Drug Allergy

Total Page:16

File Type:pdf, Size:1020Kb

Drug Allergy Drug Allergy: An Updated Practice Parameter These parameters were developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma and Immunology, the American College of Allergy, Asthma and Immunology, and the Joint Council of Allergy, Asthma and Immunology. Chief Editors Roland Solensky, MD, and David A. Khan, MD Workgroup Contributors I. Leonard Bernstein, MD; Gordon R. Bloomberg, MD; Mariana C. Castells, MD, PhD; Louis M. Mendelson, MD; and Michael E. Weiss, MD Task Force Reviewers David I. Bernstein, MD; Joann Blessing-Moore, MD; Linda Cox, MD; David M. Lang, MD; Richard A. Nicklas, MD; John Oppenheimer, MD; Jay M. Portnoy, MD; Christopher Randolph, MD; Diane E. Schuller, MD; Sheldon L. Spector, MD; Stephen Tilles, MD; and Dana Wallace, MD Reviewers Paul J. Dowling, MD – Kansas City, MO Mark Dykewicz, MD – Winston-Salem, NC Paul A. Greenberger, MD – Chicago, IL Eric M. Macy, MD – San Diego, CA Kathleen R. May MD – Cumberland, MD Myngoc T. Nguyen, MD – Piedmont, CA Lawrence B. Schwartz, MD, PhD – Richmond, VA TABLE OF CONTENTS Summary Statements of the Evidence-Based Commentary Preface Evidence-Based Commentary Glossary I. Introduction Executive Summary II. Definitions Algorithm for Disease Management of Drug Hyper- III. Classification of Immunologically Mediated Drug sensitivity Reactions Annotations for Disease Management of Drug Hyper- A. IgE-mediated reactions (Gell-Coombs type I) sensitivity B. Cytotoxic reactions (Gell-Coombs type II) C. Immune complex reactions (Gell-Coombs type III) D. Cell-mediated reactions (Gell-Coombs type IV) These parameters were developed by the Joint Task Force on Practice E. Miscellaneous syndromes Parameters, representing the American Academy of Allergy, Asthma and 1. Hypersensitivity vasculitis Immunology; the American College of Allergy, Asthma and Immunology; and the Joint Council of Allergy, Asthma and Immunology. 2. Drug rash with eosinophilia and systemic symptoms The American Academy of Allergy, Asthma and Immunology (AAAAI) 3. Pulmonary drug hypersensitivity and the American College of Allergy, Asthma and Immunology (ACAAI) 4. Drug-induced lupus erythematosus have jointly accepted responsibility for establishing “Drug Allergy: An 5. Drug-induced granulomatous disease with or Updated Practice Parameter.” This is a complete and comprehensive docu- ment at the current time. The medical environment is a changing environ- without vasculitis ment, and not all recommendations will be appropriate for all patients. 6. Immunologic hepatitis Because this document incorporated the efforts of many participants, no 7. Blistering disorders single individual, including those who served on the Joint Task Force, is a. Erythema multiforme minor authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of b. Erythema multiforme major/Stevens-Johnson these practice parameters by the AAAAI or ACAAI should be directed to the syndrome Executive Offices of the AAAAI, the ACAAI, and the Joint Council of c. Toxic epidermal necrolysis Allergy, Asthma and Immunology. These parameters are not designed for 8. Serum sickness–like reactions associated with use by pharmaceutical companies in drug promotion. Reprint requests: Joint Council of Allergy, Asthma & Immunology, 50 specific cephalosporins N. Brockway St, #3-3, Palatine, IL 60067. 9. Immunologic nephropathy 273.e1 ANNALS OF ALLERGY, ASTHMA & IMMUNOLOGY F. Other classification systems for drug allergy U. Complementary medicines IV. Risk Factors V. Other agents V. Clinical Evaluation and Diagnosis of Drug Allergy A. History CONTRIBUTORS B. Physical examination The Joint Task Force has made a concerted effort to acknowl- C. General clinical tests edge all contributors to this parameter. If any contributors D. Specific tests have been excluded inadvertently, the Task Force will ensure E. Tissue diagnosis that appropriate recognition of such contributions is made VI. Management and Prevention of Drug Allergic subsequently. Reactions A. General CHIEF EDITORS B. Induction of drug tolerance Roland Solensky, MD C. Immunologic IgE induction of drug tolerance Division of Allergy and Immunology (drug desensitization) The Corvallis Clinic D. Immunologic non-IgE induction of drug tolerance Corvallis, Oregon for nonanaphylactic reactions David A. Khan, MD E. Pharmacologic