Impact of Petroleum Hydrocarbon Contamination on the Indigenous Soil Microbial Community

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Petroleum Hydrocarbon Contamination on the Indigenous Soil Microbial Community Ann Microbiol (2015) 65:359–369 DOI 10.1007/s13213-014-0868-1 ORIGINAL ARTICLE Impact of petroleum hydrocarbon contamination on the indigenous soil microbial community Simrita Cheema & Meeta Lavania & Banwari Lal Received: 12 July 2013 /Accepted: 9 March 2014 /Published online: 2 May 2014 # Springer-Verlag Berlin Heidelberg and the University of Milan 2014 Abstract Changes in the microbial community structure in importance, especially since the site had high alkaline and agricultural soils and soils contaminated with hydrocarbons saline characteristics. Soils (arid, alpine and polar) which are were evaluated using the culture-independent method of 16S nutrient and moisture limited are typically often dominated by rRNA gene sequence analysis. The bacterial composition was Actinobacteria that are well adapted to low-resource environ- more diverse in the agricultural soil (AS) samples in terms of ments and do not show major changes in community structure number of species and Shannon diversity index [6.6 vs. 1.94 as a result of hydrocarbon contamination. for the hydrocarbon-contaminated soil (HCS)]. Twelve known bacterial groups were identified in the AS: Keywords Diversity . High alkalinity . Proteobacteria (41 % of bacterial community), Ectothiorhodospiraceae . Polyhydroxyalkanoates . Ectoines Actinobacteria (34 %), Acidobacteria (5 %), Firmicutes (4 %), Chloroflexi (4 %), Bacteroidetes (3 %), Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Introduction Armatimonadetes, Cyanobacteria,TM7andArchaea (the lat- ter 7 each accounting for 1–2%) . In comparison, the clonal Microbes are an essential part of all life forms on Earth. They library from the HCS samples included members from only can live in extreme environments and possess adaptive capa- five groups: Proteobacteria (85 %) and Bacteriodetes, bilities that enable them to adjust to changes in living condi- Actinobacteria, Chloroflexi and Verrucomicrobia (the latter tions. Many microorganisms have been used in industrial- four collectively accounting for 15 %). The family scale processes for the production of antibiotics, preparation Ectothiorhodospiraceae was the most dominant family within of food and beverages, leather industry, production of the Proteobacteria isolated from the HCS. These microbes are biofuels, such as ethanol, among others in which they carry known to synthesize a number of biotechnologically useful out various chemical biotranformations. Microbial communi- products, such as polyhydroxyalkanoates and ectoines, and ties have for billions of generations contributed towards their dominance in the sampled area suggests the possibility of transforming the world around them. Their applications are discovering better adapted novel genes of commercial too widespread to describe in detail, and they represent by far the richest repertoire of molecular and chemical diversity in nature (Kapur and Jain 2004). S. Cheema Centre for Bioresources and Biotechnology, TERI University, Plot The diversity of microorganisms has been explored across No.10, Institutional Area, Vasant Kunj, New Delhi 110070, India a wide range of environments, such as water, soils, the human : : body (Achtman and Wagner 2008), hydrocarbon- S. Cheema M. Lavania B. Lal contaminated soils (Liang et al. 2011), the Arctic and deep Microbial Biotechnology Division, TERI, India Habitat Centre, Lodhi Road, New Delhi 110003, India sea vents (Stoeck et al. 2007). Among the various habitats, soil is considered to house the maximum number of microbes, and B. Lal (*) it has been estimated that 1 g of sediment may contain 1010 Environmental and Industrial Biotechnology, TERI University, bacteria, which is the highest for any environment (Torsvik Darbari Seth Block, India Habitat Center, Lodhi Road, New Delhi 110003, India et al. 1996). However, the cultivation efficiency of soil mi- e-mail: [email protected] crobes is only 0.3 % (Torsvik et al. 1996) due to limitations in 360 Ann Microbiol (2015) 65:359–369 traditional cultivation methods. This implies that most soil