in MATLAB consisting of nine modules covering gas turbine and airframe design and performance, ight and aircraft eet sim- ulation, operating cost, and optimization. If the passenger value of time is included, the most robust aircraft design is powered by geared turbofan engines and cruises at Mach 0.80. If the value of time is ignored, however, then a turboprop aircraft ying at Mach 0.70 is the optimum solution. This demonstrates that the most fuel-ecient option, the open rotor, is not automatically the most cost-ecient solution because of the relatively high engine and airframe costs. 1 Research Engineer, Computational Engineering and Design 2 Professor of Aerospace Design, Computational Engineering and Design, AIAA member 3 Associate Professor in Aircraft Engineering, Computational Engineering and Design, AIAA member 1 I. Introduction A. Background IT takes around 5 years to develop a gas turbine engine, which then usually remains in pro- duction for more than two decades [1, 2].
    [Show full text]
  • Low Temperature Environment Operations of Turboengines
    0 Qo B n Y n 1c AGARD 2 ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 3 7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE AGARD CONFERENCE PROCEEDINGS 480 Low Temperature Environment Operations of Turboengines (Design and User's Problems) Fonctionnement des Turborkacteurs en Environnement Basse Tempkrature (Problkmes Pos& aux Concepteurs et aux Utilisateurs) processed I /by 'IMs ..................signed-...............date .............. NOT FOR DESTRUCTION - NORTH ATLANTIC TREATY ORGANIZATION I Distribution and Availability on Back Cover AGARD-CP-480 --I- ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE AGARD CONFERENCE PROCEEDINGS 480 Low Temperature Environment Operations of Turboengines (Design and User's Problems) Fonctionnement des TurborLacteurs en Environnement Basse Tempkrature (Problkmes PoSes aux Concepteurs et aux Utilisateurs) Papers presented at the Propulsion and Energetics Panel 76th Symposium held in Brussels, Belgium, 8th-12th October 1990. - North Atlantic Treaty Organization --q Organisation du Traite de I'Atlantique Nord I The Mission of AGARD According to its Chartcr, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes: -Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community; - Providing scientific and technical advice and assistance to the Military Committee
    [Show full text]
  • Economic Feasibility Study for a 19 PAX Hybrid-Electric Commuter Aircraft
    Air s.Pace ELectric Innovative Commuter Aircraft D2.1 Economic Feasibility Study for a 19 PAX Hybrid-Electric Commuter Aircraft Name Function Date Author: Maximilian Spangenberg (ASP) WP2 Co-Lead 31.03.2020 Approved by: Markus Wellensiek (ASP) WP2 Lead 31.03.2020 Approved by: Dr. Qinyin Zhang (RRD) Project Lead 31.03.2020 D2.1 Economic Feasibility Study page 1 of 81 Clean Sky 2 Grant Agreement No. 864551 © ELICA Consortium No export-controlled data Non-Confidential Air s.Pace Table of contents 1 Executive summary .........................................................................................................................3 2 References ........................................................................................................................................4 2.1 Abbreviations ...............................................................................................................................4 2.2 List of figures ................................................................................................................................5 2.3 List of tables .................................................................................................................................6 3 Introduction ......................................................................................................................................8 4 ELICA market study ...................................................................................................................... 12 4.1 Turboprop and piston engine
    [Show full text]
  • Comparison of Helicopter Turboshaft Engines
    Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle.
