The Geometry and Topology of Coxeter Groups

Total Page:16

File Type:pdf, Size:1020Kb

The Geometry and Topology of Coxeter Groups August 17, 2007 Time: 09:52am prelims.tex THE GEOMETRY AND TOPOLOGY OF COXETER GROUPS i August 17, 2007 Time: 09:52am prelims.tex London Mathematical Society Monographs Series The London Mathematical Society Monographs Series was established in 1968. Since that time it has published outstanding volumes that have been critically acclaimed by the mathematics community. The aim of this series is to publish authoritative accounts of current research in mathematics and high- quality expository works bringing the reader to the frontiers of research. Of particular interest are topics that have developed rapidly in the last ten years but that have reached a certain level of maturity. Clarity of exposition is important and each book should be accessible to those commencing work in its field. The original series was founded in 1968 by the Society and Academic Press; the second series was launched by the Society and Oxford University Press in 1983. In January 2003, the Society and Princeton University Press united to expand the number of books published annually and to make the series more international in scope. EDITORS: Martin Bridson, Imperial College, London, Terry Lyons, University of Oxford, and Peter Sarnak, Princeton University and Courant Institute, New York EDITORIAL ADVISERS: J. H. Coates, University of Cambridge, W. S. Kendall, University of Warwick, and Janos´ Kollar,´ Princeton University Vol. 32, The Geometry and Topology of Coxeter Groups by Michael W. Davis Vol. 31, Analysis of Heat Equations on Domains by El Maati Ouhabaz ii August 17, 2007 Time: 09:52am prelims.tex THE GEOMETRY AND TOPOLOGY OF COXETER GROUPS Michael W. Davis PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD iii August 17, 2007 Time: 09:52am prelims.tex Copyright c 2008 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Library of Congress Cataloging-in-Publication Data Davis, Michael The geometry and topology of Coxeter groups / Michael W. Davis. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-691-13138-2 (alk. paper) ISBN-10: 0-691-13138-4 1. Coxeter groups. 2. Geometric group theory. I. Title. QA183.D38 2007 51s.2–dc22 2006052879 British Library Cataloging-in-Publication Data is available This book has been composed in LATEX Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10987654321 iv August 17, 2007 Time: 09:52am prelims.tex To Wanda v August 17, 2007 Time: 09:52am prelims.tex vi August 17, 2007 Time: 09:52am prelims.tex Contents Preface xiii Chapter 1 INTRODUCTION AND PREVIEW 1 1.1 Introduction 1 1.2 A Preview of the Right-Angled Case 9 Chapter 2 SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY 15 2.1 Cayley Graphs and Word Metrics 15 2.2 Cayley 2-Complexes 18 2.3 Background on Aspherical Spaces 21 Chapter 3 COXETER GROUPS 26 3.1 Dihedral Groups 26 3.2 Reflection Systems 30 3.3 Coxeter Systems 37 3.4 The Word Problem 40 3.5 Coxeter Diagrams 42 Chapter 4 MORE COMBINATORIAL THEORY OF COXETER GROUPS 44 4.1 Special Subgroups in Coxeter Groups 44 4.2 Reflections 46 4.3 The Shortest Element in a Special Coset 47 4.4 Another Characterization of Coxeter Groups 48 4.5 Convex Subsets of W 49 4.6 The Element of Longest Length 51 4.7 The Letters with Which a Reduced Expression Can End 53 4.8 A Lemma of Tits 55 4.9 Subgroups Generated by Reflections 57 4.10 Normalizers of Special Subgroups 59 August 17, 2007 Time: 09:52am prelims.tex viii CONTENTS Chapter 5 THE BASIC CONSTRUCTION 63 5.1 The Space U 63 5.2 The Case of a Pre-Coxeter System 66 5.3 Sectors in U 68 Chapter 6 GEOMETRIC REFLECTION GROUPS 72 6.1 Linear Reflections 73 6.2 