induction of drug tolerance (eg, Professor of Medicine aspirin desensitization) Division of Allergy & Immunology F. Undefined induction of drug tolerance University of Texas Southwestern Medical Center G. Graded challenge Dallas, Texas VII. Specific Drugs A. ␤-Lactam antibiotics WORKGROUP CONTRIBUTORS 1. Penicillin I. Leonard Bernstein, MD 2. Ampicillin and amoxicillin Professor of Clinical Medicine 3. Cephalosporins University of Cincinnati College of Medicine 4. Cephalosporin administration to patients with a Cincinnati, Ohio history of penicillin allergy Gordon R. Bloomberg, MD 5. Penicillin administration to patients with a Associate Professor, Department of Pediatrics history of cephalosporin allergy Division of Allergy & Pulmonary Medicine 6. Monobactams (aztreonam) Washington University School of Medicine 7. Carbapenems Saint Louis, Missouri B. Non–␤-lactam antibiotics Mariana C. Castells, MD, PhD C. Antimycobacterial drugs Director, Desensitization Program D. Diabetes medications Associate Director, Allergy Immunology Training Program E. Cancer chemotherapeutic agents Brigham & Women’s Hospital F. Human immunodeficiency virus (HIV) medications Harvard Medical School G. Disease-modifying antirheumatic drugs (DMARDs) Boston, Massachusetts H. Immunomodulatory agents for autoimmune diseases Louis M. Mendelson, MD I. Modifying drugs for dermatologic diseases Clinical Professor J. Perioperative agents University of Connecticut K. Blood and blood products Partner, Connecticut Asthma & Allergy Center, LLC L. Opiates West Hartford, Connecticut M. Corticosteroids Michael E. Weiss, MD N. Protamine Clinical Professor of Medicine, O. Heparin University of Washington, School of Medicine P. Local anesthetics Seattle, Washington Q. Radiocontrast media (RCM) R. Aspirin and nonsteroidal anti-inflammatory drugs TASK FORCE REVIEWERS (NSAIDs) David I. Bernstein, MD S. Angiotensin-converting enzyme (ACE) inhibitors Department of Clinical Medicine, Division of Immunology T. Biologic modifiers University of Cincinnati College of Medicine 1. Cytokines Cincinnati, Ohio 2. Anti–TNF-␣ drugs Joann Blessing-Moore, MD 3. Monoclonal antibodies Department of Immunology 4. Omalizumab Stanford University Medical Center 5. Anticancer monoclonal antibodies Palo Alto, California VOLUME 105, OCTOBER, 2010 273.e2 Linda Cox, MD Acknowledgments Department of Medicine The Joint Task Force wishes to acknowledge the following Nova Southeastern University individuals who also contributed substantially to the creation Davie, Florida of this parameter: Erin Shae Johns, PhD, and Jessica Karle, David M. Lang, MD MS, for their immense help with formatting and restructuring Allergy/Immunology Section, Division of Medicine this document; Susan Grupe for providing key administrative Cleveland Clinic Foundation help to the contributors and reviewers of this parameter; and Cleveland, Ohio Brett Buchmiller, MD, for his assistance in creating the Richard A. Nicklas, MD algorithms in this parameter. Department of Medicine PREFACE George Washington Medical Center Washington, DC The objective of “Drug Allergy: An Updated Practice Param- John Oppenheimer, MD eter” is to improve the care of patients by providing the practicing physician with an evidence-based approach to the Department of Internal Medicine diagnosis and management of adverse drug reactions. This New Jersey Medical School document was developed by a Working Group under the Morristown, New Jersey aegis of the Joint Task Force on Practice Parameters, which Jay M. Portnoy, MD has published 26 practice parameters and updated parameters Section of Allergy, Asthma & Immunology for the field of allergy/immunology (these can be found The Children’s Mercy Hospital online at www.jcaai.org). The 3 national allergy and immu- University of Missouri-Kansas City School of Medicine nology societies—the American Academy of Allergy, Kansas City, Missouri Asthma and Immunology (AAAAI), the American College of Christopher Randolph, MD Allergy, Asthma and Immunology (ACAAI), and the Joint Center for Allergy, Asthma and Immunology Council of Allergy, Asthma and Immunology (JCAAI)— Yale Hospital have given the Joint Task Force the responsibility for both Waterbury, Connecticut creating new parameters and updating existing parameters. Diane E. Schuller, MD This parameter builds on “Disease