    [Show full text]
  • Rolls-Royce / Itp Regulation
    EUROPEAN COMMISSION DG Competition Case M.8242 - ROLLS-ROYCE / ITP Only the English text is available and authentic. REGULATION (EC) No 139/2004 MERGER PROCEDURE Article 6(1)(b) in conjunction with Art 6(2) Date: 19/04/2017 In electronic form on the EUR-Lex website under document number 32017M8242 EUROPEAN COMMISSION Brussels, 19.04.2017 C(2017) 2613 final In the published version of this decision, some information has been omitted pursuant to Article PUBLIC VERSION 17(2) of Council Regulation (EC) No 139/2004 concerning non-disclosure of business secrets and other confidential information. The omissions are shown thus […]. Where possible the information omitted has been replaced by ranges of figures or a general description. To the notifying party: Subject: Case M.8242 – Rolls-Royce / ITP Commission decision pursuant to Article 6(1)(b) in conjunction with Article 6(2) of Council Regulation No 139/20041 and Article 57 of the Agreement on the European Economic Area2 Dear Sir or Madam, (1) On 24 February 2017, the European Commission received notification of a proposed concentration pursuant to Article 4 of the Merger Regulation by which the undertaking Rolls-Royce Holdings plc ("Rolls-Royce", United Kingdom) acquires within the meaning of Article 3(1)(b) of the Merger Regulation control of the whole of the undertaking Industria de Turbo Propulsores SA ("ITP", Spain) by way of a purchase of shares (the "Transaction").3 Rolls-Royce is designated hereinafter as the "Notifying Party", and Rolls-Royce and ITP are together referred to as the "Parties". 1 OJ L 24, 29.1.2004, p.
    [Show full text]
  • SA227-AC Aircraft Registration: N175SW
    Aircraft Data and Inspection Report Operator: Berry Aviation Date: 5.20.20 Location: Springfield Missouri Aircraft Type: Fairchild Merlin III C Serial #: AC621 Aircraft Model: SA227-AC Aircraft Registration: N175SW Date of Manufacture: Aug/1985 Current Total A/C Time: 34089.1 Current Total Airframe Cycle: 54373 Hours since Major Inspection/Overhaul: 61 Maintenance Program: FAR Part 91; Manufacturer's Recommended Inspection Type and Interval:Phase Last Inspection: Date: 10/11/2018 Operator's Representative: Title: Inspection Completed By: Laurie Stilwell Date of Completion: Inspection Type: Off-lease Work Order Reference: Notes: LH Engine Data Aircraft Registration No.: N175SW Serial #: AC621 TAT: 34089.1 Effective Date: TAC: 54373 Limits Left Hand Engine: TPE331-11U-611G Serial #: P-44414C Oprtrs Mfrs Engine H@I TSN: 24816.7 TCSN: 33347 24816 TSCAM: 5539.8 TCSCAM: 7939 7000 7000 FH ENG C@I 33346 TSO CSO Remaining ENG Time Since CAM Inspection: 5539.8 7939 1460.2 7000 7000 FH ENG Time Since Hot Section Inspection: 659.0 2841.0 3500 3500 FH ENG Time Since Gearbox Inspection: 5539.8 NA 1460.2 NA 7000 FH CYC/Time at PN SN install CSN/TSN Remaining Limit 1st Stage Turbine Wheel 3101520-4 1818244926610 0 212 19788 20000 CYC 2nd Stage Turbine Wheel 3102106-10 50134508846 761 2266 12734 15000 CYC 3rd Stage Turbine Wheel 3102655-2 10-156101-13373 0 1505 4495 6000 CYC Seal Plate 3102483-1 5-18040-2320 16713 18212 1788 20000 CYC Compressor Bearing 3103708-1 95-06049-265 5926.5 7545.2 1454.8 9000 FH 1st Stg Compressor Impeller 3108182-2 350100114
    [Show full text]
  • NPA 2018-13 Table of Contents
    European Aviation Safety Agency Notice of Proposed Amendment 2018-13 Appendix I to AMC to Annex III (Part-66) Aircraft type ratings for Part-66 aircraft maintenance licences RMT.0541 (66.024) EXECUTIVE SUMMARY This Notice of Proposed Amendment (NPA) addresses a regulatory coordination issue related to aircraft type ratings. According to the AMC to Annex III (Part-66), type ratings should be endorsed on an aircraft maintenance licence (AML) in accordance with Appendix I to AMC to Part-66 ‘List of type ratings’. An NPA is issued regularly to amend this list, after assessing feedback received from the industry, and to add new aircraft types or to remove aircraft types whose type certificate (TC) has been revoked or surrendered. This NPA adds also the tables of the new Group as a consequence of the introduction of the ‘L’ licence subcategories by Commission Regulation (EU) 2018/1142. The main objective is to ensure a common standard throughout the Member States. Action area: Regular updates/review of rules Affected rules: AMC/GM to Annex III (Part-66) to Commission Regulation (EU) No 1321/2014 Affected stakeholders: Maintenance certifying staff; maintenance training organisations; maintenance organisations; competent authorities Driver: Efficiency/proportionality Rulemaking group: No Impact assessment: None Rulemaking Procedure: Standard 12.5.2009 5.12.2018 2019/Q2 TE.RPRO.00034-008 © European Aviation Safety Agency. All rights reserved. ISO 9001 certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA intranet/internet. Page 1 of 186 An agency of the European Union European Aviation Safety Agency NPA 2018-13 Table of contents Table of contents 1.
