Length, Area and Perimeter My Name Copyright © 2009 3P Learning

Total Page:16

File Type:pdf, Size:1020Kb

Length, Area and Perimeter My Name Copyright © 2009 3P Learning Student Series E Length, Area and Perimeter My name Copyright © 2009 3P Learning. All rights reserved. First edition printed 2009 in Australia. A catalogue record for this book is available from 3P Learning Ltd. ISBN 978-1-921860-62-1 Ownership of content The materials in this resource, including without limitation all information, text, graphics, advertisements, names, logos and trade marks (Content) are protected by copyright, trade mark and other intellectual property laws unless expressly indicated otherwise. You must not modify, copy, reproduce, republish or distribute this Content in any way except as expressly provided for in these General Conditions or with our express prior written consent. Copyright Copyright in this resource is owned or licensed by us. Other than for the purposes of, and subject to the conditions prescribed under, the Copyright Act 1968 (Cth) and similar legislation which applies in your location, and except as expressly authorised by these General Conditions, you may not in any form or by any means: adapt, reproduce, store, distribute, print, display, perform, publish or create derivative works from any part of this resource; or commercialise any information, products or services obtained from any part of this resource. Where copyright legislation in a location includes a remunerated scheme to permit educational institutions to copy or print any part of the resource, we will claim for remuneration under that scheme where worksheets are printed or photocopied by teachers for use by students, and where teachers direct students to print or photocopy worksheets for use by students at school. A worksheet is a page of learning, designed for a student to write on using an ink pen or pencil. This may lead to an increase in the fees for educational institutions to participate in the relevant scheme. Published 3P Learning Ltd For more copies of this book, contact us at: www.3plearning.com/contact Designed 3P Learning Ltd Although every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of this information contained herein. Series E – Length, Perimeter and Area Contents Topic 1 – Units of length (pp. 1–7) Date completed • metres and cen metres ________________________ / / • length and decimal nota on _____________________ / / • millimetres ___________________________________ / / • convert it – apply ______________________________ / / Topic 2 – Perimeter (pp. 8–14) • measuring shapes _____________________________ / / • calcula ng perimeter __________________________ / / • perimeter word problems _______________________ / / • perimeter challenges – solve _____________________ / / • harder perimeter challenges – solve _______________ / / Topic 3 – Area (pp. 15–22) • square cen metres ____________________________ / / • square metres ________________________________ / / • inves ga ng area and perimeter _________________ / / • area challenges 1 – apply _______________________ / / • area challenges 2 – apply _______________________ / / Series Author: Nicola Herringer Please note: These pages have been designed to print to ‘shrink to printable area’ as this is a common default se ng on many computers. There may be minor discrepancies with measurements as individual printers and photocopiers print to slightly diff erent propor ons. Copyright © Units of length – metres and centimetres We use metres, cenƟ metres and millimetres regularly in everyday life. There are 100 cenƟ metres in 1 metre. Another way to think about this relaƟ onship is that 1 cenƟ metre is one hundredth of a metre. 1 1 100 cm = 1 m 1 cm = 100 m or 0.01 m So 2 m = 50 cm = 0.5 m 0 cm 10 20 30 40 50 60 70 80 90 100 1 Convert each metre measurement into cenƟ metres: 1 a 2 m = cm b 4 m = cm c 4 m = cm 1 1 d 9 m = cm e 2 m = cm f 14 m = cm 2 Convert each cenƟ metre measurement to metres: a 10 cm = m b 30 cm = m c 90 cm = m d 50 cm = m e 75 cm = m f 80 cm = m 3 EsƟ mate and EsƟ mate in cm Measure in cm measure three things that 1 a About 2 metre fi t in each 3 category: b About 4 metre c About 1 metre 4 Match these objects to their correct measurement by connecƟ ng them with a line: 37 m 45 cm 5 cm 83 cm 1 m 15 cm 12 cm Length, Perimeter and Area E1 1 Copyright © 3P Learning SERIES TOPIC Units of length – metres and centimetres 5 