Annual Review October 2015 – September 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Semicontinuity of the Mod 2 Spectrum of Hypersurface Singularities
1 ON THE SEMICONTINUITY OF THE MOD 2 SPECTRUM OF HYPERSURFACE SINGULARITIES Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar Bill Bruce 60 and Terry Wall 75 Liverpool, 18-22 June, 2012 2 A mathematical family tree Christopher Zeeman Frank Adams Terry Wall Andrew Casson Andrew Ranicki 3 The BNR project on singularities and surgery I Since 2011 have joined Andr´asN´emethi(Budapest) and Maciej Borodzik (Warsaw) in a project on the topological properties of the singularities of complex hypersurfaces. I The aim of the project is to study the topological properties of the singularity spectrum, defined using refinements of the eigenvalues of the monodromy of the Milnor fibre. I The project combines singularity techniques with algebraic surgery theory to study the behaviour of the spectrum under deformations. I Morse theory decomposes cobordisms of manifolds into elementary operations called surgeries. I Algebraic surgery does the same for cobordisms of chain complexes with Poincar´eduality { generalized quadratic forms. I The applications to singularities need a relative Morse theory, for cobordisms of manifolds with boundary and the algebraic analogues. 4 Fibred links I A link is a codimension 2 submanifold Lm ⊂ Sm+2 with neighbourhood L × D2 ⊂ Sm+2. I The complement of the link is the (m + 2)-dimensional manifold with boundary (C;@C) = (cl.(Sm+2nL × D2); L × S1) such that m+2 2 S = L × D [L×S1 C : I The link is fibred if the projection @C = L × S1 ! S1 can be extended to the projection of a fibre bundle p : C ! S1, and there is given a particular choice of extension. -
Amie Wilkinson 1
Amie Wilkinson 1 Amie Wilkinson Department of Mathematics, University of Chicago 5734 S. University Avenue Chicago, Illinois 60637 (773) 702-7337 [email protected] ACADEMIC POSITIONS • Professor of Mathematics, University of Chicago, 2012 { present. • Professor of Mathematics, Northwestern University, 2005 { 2012. • Associate Professor of Mathematics, Northwestern University, 2002 { 2005. • Assistant Professor of Mathematics, Northwestern University, 1999 { 2002. • Boas Assistant Professor of Mathematics, Northwestern University, 1996 { 1999. • Benjamin Peirce Instructor, Harvard University, 1995 { 1996. Visiting Positions • Visiting Professor, University of Chicago, Fall and Spring Quarters 2003{2004, Fall Quarter 2011. • Professeur Invit´e, Universit´ede Bourgogne, May 2002 and Sept 2003. • Member, Institut des Hautes Etudes Scientifiques (IHES), Summer 1993, 1996, 1998. • Visitor, IBM T.J. Watson Labs, Yorktown NY, Winter 1992 and 1994, Summer 1997, 1998, 2000, and 2001. • Graduate Research Assistant, The Center for Nonlinear Studies, Los Alamos National Laboratories, Summer, 1992. EDUCATION • Ph.D. in Mathematics, University of California, Berkeley, May 1995 • A.B. in Mathematics, Harvard University, June 1989 DATE OF BIRTH April, 1968. U.S. citizen. Amie Wilkinson 2 RESEARCH INTERESTS • Ergodic theory and smooth dynamical systems • Geometry and regularity of foliations • Actions of discrete groups on manifolds • Dynamical systems of geometric origin GRANTS, FELLOWSHIPS AND AWARDS • Levi L. Conant Prize, 2020. • Foreign Member, Academia Europaea, 2019. • Fellow of the American Mathematical Society, 2013. • Ruth Lyttle Satter Prize, 2011. • NSF Grant \Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics" $758,242, 2018{2021. • NSF Grant \Innovations in Bright Beam Science" (co-PI) $680,000, 2015{2018. • NSF Grant \RTG: Geometry and topology at the University of Chicago" (co-PI) $1,377,340, 2014{2019. -
CURRENT EVENTS BULLETIN Friday, January 8, 2016, 1:00 PM to 5:00 PM Room 4C-3 Washington State Convention Center Joint Mathematics Meetings, Seattle, WA