    [Show full text]
  • Modelling the Propeller Slipstream Effect on the Longitudinal Stability and Control
    Modelling the Propeller Slipstream Effect on the Longitudinal Stability and Control Thijs Bouquet Technische Universiteit Delft MODELLINGTHE PROPELLER SLIPSTREAM EFFECT ON THE LONGITUDINAL STABILITY AND CONTROL by Thijs Bouquet in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at the Delft University of Technology, to be defended publicly on Friday January 22, 2016 at 1:30 PM. Supervisors: Prof. dr. ir. L. L. M. Veldhuis Dr. ir. R. Vos Thesis committee: Dr. ir. E. van Kampen TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Thesis registration number: 069#16#MT#FPP ACKNOWLEDGEMENTS This thesis marks the conclusion of my time as a student at the faculty of Aerospace Engineering of Delft Uni- versity of Technology. This was no small feat, which could not have been done without the help of others, I would therefore like to express my gratitude. First of all, I would like to thank my supervisors, Dr.ir.Roelof Vos and Prof.dr.ir.Leo Veldhuis, for their guid- ance, support and feedback throughout the past year. Secondly, I would like to thank Dr.ir.Erik-Jan van Kam- pen for being a part of my thesis committee. I would also like to thank my friends and colleagues for their support. A special mention has to be made for the students of ’Kamertje-1’, whose mutual goals created a sense of camaraderie which motivated me greatly. Finally, I would like to thank my family, who were never more than a phone call away to support and en- courage me throughout my entire education.
    [Show full text]
  • International Aero Engines V2500-A1, V2522-A5
    Federal Register / Vol. 75, No. 225 / Tuesday, November 23, 2010 / Proposed Rules 71373 under the criteria of the Regulatory (i) For TAE 125–01 engines, Operation & DEPARTMENT OF TRANSPORTATION Flexibility Act. Maintenance Manual OM–01–02, Issue 3, We prepared a regulatory evaluation Revision 13. Federal Aviation Administration of the estimated costs to comply with (ii) For TAE 125–02–99 and TAE 125–02– this proposed AD and placed it in the 114 engines, Operation & Maintenance 14 CFR Part 39 AD docket. Manual OM–02–02, Issue 1, Revision 10. [Docket No. FAA–2010–0494; Directorate List of Subjects in 14 CFR Part 39 Prohibition of FADEC Software Earlier Identifier 2010–NE–20–AD] Versions Air transportation, Aircraft, Aviation (f) Once FADEC software version 2.91 is RIN 2120–AA64 safety, Safety. installed, do not install any earlier version of Airworthiness Directives; International FADEC software. The Proposed Amendment Aero Engines V2500–A1, V2522–A5, Accordingly, under the authority FAA AD Differences V2524–A5, V2525–D5, V2527–A5, delegated to me by the Administrator, (g) EASA AD 2010–0137 permits V2527E–A5, V2527M–A5, V2528–D5, the FAA proposes to amend 14 CFR part installation of earlier FADEC software V2530–A5, and V2533–A5 Turbofan 39 as follows: versions, once version 2.91 is installed. This Engines AD does not. AGENCY: Federal Aviation PART 39—AIRWORTHINESS (h) EASA AD 2010–0137 requires Administration (FAA), DOT. DIRECTIVES compliance within 110 flight hours after the effective date of the AD or during next ACTION: Notice of proposed rulemaking 1. The authority citation for part 39 maintenance, whichever occurs first, but no (NPRM).
    [Show full text]