Measure the length of the lines below using a ruler. Write each length in cenƟ metres, to the nearest cenƟ metre. a __________ cm b __________ cm c __________ cm 6 Answer these quesƟ ons about the lines above: a How much longer is line b than line c? __________ cm b What would the length of line b be if it was 3 cm shorter? __________ cm c What would the length of line c be if it was 9 cm longer? __________ cm 7 Draw lines for the following measurements. Make sure you start each line on the dot. a 14 cm • 1 b 2 cm • 1 c 82 cm • 8 Measure some objects you fi nd in the classroom. Label the measurements to the nearest cenƟ metre in the boxes. a ______________ ______ cm b ______________ ______ cm c ______________ ______ cm d ______________ ______ cm e ______________ ______ cm f ______________ ______ cm g ______________ ______ cm Length, Perimeter and Area 2 E1 Copyright © 3P Learning SERIES TOPIC Units of length – length and decimal notation When we measure things that are in metres and cenƟ metres it is useful to 1 record such lengths in decimal notaƟ on. Remember that 1 cm = 100 m. This can be wriƩ en as 0.01 m. So if we measure something that is 1 metre and 36 cenƟ metres long, we would write it like this: 1.36 m Hundredths of a metre Tenths of a metre Metres in whole numbers 1 Write the measurements in decimal form: a 1 metre 69 cenƟ metres = m b 2 metres 91 cenƟ metres = m c 3 metres 23 cenƟ metres = m d 34 cenƟ metres = m e 9 metres 4 cenƟ metres = m f 5 metres 9 cenƟ metres = m 2 Write these cenƟ metres as metres using decimal notaƟ on: a 416 cm = m b 319 cm = m c 567 cm = m d 607 cm = m e 510 cm = m f 4 cm = m 3 Write these measurements as cenƟ metres: a 9.34 m = cm b 3.45 m = cm c 6.07 m = cm d 5.47 m = cm e 0.94 m = cm f 9.51 m = cm 4 Draw lines for the following measurements. Make sure you start each line on the dot and keep each line parallel to the top of the page. a 0.07 m • b 0.14 m • c 0.02 m • Length, Perimeter and Area E1 3 Copyright © 3P Learning SERIES TOPIC Units of length – length and decimal notation 5 You can work individually or in small groups for this task. You will need a tape measure. First, iden fy three or four objects in the classroom (or in the school) that you think have length between 1 metre and 3 metres. Record the name of the objects in the table below. Second, es mate the length of each object in metres and cen metres and record it in the table. Third, measure the actual length of each object and record it in the table. Then, write the actual length of each object as a decimal in the table. Finally, work out the diff erence between each es mate and the actual length. Record this in metres and cen metres, and as a decimal. Object name Estimated length ___ m ___ cm ___ m ___ cm ___ m ___ cm ___ m ___ cm Actual length ___ m ___ cm ___ m ___ cm ___ m ____ c ___ m ___ cm Actual length as a decimal ___.___ m ___.___ m ___.___ m ___.___ m Diff erence between estimated ___ m ___ cm ___ m ___ cm ___ m ___ cm ___ m ___ cm length and actual length 6 Find the lines that connect to make these lengths: 1 m, 2 m and 3 m. Show you have found them by tracing over lines that connect in diff erent colours. To start you off , the fi rst length has been done for you. a 1 m = ________________________ b 2 m = ________________________ c 3 m = ____________________________________________________________ You can use a calculator. 0.4 m 0.3 m 0.3 m 0.6 m 0.8 m 1.0 m 1.3 m 0.6 m 0.4 m 0.3 m Length, Perimeter and Area 4 E1 Copyright © 3P Learning SERIES TOPIC Units of length – millimetres We use metres, cenƟ metres and millimetres regularly in everyday life. You should learn these millimetre facts: 1 cenƟ metre = 10 millimetres 1 cm = 10 mm 0 mm 10 20 30 40 50 60 70 80 90 100 45 mm = 4 cm 5 mm 45 mm = 4.5 cm 1 EsƟ mate and measure these objects in millimetres: Object EsƟ mate Millimetres a Width of your thumb b Length of your hand c Length of a grape 2 Convert these cenƟ metre measurements into millimetres: a 4 cm = mm b 3 cm = mm c 10 cm = mm 1 1 d 62 cm = mm e 7 cm = mm f 2 cm = mm 3 Write these as cenƟ metres and millimetres: a 17 mm = cm mm b 29 mm = cm mm c 42 mm = cm mm d 36 mm = cm mm 4 Write these measurements as cenƟ metres: a 12 mm = cm b 46 mm = cm c 63 mm = cm d 48 mm = cm Length, Perimeter and Area E1 5 Copyright © 3P Learning SERIES TOPIC Units of length – millimetres 5 Follow these steps to measure these lines accurately in cenƟ metres and millimetres.