Spaces of Constant Curvature 73 6.3 Polytopes with Nonobtuse Dihedral Angles 78 6.4 The Developing Map 81 6.5 Polygon Groups 85 6.6 Finite Linear Groups Generated by Reflections 87 6.7 Examples of Finite Reflection Groups 92 6.8 Geometric Simplices: The Gram Matrix and the Cosine Matrix 96 6.9 Simplicial Coxeter Groups: Lanner’s´ Theorem 102 6.10 Three-dimensional Hyperbolic Reflection Groups: Andreev’s Theorem 103 6.11 Higher-dimensional Hyperbolic Reflection Groups: Vinberg’s Theorem 110 6.12 The Canonical Representation 115 Chapter 7 THE COMPLEX 123 7.1 The Nerve of a Coxeter System 123 7.2 Geometric Realizations 126 7.3 A Cell Structure on 128 7.4 Examples 132 7.5 Fixed Posets and Fixed Subspaces 133 Chapter 8 THE ALGEBRAIC TOPOLOGY OF U AND OF 136 8.1 The Homology of U 137 8.2 Acyclicity Conditions 140 8.3 Cohomology with Compact Supports 146 8.4 The Case Where X Is a General Space 150 8.5 Cohomology with Group Ring Coefficients 152 8.6 Background on the Ends of a Group 157 8.7 The Ends of W 159 8.8 Splittings of Coxeter Groups 160 8.9 Cohomology of Normalizers of Spherical Special Subgroups 163 Chapter 9 THE FUNDAMENTAL GROUP AND THE FUNDAMENTAL GROUP AT INFINITY 166 9.1 The Fundamental Group of U 166 9.2 What Is Simply Connected at Infinity? 170 August 17, 2007 Time: 09:52am prelims.tex CONTENTS ix Chapter 10 ACTIONS ON MANIFOLDS 176 10.1 Reflection Groups on Manifolds 177 10.2 The Tangent Bundle 183 10.3 Background on Contractible Manifolds 185 10.4 Background on Homology Manifolds 191 10.5 Aspherical Manifolds Not Covered by Euclidean Space 195 10.6 When Is a Manifold? 197 10.7 Reflection Groups on Homology Manifolds 197 10.8 Generalized Homology Spheres and Polytopes 201 10.9 Virtual Poincare´ Duality Groups 205 Chapter 11 THE REFLECTION GROUP TRICK 212 11.1 The First Version of the Trick 212 11.2 Examples of Fundamental Groups of Closed Aspherical Manifolds 215 11.3 Nonsmoothable Aspherical Manifolds 216 11.4 The Borel Conjecture and the PDn-Group Conjecture 217 11.5 The Second Version of the Trick 220 11.6 The Bestvina-Brady Examples 222 11.7 The Equivariant Reflection Group Trick 225 Chapter 12 IS CAT(0): THEOREMS OF GROMOV AND MOUSSONG 230 12.1 A Piecewise Euclidean Cell Structure on 231 12.2 The Right-Angled Case 233 12.3 The General Case 234 12.4 The Visual Boundary of 237 12.5 Background on Word Hyperbolic Groups 238 12.6 When Is CAT(−1)? 241 12.7 Free Abelian Subgroups of Coxeter Groups 245 12.8 Relative Hyperbolization 247 Chapter 13 RIGIDITY 255 13.1 Definitions, Examples, Counterexamples 255 13.2 Spherical Parabolic Subgroups and Their Fixed Subspaces 260 13.3 Coxeter Groups of Type PM 263 13.4 Strong Rigidity for Groups of Type PM 268 Chapter 14 FREE QUOTIENTS AND SURFACE SUBGROUPS 276 14.1 Largeness 276 14.2 Surface Subgroups 282 August 17, 2007 Time: 09:52am prelims.tex x CONTENTS Chapter 15 ANOTHER LOOK AT (CO)HOMOLOGY 286 15.1 Cohomology with Constant Coefficients 286 15.2 Decompositions of Coefficient Systems 288 15.3 The W-Module Structure on (Co)homology 295 15.4 The Case Where W Is finite 303 Chapter 16 THE EULER CHARACTERISTIC 306 16.1 Background on Euler Characteristics 306 16.2 The Euler Characteristic Conjecture 310 16.3 The Flag Complex Conjecture 313 Chapter 17 GROWTH SERIES 315 17.1 Rationality of the Growth Series 315 17.2 Exponential versus Polynomial Growth 322 17.3 Reciprocity 324 17.4 Relationship with the h-Polynomial 325 Chapter 18 BUILDINGS 328 18.1 The Combinatorial Theory of Buildings 328 18.2 The Geometric Realization of a Building 336 18.3 Buildings Are CAT(0) 338 18.4 Euler-Poincare´ Measure 341 Chapter 19 HECKE–VON NEUMANN ALGEBRAS 344 19.1 Hecke Algebras 344 19.2 Hecke–Von Neumann Algebras 349 