A MERICAN M ATHEMATICAL S OCIETY CURRENT EVENTS BULLETIN Friday, January 8, 2016, 1:00 PM to 5:00 PM Room 4C-3 Washington State Convention Center Joint Mathematics Meetings, Seattle, WA 1:00 PM Carina Curto, Pennsylvania State University What can topology tell us about the neural code? Surprising new applications of what used to be thought of as “pure” mathematics. 2:00 PM Yuval Peres, Microsoft Research and University of California, Berkeley, and Lionel Levine, Cornell University Laplacian growth, sandpiles and scaling limits Striking large-scale structure arising from simple cellular automata. 3:00 PM Timothy Gowers, Cambridge University Probabilistic combinatorics and the recent work of Peter Keevash The major existence conjecture for combinatorial designs has been proven! 4:00 PM Amie Wilkinson, University of Chicago What are Lyapunov exponents, and why are they interesting? A basic tool in understanding the predictability of physical systems, explained. Organized by David Eisenbud, Mathematical Sciences Research Institute Introduction to the Current Events Bulletin Will the Riemann Hypothesis be proved this week? What is the Geometric Langlands Conjecture about? How could you best exploit a stream of data flowing by too fast to capture? I think we mathematicians are provoked to ask such questions by our sense that underneath the vastness of mathematics is a fundamental unity allowing us to look into many different corners -- though we couldn't possibly work in all of them. I love the idea of having an expert explain such things to me in a brief, accessible way. And I, like most of us, love common-room gossip. -
AR 96 Covers/Contents
ICTP FULL TECHNICAL REPORT 2018 INTRODUCTION This document is the full technical report of ICTP for the year 2018. For the non-technical description of 2018 highlights, please see the printed “ICTP: A Year in Review” publication. 2 ICTP Full Technical Report 2018 CONTENTS Research High Energy, Cosmology and Astroparticle Physics (HECAP) ........................................................................ 7 Director's Research Group – String Phenomenology and Cosmology ...................................... 30 Condensed Matter and Statistical Physics (CMSP)............................................................................................ 32 Sustainable Energy Synchrotron Radiation Related Theory Mathematics ........................................................................................................................................................................ 63 Earth System Physics (ESP) ......................................................................................................................................... 71 Applied Physics Multidisciplinary Laboratory (MLab) ....................................................................................................... 97 Telecommunications/ICT for Development Laboratory (T/ICT4D) ....................................... 108 Medical Physics ................................................................................................................................................. 113 Fluid Dynamics .................................................................................................................................................. -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
President's Report
Newsletter Volume 43, No. 3 • mAY–JuNe 2013 PRESIDENT’S REPORT Greetings, once again, from 35,000 feet, returning home from a major AWM conference in Santa Clara, California. Many of you will recall the AWM 40th Anniversary conference held in 2011 at Brown University. The enthusiasm generat- The purpose of the Association ed by that conference gave rise to a plan to hold a series of biennial AWM Research for Women in Mathematics is Symposia around the country. The first of these, the AWM Research Symposium 2013, took place this weekend on the beautiful Santa Clara University campus. • to encourage women and girls to study and to have active careers The symposium attracted close to 150 participants. The program included 3 plenary in the mathematical sciences, and talks, 10 special sessions on a wide variety of topics, a contributed paper session, • to promote equal opportunity and poster sessions, a panel, and a banquet. The Santa Clara campus was in full bloom the equal treatment of women and and the weather was spectacular. Thankfully, the poster sessions and coffee breaks girls in the mathematical sciences. were held outside in a courtyard or those of us from more frigid climates might have been tempted to play hooky! The event opened with a plenary talk by Maryam Mirzakhani. Mirzakhani is a professor at Stanford and the recipient of multiple awards including the 2013 Ruth Lyttle Satter Prize. Her talk was entitled “On Random Hyperbolic Manifolds of Large Genus.” She began by describing how to associate a hyperbolic surface to a graph, then proceeded with a fascinating discussion of the metric properties of surfaces associated to random graphs. -
What Are Lyapunov Exponents, and Why Are They Interesting?