inputs of composted cow manure; there has also been no bacteria are difficult to isolate on laboratory media due to tillage and no removal of crop residues during this same time unknown culture conditions, insufficient growth nutrients period. An oil spill occurred in April 2008 which resulted in and the lack of cells in cultivable state. This drawback has one of the agricultural fields being contaminated with hydro- been largely overcome by culture-independent approaches carbons. In our study, soil collected from this site was consid- (Handelsman 2004) which are currently being exploited at a ered as the HCS. Within the same area, we also collected soil very fast pace and have allowed researchers and scientists to samples from uncontaminated AS. gain a better understanding of the number of microbial In both the cases (HCS and AS), about 10-g samples of the communities. surface soil were collected at depths ranging from 0 to 10 after Soil microbial communities residing at sites contaminated the top 3 cm of the soil surface was removed, in the rainy with hydrocarbons are one of the most complex and diverse season of July 2008. Ten samples collected from each site assemblages. Their roles and activities in these soils are the were randomly mixed, and subsamples were used for micro- focus of much interest (Liang et al. 2011). It is expected that bial community analysis. Soil samples were kept in polyeth- such information will result in the identification of many ylene whirl bags on ice and transported to the laboratory. The microorganisms which may represent a potential resource samples were stored at −80 °C until further analysis. All for various biotechnological products, bioenergy production efforts were made to avoid surface contamination. and novel biotransformations (Kalia et al. 2003). In addition, such studies will help to determine bacterial communities with Physiochemical analyses of the soil sample a high tolerance for hydrocarbon contamination. Their phys- iological response and stronger biodegradation efficiency can Physiochemical analysis of the soil samples was performed as ultimately be exploited for developing economic bioremedia- described by Marinari et al. (2006). Total organic carbon tion technologies. (TOC) was determined by the dichromate oxidation method In the study reported here, we investigated a site contam- (Nelson and Sommers 1982). Soil total lead (Pb), copper, inated with hydrocarbons using a culture-independent ap- cobalt (Co), arsenic, cadmium, selenium and chromium (Cr) proach in order to gain insight into the microbial community were analysed by digesting 0.1 g soil with HCLO4–HNO3– composition. Microbial diversity from a neighbouring uncon- HF (Nautiyal et al. 2010). The digested solution was washed taminated agricultural soil (AS) was also analysed to better into a flask, and deionized water was added to a fixed volume. understand the effects of environmental conditions and soil The digested solutions were analysed with atomic absorption characteristics on microbial diversity. Our results suggest that spectroscopy (model-AA 300; Perkin Elmer, Waltham, MA) the phylogenetic diversity and distribution in the for heavy metals. Soil pH and electric conductivity were hydrocarbon-contaminated soil (HCS) was quite distinct and measured in 1:10 w/v aqueous solution using a pH meter different from that in the unpolluted AS. They also indicates (Thermo Fisher Scientific, Waltham, MA). that microorganisms differ with habitats, are less diverse in contaminated sites and are dominated by populations that are Extraction of total petroleum hydrocarbon from contaminated well adapted to survive under these conditions. soil Total petroleum hydrocarbon (TPH) was extracted in an equal Materials and methods ratio of hexane and dichloromethane (1:1, each 100 ml) from 10 g of HCS and AS using the Soxhlet method (Soxtherm; Sampling site Gerardt GmbH, Königswinter, Germany). Extracts were dried at room temperature by evaporating the solvents under a The heavy oil belt of Gujarat, India is 30 km long, with a gentle nitrogen stream in the fume hood. After evaporation surface area of about 45 km2. The majority shareholder is the the amount of residual TPH recovered was determined gravi- Oil & Natural