Chapter 20 WEIGHTED L2-(CO)HOMOLOGY 359 20.1 Weighted L2-(Co)homology 361 20.2 Weighted L2-Betti Numbers and Euler Characteristics 366 20.3 Concentration of (Co)homology in Dimension 0 368 20.4 Weighted Poincare´ Duality 370 20.5 A Weighted Version of the Singer Conjecture 374 20.6 Decomposition Theorems 376 20.7 Decoupling Cohomology 389 20.8 L2-Cohomology of Buildings 394 Appendix A CELL COMPLEXES 401 A.1 Cells and Cell Complexes 401 A.2 Posets and Abstract Simplicial Complexes 406 A.3 Flag Complexes and Barycentric Subdivisions 409 A.4 Joins 412 August 17, 2007 Time: 09:52am prelims.tex CONTENTS xi A.5 Faces and Cofaces 415 A.6 Links 418 Appendix B REGULAR POLYTOPES 421 B.1 Chambers in the Barycentric Subdivision of a Polytope 421 B.2 Classification of Regular Polytopes 424 B.3 Regular Tessellations of Spheres 426 B.4 Regular Tessellations 428 Appendix C THE CLASSIFICATION OF SPHERICAL AND EUCLIDEAN COXETER GROUPS 433 C.1 Statements of the Classification Theorems 433 C.2 Calculating Some Determinants 434 C.3 Proofs of the Classification Theorems 436 Appendix D THE GEOMETRIC REPRESENTATION 439 D.1 Injectivity of the Geometric Representation 439 D.2 The Tits Cone 442 D.3 Complement on Root Systems 446 Appendix E COMPLEXES OF GROUPS 449 E.1 Background on Graphs of Groups 450 E.2 Complexes of Groups 454 E.3 The Meyer-Vietoris Spectral Sequence 459 Appendix F HOMOLOGY AND COHOMOLOGY OF GROUPS 465 F.1 Some Basic Definitions 465 F.2 Equivalent (Co)homology with Group Ring Coefficients 467 F.3 Cohomological Dimension and Geometric Dimension 470 F.4 Finiteness Conditions 471 F.5 Poincare´ Duality Groups and Duality Groups 474 Appendix G ALGEBRAIC TOPOLOGY AT INFINITY 477 G.1 Some Algebra 477 G.2 Homology and Cohomology at Infinity 479 G.3 Ends of a Space 482 G.4 Semistability and the Fundamental Group at Infinity 483 Appendix H THE NOVIKOV AND BOREL CONJECTURES 487 H.1 Around the Borel Conjecture 487 H.2 Smoothing Theory 491 H.3 The Surgery Exact Sequence and the Assembly Map Conjecture 493 H.4 The Novikov Conjecture 496 August 17, 2007 Time: 09:52am prelims.tex xii CONTENTS
Recommended publications
  • Hyperbolic Reflection Groups
    Uspekhi Mat. N auk 40:1 (1985), 29 66 Russian Math. Surveys 40:1 (1985), 31 75 Hyperbolic reflection groups E.B. Vinberg CONTENTS Introduction 31 Chapter I. Acute angled polytopes in Lobachevskii spaces 39 § 1. The G ram matrix of a convex polytope 39 §2. The existence theorem for an acute angled polytope with given Gram 42 matrix §3. Determination of the combinatorial structure of an acute angled 46 polytope from its Gram matrix §4. Criteria for an acute angled polytope to be bounded and to have finite 50 volume Chapter II. Crystallographic reflection groups in Lobachevskii spaces 57 §5. The language of Coxeter schemes. Construction of crystallographic 57 reflection groups §6. The non existence of discrete reflection groups with bounded 67 fundamental polytope in higher dimensional Lobachevskii spaces References 71 Introduction 1. Let X" be the « dimensional Euclidean space Ε", the « dimensional sphere S", or the « dimensional Lobachevskii space Λ". A convex polytope PCX" bounded by hyperplanes //,·, i G / , is said to be a Coxeter polytope if for all /, / G / , i Φ j, the hyperplanes //, and Hj are disjoint or form a dihedral angle of π/rijj, wh e r e «,y G Ζ and η,γ > 2. (We have in mind a dihedral angle containing P.) If Ρ is a Coxeter polytope, then the group Γ of motions of X" generated by the reflections Λ, in the hyperplanes Hj is discrete, and Ρ is a fundamental polytope for it. This means that the polytopes yP, y G Γ, do not have pairwise common interior points and cover X"; that is, they form a tessellation for X".