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 1, January 2017, Pages 79–105 http://dx.doi.org/10.1090/bull/1552 Article electronically published on September 6, 2016 WHAT ARE LYAPUNOV EXPONENTS, AND WHY ARE THEY INTERESTING? AMIE WILKINSON Introduction At the 2014 International Congress of Mathematicians in Seoul, South Korea, Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle.”1 Although it is not explicitly mentioned in this citation, there is a second unify- ing concept in Avila’s work that is closely tied with renormalization: Lyapunov (or characteristic) exponents. Lyapunov exponents play a key role in three areas of Avila’s research: smooth ergodic theory, billiards and translation surfaces, and the spectral theory of 1-dimensional Schr¨odinger operators. Here we take the op- portunity to explore these areas and reveal some underlying themes connecting exponents, chaotic dynamics and renormalization. But first, what are Lyapunov exponents? Let’s begin by viewing them in one of their natural habitats: the iterated barycentric subdivision of a triangle. When the midpoint of each side of a triangle is connected to its opposite vertex by a line segment, the three resulting segments meet in a point in the interior of the triangle. The barycentric subdivision of a triangle is the collection of 6 smaller triangles determined by these segments and the edges of the original triangle: Figure 1. Barycentric subdivision. Received by the editors August 2, 2016. -
SHOCKS, TURBULENCE, and PARTICLE ACCELERATION
SHOCKS, TURBULENCE, and PARTICLE ACCELERATION MYKOLA GORDOVSKYY University of Manchester STFC Introductory Solar System Plasma Physics Summer School, 12 September 2017 Outline . Basic phenomenology . Shocks - Basic physics (conservation laws etc) - Shocks in the solar corona and collisionless SW plasma - Fermi I particle acceleration . Turbulence - Basic physics in different regimes (collisionless, HD) - Existing misconceptions and non-existent controversies - Turbulence in the corona and SW - Fermi II particle acceleration . Particle acceleration - Mechanisms of particle acceleration - Outstanding problems . Summary and open questions Outline . Basic phenomenology . Shocks - Basic physics (conservation laws etc) - Shocks in the solar corona and collisionless SW plasma - Fermi I particle acceleration . Turbulence - Basic physics in different regimes (collisionless, HD) - Existing misconceptions and non-existent controversies - Turbulence in the corona and SW - Fermi II particle acceleration . Particle acceleration - Mechanisms of particle acceleration - Outstanding problems . Summary and open questions T&Cs, basic phenomenology etc Thermal Non-thermal . Collisional . Collisionless . Particle distribution . No reason for quickly becomes Maxwellian distribution Maxwellian . Behaves like a N-body . Behaves like a fluid system . Magnetohydrodynamics . Kinetics . Fluid lectures: . Kinetic lectures: - Philippa Browning: MHD; - David Tsiklauri: Plasma - Gunnar Hornig: kinetics; Magnetic reconnection; - Eduard Kontar: High- - Valery Nakariakov: -
Noncommutative Localization in Algebra and Topology
Noncommutative localization in algebra and topology ICMS Edinburgh 2002 Edited by Andrew Ranicki Electronic version of London Mathematical Society Lecture Note Series 330 Cambridge University Press (2006) Contents Dedication . vii Preface . ix Historical Perspective . x Conference Participants . xi Conference Photo . .xii Conference Timetable . xiii On atness and the Ore condition J. A. Beachy ......................................................1 Localization in general rings, a historical survey P. M. Cohn .......................................................5 Noncommutative localization in homotopy theory W. G. Dwyer . 24 Noncommutative localization in group rings P. A. Linnell . 40 A non-commutative generalisation of Thomason's localisation theorem A. Neeman . 60 Noncommutative localization in topology A. A. Ranicki . 81 v L2-Betti numbers, Isomorphism Conjectures and Noncommutative Lo- calization H. Reich . 103 Invariants of boundary link cobordism II. The Blanch¯eld-Duval form D. Sheiham . 143 Noncommutative localization in noncommutative geometry Z. Skoda· ........................................................220 vi Dedicated to the memory of Desmond Sheiham (13th November 1974 ¡ 25th March 2005) ² Cambridge University (Trinity College), 1993{1997 B.A. Hons. Mathematics 1st Class, 1996 Part III Mathematics, Passed with Distinction, 1997 ² University of Edinburgh, 1997{2001 Ph.D. Invariants of Boundary Link Cobordism, 2001 ² Visiting Assistant Professor, Mathematics Department, University of California at Riverside, 2001{2003 ² Research Instructor, International University Bremen (IUB), 2003{2005 vii Publications: 1. Non-commutative Characteristic Polynomials and Cohn Localization Journal of the London Mathematical Society (2) Vol. 64, 13{28 (2001) http://arXiv.org/abs/math.RA/0104158 2. Invariants of Boundary Link Cobordism Memoirs of the American Mathematical Society, Vol. 165 (2003) http://arXiv.org/abs/math.AT/0110249 3. Whitehead Groups of Localizations and the Endomorphism Class Group Journal of Algebra, Vol. -