Management of Drug Department of Pediatrics Hypersensitivity: A Practice Parameter,” which was pub- Pennsylvania State University lished in 1999 by the Joint Task Force on Practice Parame- Milton S. Hershey Medical College ters. It follows the same general format as that document, Hershey, Pennsylvania with some substantive changes reflecting advancements in Sheldon L. Spector, MD scientific knowledge and their effect on management of drug Department of Medicine allergy. This document was written and reviewed by special- UCLA School of Medicine ists in the field of allergy and immunology and was exclu- Los Angeles, California sively funded by the 3 allergy and immunology organizations Stephen A. Tilles, MD noted above. Department of Medicine A Working Group chaired by Roland Solensky, MD,
Recommended publications
  • Cefditoren Pivoxil) Tablets 200 and 400 Mg
    SPECTRACEF® (cefditoren pivoxil) Tablets 200 and 400 mg. To reduce the development of drug-resistant bacteria and maintain the effectiveness of SPECTRACEF® and other antibacterial drugs, SPECTRACEF® should be used only to treat infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION SPECTRACEF® tablets contain cefditoren pivoxil, a semi-synthetic cephalosporin antibiotic for oral administration. It is a prodrug which is hydrolyzed by esterases during absorption, and the drug is distributed in the circulating blood as active cefditoren. Chemically, cefditoren pivoxil is (-)-(6R,7R)-2,2-dimethylpropionyloxymethyl 7-[(Z)-2-(2-aminothiazol-4-yl)-2-methoxy­ iminoacetamido]-3-[(Z)-2-(4-methylthiazol-5-yl)ethenyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate. The empirical formula is C25H28N6O7S3 and the molecular weight is 620.73. The structural formula of cefditoren pivoxil is shown below: cefditoren pivoxil The amorphous form of cefditoren pivoxil developed for clinical use is a light yellow powder. It is freely soluble in dilute hydrochloric acid and soluble at levels equal to 6.06 mg/mL in ethanol and <0.1 mg/mL in water. SPECTRACEF® (cefditoren pivoxil) tablets contain 200 mg or 400 mg of cefditoren as cefditoren pivoxil and the following inactive ingredients: croscarmellose sodium, D-mannitol, hydroxypropyl cellulose, hypromellose, magnesium stearate, sodium caseinate (a milk protein), and sodium tripolyphosphate. The tablet coating contains carnauba wax, hypromellose, polyethylene glycol, and titanium dioxide. Tablets are printed with ink containing D&C Red No. 27, FD&C Blue No. 1, propylene glycol, and shellac. CLINICAL PHARMACOLOGY Pharmacokinetics Absorption Oral Bioavailability Following oral administration, cefditoren pivoxil is absorbed from the gastrointestinal tract and hydrolyzed to cefditoren by esterases.
    [Show full text]
  • Medical Review(S) Clinical Review
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 200327 MEDICAL REVIEW(S) CLINICAL REVIEW Application Type NDA Application Number(s) 200327 Priority or Standard Standard Submit Date(s) December 29, 2009 Received Date(s) December 30, 2009 PDUFA Goal Date October 30, 2010 Division / Office Division of Anti-Infective and Ophthalmology Products Office of Antimicrobial Products Reviewer Name(s) Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD Review Completion October 29, 2010 Date Established Name Ceftaroline fosamil for injection (Proposed) Trade Name Teflaro Therapeutic Class Cephalosporin; ß-lactams Applicant Cerexa, Inc. Forest Laboratories, Inc. Formulation(s) 400 mg/vial and 600 mg/vial Intravenous Dosing Regimen 600 mg every 12 hours by IV infusion Indication(s) Acute Bacterial Skin and Skin Structure Infection (ABSSSI); Community-acquired Bacterial Pneumonia (CABP) Intended Population(s) Adults ≥ 18 years of age Template Version: March 6, 2009 Reference ID: 2857265 Clinical Review Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD NDA 200327: Teflaro (ceftaroline fosamil) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 9 1.1 Recommendation on Regulatory Action ........................................................... 10 1.2 Risk Benefit Assessment.................................................................................. 10 1.3 Recommendations for Postmarketing Risk Evaluation and Mitigation Strategies ........................................................................................................................