Recommended publications
  • Metric System Units of Length
    Math 0300 METRIC SYSTEM UNITS OF LENGTH Þ To convert units of length in the metric system of measurement The basic unit of length in the metric system is the meter. All units of length in the metric system are derived from the meter. The prefix “centi-“means one hundredth. 1 centimeter=1 one-hundredth of a meter kilo- = 1000 1 kilometer (km) = 1000 meters (m) hecto- = 100 1 hectometer (hm) = 100 m deca- = 10 1 decameter (dam) = 10 m 1 meter (m) = 1 m deci- = 0.1 1 decimeter (dm) = 0.1 m centi- = 0.01 1 centimeter (cm) = 0.01 m milli- = 0.001 1 millimeter (mm) = 0.001 m Conversion between units of length in the metric system involves moving the decimal point to the right or to the left. Listing the units in order from largest to smallest will indicate how many places to move the decimal point and in which direction. Example 1: To convert 4200 cm to meters, write the units in order from largest to smallest. km hm dam m dm cm mm Converting cm to m requires moving 4 2 . 0 0 2 positions to the left. Move the decimal point the same number of places and in the same direction (to the left). So 4200 cm = 42.00 m A metric measurement involving two units is customarily written in terms of one unit. Convert the smaller unit to the larger unit and then add. Example 2: To convert 8 km 32 m to kilometers First convert 32 m to kilometers. km hm dam m dm cm mm Converting m to km requires moving 0 .
    [Show full text]
  • Lesson 1: Length English Vs
    Lesson 1: Length English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer B. 1 yard or 1 meter C. 1 inch or 1 centimeter English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 yard = 0.9444 meters English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 inch = 2.54 centimeters 1 yard = 0.9444 meters Metric Units The basic unit of length in the metric system in the meter and is represented by a lowercase m. Standard: The distance traveled by light in absolute vacuum in 1∕299,792,458 of a second. Metric Units 1 Kilometer (km) = 1000 meters 1 Meter = 100 Centimeters (cm) 1 Meter = 1000 Millimeters (mm) Which is larger? A. 1 meter or 105 centimeters C. 12 centimeters or 102 millimeters B. 4 kilometers or 4400 meters D. 1200 millimeters or 1 meter Measuring Length How many millimeters are in 1 centimeter? 1 centimeter = 10 millimeters What is the length of the line in centimeters? _______cm What is the length of the line in millimeters? _______mm What is the length of the line to the nearest centimeter? ________cm HINT: Round to the nearest centimeter – no decimals.
    [Show full text]
  • Distances in the Solar System Are Often Measured in Astronomical Units (AU). One Astronomical Unit Is Defined As the Distance from Earth to the Sun
    Distances in the solar system are often measured in astronomical units (AU). One astronomical unit is defined as the distance from Earth to the Sun. 1 AU equals about 150 million km (93 million miles). Table below shows the distance from the Sun to each planet in AU. The table shows how long it takes each planet to spin on its axis. It also shows how long it takes each planet to complete an orbit. Notice how slowly Venus rotates! A day on Venus is actually longer than a year on Venus! Distances to the Planets and Properties of Orbits Relative to Earth's Orbit Average Distance Length of Day (In Earth Length of Year (In Earth Planet from Sun (AU) Days) Years) Mercury 0.39 AU 56.84 days 0.24 years Venus 0.72 243.02 0.62 Earth 1.00 1.00 1.00 Mars 1.52 1.03 1.88 Jupiter 5.20 0.41 11.86 Saturn 9.54 0.43 29.46 Uranus 19.22 0.72 84.01 Neptune 30.06 0.67 164.8 The Role of Gravity Planets are held in their orbits by the force of gravity. What would happen without gravity? Imagine that you are swinging a ball on a string in a circular motion. Now let go of the string. The ball will fly away from you in a straight line. It was the string pulling on the ball that kept the ball moving in a circle. The motion of a planet is very similar to the ball on a strong.