Gas Corporation Ltd., and several exploratory metrically (Mishra et al. 2001). oil wells with an extensive pipeline network are located at various sites in this oil belt. The village of Kalol, located Analysis of TPH fractions by gas chromatography 27 km east of Ahmadabad city (73°15′N/ 72°28′60E) also falls within this belt. It is characterized by a mean annual Following gravimetric quantification, the residual TPH was rainfall of 742 mm and maximum and minimum temperatures fractionated into alkane, aromatic, asphaltene and nitrogen– ranging between 45 °C and 4 °C, respectively. The farmers sulphur–oxygen fractions in a silica gel column (Mishra et al. grow mainly Pennisetum glaucum (L), Ricinus communis and 2001). The TPH sample (200 mg) was dissolved in a mixture Brassica juncea in an inter-cropping cycle. For the past 14 of hexane, loaded onto a silica gel column and eluted with years, the crops have been under organic management with solvents of different polarity. The alkane and aromatic Ann Microbiol (2015) 65:359–369 361 fractions were eluted with 100 ml of hexane and dichloro- Sequencing methane, respectively. Aliphatic and aromatic fractions were analysed by gas chromatography (GC-FID; 6890 series N; The template used for
Recommended publications
  • Prokaryotic Biodiversity of Lonar Meteorite Crater Soda Lake Sediment and Community Dynamics During Microenvironmental Ph Homeostasis by Metagenomics
    Prokaryotic Biodiversity of Lonar Meteorite Crater Soda Lake Sediment and Community Dynamics During Microenvironmental pH Homeostasis by Metagenomics Dissertation for the award of the degree "Doctor of Philosophy" Ph.D. Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program in Biology of the Georg-August University School of Science (GAUSS) Submitted by Soumya Biswas from Ranchi (India) Göttingen, 2016 Thesis Committee Prof. Dr. Rolf Daniel Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany PD Dr. Michael Hoppert Department of General Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Members of the Examination Board Reviewer: Prof. Dr. Rolf Daniel, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Second Reviewer: PD Dr. Michael Hoppert, Department of General Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Further members of the Examination Board: Prof. Dr. Burkhard Morgenstern, Department of Bioinformatics, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany PD Dr. Fabian Commichau, Department of General Microbiology,
    [Show full text]
  • 1 Hydrothermal Activity Lowers Trophic Diversity in Antarctic Hydrothermal
    1 Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments 2 3James B. Bell1,2,3, William D. K. Reid4, David A. Pearce5, Adrian G. Glover2, Christopher J. Sweeting4, 4Jason Newton6, & Clare Woulds1 * 5 61 School of Geography & Water@Leeds, University of Leeds, LS2 9JT, UK. 72 Life Sciences Dept., Natural History Museum, Cromwell Rd, London SW7 5BD, UK 83 Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, NR34 0HT, UK 94 Marine Sciences- School of Natural and Environmental Sciences, Ridley Building, Newcastle 10 University, NE1 7RU, UK 11 5Applied Sciences, Northumbria University, Newcastle, NE1 8ST, UK 12 6NERC Life Sciences Mass Spectrometry Facility, SUERC, East Kilbride G75 0QF, UK 13 14 * E-mail: [email protected] 15 16 Keywords: Stable Isotopes; Trophic Niche; Sedimented; Hydrothermal; Southern Ocean; 17 Microbial; 16S; PLFA 1 18 Abstract 19 20 Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments 21 and are one of the least studied deep-sea ecosystems. We present a combination of microbial 22 and biochemical data to assess trophodynamics between and within hydrothermal and 23 background areas of the Bransfield Strait (1050 – 1647m depth). Microbial composition, 24 biomass and fatty acid signatures varied widely between and within hydrothermally active and 25 background sites, providing evidence of diverse metabolic activity. Several species had different 26 feeding strategies and trophic positions between hydrothermally active and inactive areas and 27 stable isotope values of consumers were not consistent with feeding morphology. Niche area 28 and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, 29 reflecting trends in species diversity.
