medRxiv preprint doi: https://doi.org/10.1101/2020.06.25.20139725; this version posted March 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . Genome-Wide Association Studies of retinal vessel tortuosity identify 173 novel loci, capturing genes and pathways associated with disease and vascular tissue pathomechanics Mattia Tomasoni1,2, Michael Johannes Beyeler1,2, Ninon Mounier2,3, Eleonora Porcu2,3,4, Sofia Ortin Vela1,2, Alexander Luke Button1,2, Tanguy Corre1,2,3, Hana Abouzeid5,6, Murielle Bochud3, Daniel Krefl1,2, Sven Bergmann1,2,7 1 Dept. of Computational Biology, University of Lausanne, Lausanne, Switzerland 2 Swiss Institute of Bioinformatics, Lausanne, Switzerland 3 Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland 4 Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland 5 Division of Ophthalmology, Geneva University Hospitals, Switzerland 6 Clinical Eye Research Center Memorial Adolphe de Rothschild, Geneva, Switzerland 7 Dept. of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa Corresponding authors:
[email protected] [email protected] Abstract Fundus images of the eye allow for non-invasive inspection of the microvasculature system of the retina, which is informative of systemic cardiovascular health. We set up a fully automated image processing pipeline enabling the massively parallelised annotation of such images in terms of vessel type (i.e., artery or vein) and quantitative morphological properties, such as tortuosity (“bendiness”).