    [Show full text]
  • Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and Its Application
    Infect Dis Ther (2017) 6:57–67 DOI 10.1007/s40121-016-0144-8 REVIEW Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and its Application Juwon Yim . Leah M. Molloy . Jason G. Newland Received: November 10, 2016 / Published online: December 30, 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT infections, CABP caused by penicillin- and ceftriaxone-resistant S. pneumoniae and Ceftaroline is a novel cephalosporin recently resistant Gram-positive infections that fail approved in children for treatment of acute first-line antimicrobial agents. However, bacterial skin and soft tissue infections and limited data are available on tolerability in community-acquired bacterial pneumonia neonates and infants younger than 2 months (CABP) caused by methicillin-resistant of age, and on pharmacokinetic characteristics Staphylococcus aureus, Streptococcus pneumoniae in children with chronic medical conditions and other susceptible bacteria. With a favorable and those with invasive, complicated tolerability profile and efficacy proven in infections. In this review, the microbiological pediatric patients and excellent in vitro profile of ceftaroline, its mechanism of action, activity against resistant Gram-positive and and pharmacokinetic profile will be presented. Gram-negative bacteria, ceftaroline may serve Additionally, clinical evidence for use in as a therapeutic option for polymicrobial pediatric patients and proposed place in therapy is discussed. Enhanced content To view enhanced content for this article go to http://www.medengine.com/Redeem/ 1F47F0601BB3F2DD. Keywords: Antibiotic resistance; Ceftaroline J. Yim (&) fosamil; Children; Methicillin-resistant St. John Hospital and Medical Center, Detroit, MI, Staphylococcus aureus; Streptococcus pneumoniae USA e-mail: [email protected] L.
    [Show full text]
  • Empiric Antimicrobial Therapy for Diabetic Foot Infection
    Empiric Antimicrobial Therapy for Diabetic Foot Infection (NB Provincial Health Authorities Anti-Infective Stewardship Committee, September 2019) Infection Severity Preferred Empiric Regimens Alternative Regimens Comments Mild Wound less than 4 weeks duration:d Wound less than 4 weeks duration:e • Outpatient management • Cellulitis less than 2 cm and • cephalexin 500 – 1000 mg PO q6h*,a OR • clindamycin 300 – 450 mg PO q6h (only if recommended ,a • cefadroxil 500 – 1000 mg PO q12h* severe delayed reaction to a beta-lactam) without involvement of deeper • Tailor regimen based on culture tissues and susceptibility results and True immediate allergy to a beta-lactam at MRSA Suspected: • Non-limb threatening patient response risk of cross reactivity with cephalexin or • doxycycline 200 mg PO for 1 dose then • No signs of sepsis cefadroxil: 100 mg PO q12h OR • cefuroxime 500 mg PO q8–12h*,b • sulfamethoxazole+trimethoprim 800+160 mg to 1600+320 mg PO q12h*,f Wound greater than 4 weeks duration:d Wound greater than 4 weeks duratione • amoxicillin+clavulanate 875/125 mg PO and MRSA suspected: q12h*,c OR • doxycycline 200 mg PO for 1 dose then • cefuroxime 500 mg PO q8–12h*,b AND 100 mg PO q12h AND metroNIDAZOLE metroNIDAZOLE 500 mg PO q12h 500 mg PO q12h OR • sulfamethoxazole+trimethoprim 800+160 mg to 1600/320 mg PO q12h*,f AND metroNIDAZOLE 500 mg PO q12h Moderate Wound less than 4 weeks duration:d Wound less than 4 weeks duration:e • Initial management with • Cellulitis greater than 2 cm or • ceFAZolin 2 g IV q8h*,b OR • levoFLOXacin 750
    [Show full text]
  • Role of Thrombin and Thromboxane A2 in Reocclusion Following Coronary
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 7585-7589, October 1989 Medical Sciences Role of thrombin and thromboxane A2 in reocclusion following coronary thrombolysis with tissue-type plasminogen activator (thrombolytic therapy/coronary thrombosis/platelet activation/reperfusion) DESMOND J. FITZGERALD*I* AND GARRET A. FITZGERALD* Divisions of *Clinical Pharmacology and tCardiology, Vanderbilt University, Nashville, TN 37232 Communicated by Philip Needleman, June 28, 1989 (receivedfor review April 12, 1989) ABSTRACT Reocclusion of the coronary artery occurs against the prothrombinase formed on the platelet surface after thrombolytic therapy of acute myocardlal infarction (13) and the neutralization ofheparin by platelet factor 4 (14) despite routine use of the anticoagulant