    [Show full text]
  • Complete Genome Sequence of Strain BW-2, a Magnetotactic
    Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae , Isolated from a Brackish Spring in Death Valley, California Corey Geurink, Christopher Lefèvre, Caroline Monteil, Viviana Morillo-Lopez, Fernanda Abreu, Dennis Bazylinski, Denis Trubitsyn To cite this version: Corey Geurink, Christopher Lefèvre, Caroline Monteil, Viviana Morillo-Lopez, Fernanda Abreu, et al.. Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae , Isolated from a Brackish Spring in Death Valley, California. Microbiology Resource Announcements, American Society for Microbiology, 2020, 9 (1), 10.1128/mra.01144-19. cea-02462734 HAL Id: cea-02462734 https://hal-cea.archives-ouvertes.fr/cea-02462734 Submitted on 3 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GENOME SEQUENCES crossm Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae, Downloaded from Isolated from a Brackish Spring in Death
    [Show full text]
  • A Technology for Retrieving Specific DNA Sequences from Complex Mixtures Kelley Gwin Nunez Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2015 Selective Enrichment Through Capture (SEC): A Technology for Retrieving Specific DNA Sequences from Complex Mixtures Kelley Gwin Nunez Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Nunez, Kelley Gwin, "Selective Enrichment Through Capture (SEC): A Technology for Retrieving Specific DNA eS quences from Complex Mixtures" (2015). LSU Doctoral Dissertations. 514. https://digitalcommons.lsu.edu/gradschool_dissertations/514 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SELECTIVE ENRICHMENT THROUGH CAPTURE (SEC): A TECHNOLOGY FOR RETREIVING SPECIFIC DNA SEQUENCES FROM COMPLEX MIXTURES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctorate of Philosophy in The Department of Biological Sciences by Kelley G. Núñez B.S., Louisiana State University, 2009 December 2015 ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. John R. Battista who has guided me in becoming a well-rounded scientist. You have been an excellent mentor and have always been available for discussions. I have learned an enormous amount over the last five years about what it takes to be a scientist and I am extremely grateful for your patience, guidance, and freedom to pursue a wide variety of projects.
    [Show full text]
  • Menaquinone As Pool Quinone in a Purple Bacterium
    Menaquinone as pool quinone in a purple bacterium Barbara Schoepp-Cotheneta,1, Cle´ ment Lieutauda, Frauke Baymanna, Andre´ Verme´ gliob, Thorsten Friedrichc, David M. Kramerd, and Wolfgang Nitschkea aLaboratoire de Bioe´nerge´tique et Inge´nierie des Prote´ines, Unite´Propre de Recherche 9036, Institut Fe´de´ ratif de Recherche 88, Centre National de la Recherche Scientifique, F-13402 Marseille Cedex 20, France; bLaboratoire de Bioe´nerge´tique Cellulaire, Unite´Mixte de Recherche 163, Centre National de la Recherche Scientifique–Commissariat a`l’E´ nergie Atomique, Universite´ delaMe´ diterrane´e–Commissariat a`l’E´ nergie Atomique 1000, Commissariat a` l’E´ nergie Atomique Cadarache, Direction des Sciences du Vivant, De´partement d’Ecophysiologie Ve´ge´ tale et Microbiologie, F-13108 Saint Paul Lez Durance Cedex, France; cInstitut fu¨r Organische Chemie und Biochemie, Albert-Ludwigs-Universita¨t Freiburg, Albertstr. 21, D-79104 Freiburg, Germany; and dInstitute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340 Edited by Pierre A. Joliot, Institut de Biologie Physico-Chimique, Paris, France, and approved March 31, 2009 (received for review December 23, 2008) Purple bacteria have thus far been considered to operate light- types of pool-quinones, such as ubi-, plasto-, mena-, rhodo-, driven cyclic electron transfer chains containing ubiquinone (UQ) as caldariella- or sulfolobus-quinones (to cite only the best-studied liposoluble electron and proton carrier. We show that in the purple cases) have been identified so far individually in different species ␥-proteobacterium Halorhodospira halophila, menaquinone-8 or coexisting in single organisms (2–4). (MK-8) is the dominant quinone component and that it operates in Menaquinone (MK) is the most widely distributed quinone on the QB-site of the photosynthetic reaction center (RC).