    [Show full text]
  • Measuring the Astronomical Unit from Your Backyard Two Astronomers, Using Amateur Equipment, Determined the Scale of the Solar System to Better Than 1%
    Measuring the Astronomical Unit from Your Backyard Two astronomers, using amateur equipment, determined the scale of the solar system to better than 1%. So can you. By Robert J. Vanderbei and Ruslan Belikov HERE ON EARTH we measure distances in millimeters and throughout the cosmos are based in some way on distances inches, kilometers and miles. In the wider solar system, to nearby stars. Determining the astronomical unit was as a more natural standard unit is the tUlronomical unit: the central an issue for astronomy in the 18th and 19th centu· mean distance from Earth to the Sun. The astronomical ries as determining the Hubble constant - a measure of unit (a.u.) equals 149,597,870.691 kilometers plus or minus the universe's expansion rate - was in the 20th. just 30 meters, or 92,955.807.267 international miles plus or Astronomers of a century and more ago devised various minus 100 feet, measuring from the Sun's center to Earth's ingenious methods for determining the a. u. In this article center. We have learned the a. u. so extraordinarily well by we'll describe a way to do it from your backyard - or more tracking spacecraft via radio as they traverse the solar sys­ precisely, from any place with a fairly unobstructed view tem, and by bouncing radar Signals off solar.system bodies toward the east and west horizons - using only amateur from Earth. But we used to know it much more poorly. equipment. The method repeats a historic experiment per­ This was a serious problem for many brancht:s of as­ formed by Scottish astronomer David Gill in the late 19th tronomy; the uncertain length of the astronomical unit led century.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Measuring in Metric Units BEFORE Now WHY? You Used Metric Units
    Measuring in Metric Units BEFORE Now WHY? You used metric units. You’ll measure and estimate So you can estimate the mass using metric units. of a bike, as in Ex. 20. Themetric system is a decimal system of measurement. The metric Word Watch system has units for length, mass, and capacity. metric system, p. 80 Length Themeter (m) is the basic unit of length in the metric system. length: meter, millimeter, centimeter, kilometer, Three other metric units of length are themillimeter (mm) , p. 80 centimeter (cm) , andkilometer (km) . mass: gram, milligram, kilogram, p. 81 You can use the following benchmarks to estimate length. capacity: liter, milliliter, kiloliter, p. 82 1 millimeter 1 centimeter 1 meter thickness of width of a large height of the a dime paper clip back of a chair 1 kilometer combined length of 9 football fields EXAMPLE 1 Using Metric Units of Length Estimate the length of the bandage by imagining paper clips laid next to it. Then measure the bandage with a metric ruler to check your estimate. 1 Estimate using paper clips. About 5 large paper clips fit next to the bandage, so it is about 5 centimeters long. ch O at ut! W 2 Measure using a ruler. A typical metric ruler allows you to measure Each centimeter is divided only to the nearest tenth of into tenths, so the bandage cm 12345 a centimeter. is 4.8 centimeters long. 80 Chapter 2 Decimal Operations Mass Mass is the amount of matter that an object has. The gram (g) is the basic metric unit of mass.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • Measuring Length, Mass, Volume, and Temperature Label Your (Adapted from Prentice-Hall, Inc
    Name______________________________ Class __________________ Date ______________ Don’t forget to Measuring Length, Mass, Volume, and Temperature label your (Adapted from Prentice-Hall, Inc. Biology Lab Manual B) answers with the correct units! Introduction : Doing experiments is an important part of science. Most experiments include making measurements. Many different quantities can be measured. Some examples are length, mass, volume, temperature, and time. Some quantities, such as length, can be measured directly. Others, such as speed, are calculated from other measurements. In science you will probably use metric units to estimate, measure, and record data. The three fundamental metric units are the meter for length, the gram for mass, and the liter for capacity. In this investigation you will carry out different types of measurements. Problem : What types of measurements are used to describe quantities? Pre-Lab Discussion: Read the entire investigation. Then, work with a partner to answer the following questions. 1. How will you record a distance that is 2 centimeters longer than 5 meters? ________ 2 centimeters shorter? _______ 2. Why would you measure the contents of a paper cup in milliliters (mL) rather than in liters? 3. Explain why don’t measurements start at the beginning of a ruler, yard stick, meter stick, etc? (the zero point is always a little bit offset from the end) Materials (per group): meter stick 2 paper cups millimeter ruler 30 cm of string 250-mL graduated cylinder golf ball tripple beam balance 1 sheet college-ruled notebook paper thermometer Toy car (like a hotwheels car) Safety : Wear your lab apron and safety goggles while dealing with glassware.