heparin. However, and thrombospondin (15), proteins released by activated heparin is inhibited by platelet activation, which is greatly platelets. enhanced in this setting. Consequently, it is unclear whether To address the role of thrombin during coronary throm- thrombin induces acute reocclusion. To address this possibility, bolysis, we have examined the effect of a specific thrombin we examined the effect of argatroban {MCI9038, (2R,4R)- inhibitor, argatroban {MCI9038, (2R,4R)-4-methyl-1-[N-(3- 4-methyl-l-[Na-(3-methyl-1,2,3,4-tetrahydro-8-quinolinesulfo- methyl-1,2,3,4-tetrahydro-8-quinolinesulfonyl)-L-arginyl]-2- nyl)-L-arginyl]-2-piperidinecarboxylic acid}, a specific throm- piperidinecarboxylic acid} on the response to tissue plasmin- bin inhibitor, on the response to tissue-type plasminogen ogen activator (t-PA) in a closed-chest canine model of activator in a dosed-chest canine model of coronary thrombo- coronary thrombosis. MCI9038, an argimine derivative which sis. MCI9038 prolonged the thrombin time and shortened the binds to a hydrophobic pocket close to the active site of time to reperfusion (28 + 2 min vs.
    [Show full text]
  • A Randomized, Double-Blind, Placebo-Controlled Study
    medRxiv preprint doi: https://doi.org/10.1101/2020.04.06.20055715; this version posted April 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 Mo%on Sifnos: A randomized, double-blind, placebo-controlled study demonstra%ng the effec%veness of tradipitant in the treatment of mo%on sickness Vasilios M. Polymeropoulos*1, Mark É. Czeisler1#a, Mary M. Gibson1¶, Aus%n A. Anderson1¶, Jane Miglo1#b, Jingyuan Wang1, Changfu Xiao1, Christos M. Polymeropoulos1, Gunther Birznieks1, Mihael H. Polymeropoulos1 1 Vanda Pharmaceu%cals, Washington, District of Columbia, United States of America #a The Ins%tute for Breathing and Sleeping, Aus%n Health, Heidelberg, Victoria, Australia #b College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America *Corresponding author Email: [email protected] (VMP) ¶These authors contributed equally to this work. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.04.06.20055715; this version posted April 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 2 Abstract Background Novel therapies are needed for the treatment of mo%on sickness given the inadequate relief, and bothersome and dangerous adverse effects of currently approved therapies.
    [Show full text]
  • Stroke Prevention in Chronic Kidney Disease Disclosures
    5/18/2020 Controversies: Stroke Prevention in Chronic Kidney Disease Wei Ling Lau, MD FASN FAHA FACP Assistant Professor, Nephrology University of California, Irvine Visiting Fellow at OptumLabsCOPY Disclosures • Prior or current research funding from NIH, AHA, Sanofi, ZS Pharma, and Hub Therapeutics. • Associate Medical Director for home peritoneal dialysis at Fresenius University Dialysis Center of Orange. • Has beenNOT on Fresenius medical advisory board for Velphoro. • No conflicts of interest relevant to the current talk. Controversies: Stroke prevention in CKD Wei Ling Lau, MD DO 1 5/18/2020 Stroke Prevention in CKD • Blood pressure targets • Antiplatelet agents • Statins • Anticoagulation Controversies: Stroke prevention in CKD Wei Ling Lau, MD COPY BP TARGETS Data is limited, as patients with CKD were historically excluded from clinical trials NOT Whelton 2017 ACC/AHA hypertension guidelines [Hypertension 2018] Controversies: Stroke prevention in CKD Wei Ling Lau, MD DO 2 5/18/2020 Systolic Blood Pressure Intervention Trial SPRINT: BP lowering to <120 vs <140 mmHg significantly lowered rate of CVD composite primary outcome; no clear effect on stroke Controversies: Stroke prevention in CKD The SPRINT Research Group. N Engl J Med 2015 p2103 Wei Ling Lau, MD COPY SPRINT subgroup analysis: CKD • Patients with CKD stage 3‐4 (eGFR of 20 to <60) comprised 28% of the SPRINT study population • Intensive BP management seemed to provide the same benefits for reduction in the CVD composite primary outcomeNOT – but did not impact stroke Controversies: Stroke prevention in CKD Cheung 2017 J Am Soc Nephrol p2812 Wei Ling Lau, MD DO 3 5/18/2020 The hazard of incident stroke associated with systolic BP (SBP) and chronic kidney disease (CKD)BP using and an unadjusted stroke model risk: that contained J‐shaped dummy variables association for CKD and BP groups (A) and a fully adjusted model that contained dummy variables for CKD and BP grou..