    [Show full text]
  • Diversity of Mat-Forming Sulfide-Oxidizing Bacteria at Continental Margins
    Diversity of Mat-forming Sulfide-oxidizing Bacteria at Continental Margins Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Stefanie Grünke Bremen, April 2010 Die vorliegende Doktorarbeit wurde in der Zeit von Juni 2006 bis April 2010 am Max- Planck-Institut für Marine Mikrobiologie und am Alfred-Wegener-Institut für Polar- und Meeresforschung angefertigt. 1. Gutachterin: Prof. Dr. Antje Boetius 2. Gutachter: Prof. Dr. Rudolf Amann Tag des Promotionskolloquiums: 4. Juni 2010 Diese Arbeit ist all denjenigen gewidmet, die ihre Segel setzen, um neue Welten gu erkunden. Seien sie sich gewiss, dass auf Sturm immer ruhiges Wasserfolgt. Wertrauen sie auf ihr größtes Gut — ihre Freunde und Familie. Nutgen sie ihre Schwächen, um neue Stärken gu finden. Soll Zuversicht ihr Kompass sein! Summary In the oceans, microbial mats formed by chemosynthetic sulfide-oxidizing bacteria are mostly found in so-called ‘reduced habitats’ that are characterized by chemoclines where energy-rich, reduced substances, like hydrogen sulfide, are transported into oxic or suboxic zones. There, these organisms often thrive in narrow zones or gradients of their electron donor (sulfide) and their electron acceptor (mostly oxygen or nitrate). Through the build up of large biomasses, mat-forming sulfide oxidizers may significantly contribute to primary production in their habitats and dense mats represent efficient benthic filters against the toxic gas hydrogen sulfide. As gradient organisms, these mat-forming sulfide oxidizers seem to be adapted to very defined ecological niches with respect to oxygen (or nitrate) and sulfide gradients. However, many aspects regarding their diversity as well as their geological drivers in marine sulfidic habitats required further investigation.
    [Show full text]
  • Photosynthesis Is Widely Distributed Among Proteobacteria As Demonstrated by the Phylogeny of Puflm Reaction Center Proteins
    fmicb-08-02679 January 20, 2018 Time: 16:46 # 1 ORIGINAL RESEARCH published: 23 January 2018 doi: 10.3389/fmicb.2017.02679 Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins Johannes F. Imhoff1*, Tanja Rahn1, Sven Künzel2 and Sven C. Neulinger3 1 Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 Max Planck Institute for Evolutionary Biology, Plön, Germany, 3 omics2view.consulting GbR, Kiel, Germany Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Edited by: Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the Marina G. Kalyuzhanaya, phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria San Diego State University, United States employing this photosystem in nature. Almost complete pufLM gene sequences and Reviewed by: the derived protein sequences from 152 type strains and 45 additional strains of Nikolai Ravin, phototrophic Proteobacteria employing photosystem II were compared. The results Research Center for Biotechnology (RAS), Russia give interesting and comprehensive insights into the phylogeny of the photosynthetic Ivan A. Berg, apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as Universität Münster, Germany major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from *Correspondence: Caulobacterales (Brevundimonas subvibrioides).