2016 UK MHD – National Conference on Geophysical, Astrophysical and Industrial Magnetohydrodynamics
2016 UK MHD – National Conference on Geophysical, Astrophysical and Industrial Magnetohydrodynamics Glasgow, 12 and 13 May 2016 Radostin D. Simitev David MacTaggart David R. Fearn — Programme — A long version of this programme including abstracts is available online at http://www.gla.ac.uk/schools/mathematicsstatistics/events/conferences/ukmhd2016. — Thursday, 2016-05-12 — Welcome and Registration 9:00 – 10:25 Arrival, registration, set-up of posters. Refreshments available. 10:25 – 10:30 PROF ADRIAN BOWMAN Head of School Welcome message Invited Lecture Chairperson: Keke Zhang 10:30 – 11:10 PHILIPPA BROWNING Relaxation modelling and MHD simulations of energy release in kink-unstable coronal loops Session 1: Solar Applications I Chairperson: Alan Hood 11:10 – 11:25 TONY ARBER, C. Brady Simulations of Alfven wave driving of the solar chromosphere - efficient heating and spicule launching. 11:25 – 11:40 BEN SNOW, G. Botha, J. McLaughlin, A. Hillier Onset of 2D reconnection in the solar photosphere, chromosphere and corona 11:40 – 11:55 ANDREW HILLIER, Shinsuke Takasao, Naoki Nakamure Investigating slow-mode MHD shocks in a partially ionised plasma 11:55 – 12:10 JAMES THRELFALL, J. E. H. Stevenson, C. E. Parnell, T. Neukirch Particle dynamics at reconnecting magnetic separators 12:10 – 12:25 NIC BIAN, E. Kontar, J. Watters, G. Emslie Turbulent reduction of parallel transport in magnetized plasmas and anomalous cooling of coronal loops Lunch Break 12:25 – 14:00 Lunch is provided at “One A The Square”. The restaurant is located at the North-West corner of the Main University Building. Lunch vouchers enclosed in delegates’ conference wallets. Session 2: Solar Applications II Chairperson: David Hughes 14:00 – 14:15 DAVID PONTIN, G. -
Notices of the American Mathematical Society
• ISSN 0002-9920 March 2003 Volume 50, Number 3 Disks That Are Double Spiral Staircases page 327 The RieITlann Hypothesis page 341 San Francisco Meeting page 423 Primitive curve painting (see page 356) Education is no longer just about classrooms and labs. With the growing diversity and complexity of educational programs, you need a software system that lets you efficiently deliver effective learning tools to literally, the world. Maple® now offers you a choice to address the reality of today's mathematics education. Maple® 8 - the standard Perfect for students in mathematics, sciences, and engineering. Maple® 8 offers all the power, flexibility, and resources your technical students need to manage even the most complex mathematical concepts. MapleNET™ -- online education ,.u A complete standards-based solution for authoring, nv3a~ _r.~ .::..,-;.-:.- delivering, and managing interactive learning modules \~.:...br *'r¥'''' S\l!t"AaITI(!\pU;; ,"", <If through browsers. Derived from the legendary Maple® .Att~~ .. <:t~~::,/, engine, MapleNefM is the only comprehensive solution "f'I!hlislJer~l!'Ct"\ :5 -~~~~~:--r---, for distance education in mathematics. Give your institution and your students cornpetitive edge. For a FREE 3D-day Maple® 8 Trial CD for Windows®, or to register for a FREE MapleNefM Online Seminar call 1/800 R67.6583 or e-mail [email protected]. ADVANCING MATHEMATICS WWW.MAPLESOFT.COM I [email protected]\I I WWW.MAPLEAPPS.COM I NORTH AMERICAN SALES 1/800 267. 6583 © 2003 Woter1oo Ma')Ir~ Inc Maple IS (J y<?glsterc() crademork of Woterloo Maple he Mar)leNet so troc1ema'k of Woter1oc' fV'lop'e Inr PII other trcde,nork$ (ye property o~ their respective ('wners Generic Polynomials Constructive Aspects of the Inverse Galois Problem Christian U. -
Main Panel B
MAIN PANEL B Sub-panel 7: Earth Systems and Environmental Sciences Sub-panel 8: Chemistry Sub-panel 9: Physics Sub-panel 10: Mathematical Sciences Sub-panel 11: Computer Science and Informatics Sub-panel 12: Engineering Where required, specialist advisers have been appointed to the REF sub-panels to provide advice to the REF sub-panels on outputs in languages other than English, and / or English-language outputs in specialist areas, that the panel is otherwise unable to assess. This may include outputs containing a substantial amount of code, notation or technical terminology analogous to another language In addition to these appointments, specialist advisers will be appointed for the assessment of classified case studies and are not included in the list of appointments. Main Panel B Main Panel B Chair Professor David Price University College London Deputy Chair Professor Dame Muffy Calder* University of Glasgow Members Professor Mike Ashfold University of Bristol Professor John Clarkson University of Cambridge Dr Peter Costigan Independent Professor Paula Eerola University of Helsinki Professor Alison Etheridge University of Oxford Dr Giles Graham Defence Science Technology Laboratory Professor Michael Hinton High Value Manufacturing Catapult Professor Andrew Holmes University of Melbourne Professor Raymond Jeanloz University of California, Berkeley Mr Ben Johnson Graphic Science Ltd Professor Hilary Lappin-Scott Cardiff University Professor John Ludden Heriot-Watt University Professor Miles Padgett University of Glasgow Professor Simon