    [Show full text]
  • Adverse Drug Reactions Sample Chapter
    Sample copyright Pharmaceutical Press www.pharmpress.com 5 Drug-induced skin reactions Anne Lee and John Thomson Introduction Cutaneous drug eruptions are one of the most common types of adverse reaction to drug therapy, with an overall incidence rate of 2–3% in hos- pitalised patients.1–3 Almost any medicine can induce skin reactions, and certain drug classes, such as non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics and antiepileptics, have drug eruption rates approaching 1–5%.4 Although most drug-related skin eruptions are not serious, some are severe and potentially life-threatening. Serious reac- tions include angio-oedema, erythroderma, Stevens–Johnson syndrome and toxic epidermal necrolysis. Drug eruptions can also occur as part of a spectrum of multiorgan involvement, for example in drug-induced sys- temic lupus erythematosus (see Chapter 11). As with other types of drug reaction, the pathogenesis of these eruptions may be either immunological or non-immunological. Healthcare professionals should carefully evalu- ate all drug-associated rashes. It is important that skin reactions are identified and documented in the patient record so that their recurrence can be avoided. This chapter describes common, serious and distinctive cutaneous reactions (excluding contact dermatitis, which may be due to any external irritant, including drugs and excipients), with guidance on diagnosis and management. A cutaneous drug reaction should be suspected in any patient who develops a rash during a course of drug therapy. The reaction may be due to any medicine the patient is currently taking or has recently been exposed to, including prescribed and over-the-counter medicines, herbal or homoeopathic preparations, vaccines or contrast media.
    [Show full text]
  • Allergy and Immunology Milestones
    Allergy and Immunology Milestones The Accreditation Council for Graduate Medical Education Second Revision: August 2019 First Revision: August 2013 Allergy and Immunology Milestones The Milestones are designed only for use in evaluation of residents in the context of their participation in ACGME-accredited residency or fellowship programs. The Milestones provide a framework for the assessment of the development of the resident in key dimensions of the elements of physician competency in a specialty or subspecialty. They neither represent the entirety of the dimensions of the six domains of physician competency, nor are they designed to be relevant in any other context. i Allergy and Immunology Milestones Work Group Amal Assa’ad, MD Evelyn Lomasney, MD Taylor Atchley, MD Aidan Long, MD T. Prescott Atkinson, MD, PhD Mike Nelson, MD Laura Edgar, EdD, CAE Princess Ogbogu, MD Beverly Huckman, BA* Kelly Stone, MD, PhD Bruce Lanser, MD The ACGME would like to thank the following organizations for their continued support in the development of the Milestones: American Board of Allergy and Immunology American Academy of Allergy, Asthma, and Immunology Review Committee for Allergy and Immunology *Acknowledgments: The Work Group and the ACGME would like to honor Beverly Huckman, for her contributions as the non-physician member of the milestones work group. She will be greatly missed. ii Understanding Milestone Levels and Reporting This document presents the Milestones, which programs use in a semi-annual review of resident performance, and then report to the ACGME. Milestones are knowledge, skills, attitudes, and other attributes for each of the ACGME Competencies organized in a developmental framework.