    [Show full text]
  • Glossary of Materials Engineering Terminology
    Glossary of Materials Engineering Terminology Adapted from: Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010. McCrum, N. G.; Buckley, C. P.; Bucknall, C. B. Principles of Polymer Engineering, 2nd ed.; Oxford University Press: New York, NY, 1997. Brittle fracture: fracture that occurs by rapid crack formation and propagation through the material, without any appreciable deformation prior to failure. Crazing: a common response of plastics to an applied load, typically involving the formation of an opaque banded region within transparent plastic; at the microscale, the craze region is a collection of nanoscale, stress-induced voids and load-bearing fibrils within the material’s structure; craze regions commonly occur at or near a propagating crack in the material. Ductile fracture: a mode of material failure that is accompanied by extensive permanent deformation of the material. Ductility: a measure of a material’s ability to undergo appreciable permanent deformation before fracture; ductile materials (including many metals and plastics) typically display a greater amount of strain or total elongation before fracture compared to non-ductile materials (such as most ceramics). Elastic modulus: a measure of a material’s stiffness; quantified as a ratio of stress to strain prior to the yield point and reported in units of Pascals (Pa); for a material deformed in tension, this is referred to as a Young’s modulus. Engineering strain: the change in gauge length of a specimen in the direction of the applied load divided by its original gauge length; strain is typically unit-less and frequently reported as a percentage.
    [Show full text]
  • Measuring Length, Mass, Volume, and Temperature
    Name______________________________ Class __________________ Date ______________ Chapter 1 The Science of Biology You may want to refer students to Measuring Length, Mass, Volume, Section 1–4 and Appendix C in the textbook for a discussion of and Temperature measurement. Time required: 40 minutes Introduction Doing experiments is an important part of science. Most experiments include making measurements. Many different quantities can be measured. Some examples are length, mass, volume, temperature, and time. Some quantities, such as length, can be measured directly. Others, such as speed, are calculated from other measurements. In science you will probably use metric units to estimate, measure, and record data. The three fundamental metric units are the meter for length, the gram for mass, and the liter for capacity. In this investigation you will carry out different types of measurements. Problem What types of measurements are used to describe quantities? Pre-Lab Discussion Read the entire investigation. Then, work with a partner to answer the following questions. 1. Which of the measurements in the investigation are familiar to you? Which will be new to you? Measuring mass and liquid volume may be less familiar to students than measuring length and temperature. 2. How will you record a distance that is 2 centimeters longer than 5 meters? 2 centimeters shorter? 5.02 m (or 5 m 2 cm); 4.98 m (or 4 m 98 cm). Remind students that 1 cm equals 0.01 m. If necessary, review converting between centimeters and meters. 3. How will you choose an object to measure in millimeters? Millimeters are very small, so the length to be measured should not be too large.
    [Show full text]
  • IAU 2012 Resolution B2
    RESOLUTION B2 on the re-definition of the astronomical unit of length. Proposed by the IAU Division I Working Group Numerical Standards and supported by Division I The XXVIII General Assembly of International Astronomical Union, noting 1. that the International Astronomical Union (IAU) 1976 System of Astronomical Constants specifies the units for the dynamics of the solar system, including the day (D=86400 s), the mass of the Sun, MS, and the astronomical unit of length or simply the astronomical unit whose definitioni is based on the value of the Gaussian gravitational constant, 2. that the intention of the above definition of the astronomical unit was to provide accurate distance ratios in the solar system when distances could not be estimated with high accuracy, 3. that, to calculate the solar mass parameter, GMS, previously known as the heliocentric gravitation constant, in Système International (SI) unitsii,the Gaussian gravitational constant k, is used, along with an astronomical unit determined observationally, 4. that the IAU 2009 System of astronomical constants (IAU 2009 Resolution B2) retains the IAU 1976 definition of the astronomical unit, by specifying k as an “auxiliary defining constant” with the numerical value given in the IAU 1976 System of Astronomical Constants, 5. that the value of the astronomical unit compatible with Barycentric Dynamical Time (TDB) in Table 1 of the IAU 2009 System (149 597 870 700 m 3 m), is an average (Pitjeva and Standish 2009) of recent estimates for the astronomical unit defined by k, 6. that the TDB-compatible value for GMS listed in Table 1 of the IAU 2009 System, derived by using the astronomical unit fit to the DE421 ephemerides (Folkner et al.
    [Show full text]
  • The International System of Units (SI) - Conversion Factors For
    NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v
    [Show full text]