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Hydrothermal Activity Lowers Trophic Diversity in Antarctic Hydrothermal Sediments
    Biogeosciences, 14, 5705–5725, 2017 https://doi.org/10.5194/bg-14-5705-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 4.0 License. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments James B. Bell1,2,3, William D. K. Reid4, David A. Pearce5, Adrian G. Glover2, Christopher J. Sweeting4, Jason Newton6, and Clare Woulds1 1School of Geography & Water at Leeds, University of Leeds, LS2 9JT, UK 2Life Sciences Dept., Natural History Museum, Cromwell Rd, London SW7 5BD, UK 3Centre for Environment, Fisheries and Aquaculture Science, Lowestoft NR34 0HT, UK 4Marine Sciences-School of Natural and Environmental Sciences, Ridley Building, Newcastle University, NE1 7RU, UK 5Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK 6NERC Life Sciences Mass Spectrometry Facility, SUERC, East Kilbride G75 0QF, UK Correspondence: Clare Woulds ([email protected]) Received: 5 July 2017 – Discussion started: 1 August 2017 Revised: 25 October 2017 – Accepted: 6 November 2017 – Published: 20 December 2017 Abstract. Hydrothermal sediments are those in which hy- 1 Introduction drothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a com- Hydrothermal sediments (also called sediment-hosted or sed- bination of microbial and biochemical data to assess tropho- imented hydrothermal vents), the product of subsurface mix- dynamics between and within hydrothermal and background ing between hydrothermal fluid and ambient seawater within areas of the Bransfield Strait (1050–1647 m of depth). Mi- the sediment, are physically more similar to background crobial composition, biomass, and fatty acid signatures var- deep-sea habitats than to high-temperature hard substratum ied widely between and within hydrothermally active and vents (Bemis et al., 2012; Bernardino et al., 2012).
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Microbiology of Lonar Lake and Other Soda Lakes
    The ISME Journal (2013) 7, 468–476 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej MINI REVIEW Microbiology of Lonar Lake and other soda lakes Chakkiath Paul Antony1, Deepak Kumaresan2, Sindy Hunger3, Harold L Drake3, J Colin Murrell4 and Yogesh S Shouche1 1Microbial Culture Collection, National Centre for Cell Science, Pune, India; 2CSIRO Marine and Atmospheric Research, Hobart, TAS, Australia; 3Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany and 4School of Environmental Sciences, University of East Anglia, Norwich, UK Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalk- aliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases.
    [Show full text]
  • Microbial Ecology of Halo-Alkaliphilic Sulfur Bacteria
    Microbial Ecology of Halo-Alkaliphilic Sulfur Bacteria Microbial Ecology of Halo-Alkaliphilic Sulfur Bacteria Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema, voorzitter van het College van Promoties in het openbaar te verdedigen op dinsdag 16 oktober 2007 te 10:00 uur door Mirjam Josephine FOTI Master degree in Biology, Universita` degli Studi di Milano, Italy Geboren te Milaan (Italië) Dit proefschrift is goedgekeurd door de promotor: Prof. dr. J.G. Kuenen Toegevoegd promotor: Dr. G. Muyzer Samenstelling commissie: Rector Magnificus Technische Universiteit Delft, voorzitter Prof. dr. J. G. Kuenen Technische Universiteit Delft, promotor Dr. G. Muyzer Technische Universiteit Delft, toegevoegd promotor Prof. dr. S. de Vries Technische Universiteit Delft Prof. dr. ir. A. J. M. Stams Wageningen U R Prof. dr. ir. A. J. H. Janssen Wageningen U R Prof. dr. B. E. Jones University of Leicester, UK Dr. D. Yu. Sorokin Institute of Microbiology, RAS, Russia This study was carried out in the Environmental Biotechnology group of the Department of Biotechnology at the Delft University of Technology, The Netherlands. This work was financially supported by the Dutch technology Foundation (STW) by the contract WBC 5939, Paques B.V. and Shell Global Solutions Int. B.V. ISBN: 978-90-9022281-3 Table of contents Chapter 1 7 General introduction Chapter 2 29 Genetic diversity and biogeography of haloalkaliphilic sulfur-oxidizing bacteria belonging to the
    [Show full text]