    [Show full text]
  • Product Monograph
    Product Monograph PrORB-CEFUROXIME Cefuroxime Axetil Tablets, USP 250 mg and 500 mg cefuroxime/tablet Antibiotic Orbus Pharma Inc. Date of Preparation: February 25, 2009 20 Konrad Crescent Markham, Ontario Control #: 117041 L3R8T4 1 Product Monograph PrORB-CEFUROXIME Cefuroxime Axetil Tablets, USP 250 mg and 500 mg cefuroxime/tablet Antibiotic Actions and Clinical Pharmacology Cefuroxime axetil is an orally active prodrug of cefuroxime. After oral administration, cefuroxime axetil is absorbed from the gastrointestinal tract and rapidly hydrolyzed by nonspecific esterases in the intestinal mucosa and blood to release cefuroxime into the blood stream. Conversion to cefuroxime, the microbiologically active form, occurs rapidly. The inherent properties of cefuroxime are unaltered after its administration as cefuroxime axetil. Cefuroxime exerts its bactericidal effect by binding to an enzyme or enzymes referred to as penicillin-binding proteins (PBPs) involved in bacterial cell wall synthesis. This binding results in inhibition of bacterial cell wall synthesis and subsequent cell death. Specifically, cefuroxime shows high affinity for PBP 3, a primary target for cefuroxime in gram- negative organisms such as E. coli. Comparative Bioavailability Studies A two-way crossover, randomized, blinded, single-dose bioequivalence study was performed on 22 normal, healthy, non-smoking male subjects under fasting conditions. The rate and extent of absorption of cefuroxime axetil was measured and compared following a single oral dose (1 x 500 mg tablet)
    [Show full text]
  • Infection of the CNS by Scedosporium Apiospermum After Near Drowning
    205 CASE REPORT J Clin Pathol: first published as 10.1136/jcp.2003.8680 on 27 January 2004. Downloaded from Infection of the CNS by Scedosporium apiospermum after near drowning. Report of a fatal case and analysis of its confounding factors P A Kowacs, C E Soares Silvado, S Monteiro de Almeida, M Ramos, K Abra˜o, L E Madaloso, R L Pinheiro, L C Werneck ............................................................................................................................... J Clin Pathol 2004;57:205–207. doi: 10.1136/jcp.2003.8680 from the usual 15 days to up to 130 days. This type of This report describes a fatal case of central nervous system infection causes granulomata or abscesses and neutrophilic pseudallescheriasis. A 32 year old white man presented with meningitis.125 headache and meningismus 15 days after nearly drowning in a swine sewage reservoir. Computerised tomography and ‘‘In cases secondary to aspiration after near drowning, magnetic resonance imaging of the head revealed multiple once in the bloodstream, fungi seed into several sites but brain granulomata, which vanished when steroid and broad develop mainly in the central nervous system’’ spectrum antimicrobial and antifungal agents, in addition to dexamethasone, were started. Cerebrospinal fluid analysis To date, few cases of CNS pseudallescheriasis have been 2 disclosed a neutrophilic meningitis. Treatment with antibiotics described. However, such a diagnosis must should always be sought in individuals who have suffered near drowning in and amphotericin B, together with fluconazole and later standing polluted streams, ponds of water or sewage, or pits itraconazole, was ineffective. Miconazole was added with manure. through an Ommaya reservoir, but was insufficient to halt The case of a man who acquired a CNS P boydii infection the infection.
    [Show full text]
  • Graft-Versus-Host Disease Cells Suppresses Development Of
    Adenosine A2A Receptor Agonist −Mediated Increase in Donor-Derived Regulatory T Cells Suppresses Development of Graft-versus-Host Disease This information is current as of September 28, 2021. Kyu Lee Han, Stephenie V. M. Thomas, Sherry M. Koontz, Cattlena M. Changpriroa, Seung-Kwon Ha, Harry L. Malech and Elizabeth M. Kang J Immunol 2013; 190:458-468; Prepublished online 7 December 2012; Downloaded from doi: 10.4049/jimmunol.1201325 http://www.jimmunol.org/content/190/1/458 http://www.jimmunol.org/ References This article cites 52 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/190/1/458.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Adenosine A2A Receptor Agonist–Mediated Increase in Donor-Derived Regulatory T Cells Suppresses Development of Graft-versus-Host Disease Kyu Lee Han,* Stephenie V. M. Thomas,* Sherry M.
    [Show full text]