    [Show full text]
  • The Magic Square of Reflections and Rotations
    THE MAGIC SQUARE OF REFLECTIONS AND ROTATIONS RAGNAR-OLAF BUCHWEITZ†, ELEONORE FABER, AND COLIN INGALLS Dedicated to the memories of two great geometers, H.M.S. Coxeter and Peter Slodowy ABSTRACT. We show how Coxeter’s work implies a bijection between complex reflection groups of rank two and real reflection groups in O(3). We also consider this magic square of reflections and rotations in the framework of Clifford algebras: we give an interpretation using (s)pin groups and explore these groups in small dimensions. CONTENTS 1. Introduction 2 2. Prelude: the groups 2 3. The Magic Square of Rotations and Reflections 4 Reflections, Take One 4 The Magic Square 4 Historical Note 8 4. Quaternions 10 5. The Clifford Algebra of Euclidean 3–Space 12 6. The Pin Groups for Euclidean 3–Space 13 7. Reflections 15 8. General Clifford algebras 15 Quadratic Spaces 16 Reflections, Take two 17 Clifford Algebras 18 Real Clifford Algebras 23 Cl0,1 23 Cl1,0 24 Cl0,2 24 Cl2,0 25 Cl0,3 25 9. Acknowledgements 25 References 25 Date: October 22, 2018. 2010 Mathematics Subject Classification. 20F55, 15A66, 11E88, 51F15 14E16 . Key words and phrases. Finite reflection groups, Clifford algebras, Quaternions, Pin groups, McKay correspondence. R.-O.B. and C.I. were partially supported by their respective NSERC Discovery grants, and E.F. acknowl- edges support of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 789580. All three authors were supported by the Mathematisches Forschungsinstitut Oberwolfach through the Leibniz fellowship program in 2017, and E.F and C.I.
    [Show full text]
  • Connections Between Differential Geometry And
    VOL. 21, 1935 MA THEMA TICS: S. B. MYERS 225 having no point of C on their interiors or boundaries, the second composed of the remaining cells of 2,,. The cells of the first class will form a sub-com- plex 2* of M,. The cells of the second class will not form a complex, since they may have cells of the first class on their boundaries; nevertheless, their duals will form a complex A. Moreover, the cells of the second class will determine a region Rn containing C. Now, there is no difficulty in extending Pontrjagin's relation of duality to the Betti Groups of 2* and A. Moreover, every cycle of S - C is homologous to a cycle of 2, for sufficiently large values of n and bounds in S - C if and only if the corresponding cycle of 2* bounds for sufficiently large values of n. On the other hand, the regions R. close down on the point set C as n increases indefinitely, in the sense that the intersection of all the RI's is precisely C. Thus, the proof of the relation of duality be- tween the Betti groups of C and S - C may be carried through as if the space S were of finite dimensionality. 1 L. Pontrjagin, "The General Topological Theorem of Duality for Closed Sets," Ann. Math., 35, 904-914 (1934). 2 Cf. the reference in Lefschetz's Topology, Amer. Math. Soc. Publications, vol. XII, end of p. 315 (1930). 3Lefschetz, loc. cit., pp. 341 et seq. CONNECTIONS BETWEEN DIFFERENTIAL GEOMETRY AND TOPOLOG Y BY SumNR BYRON MYERS* PRINCJETON UNIVERSITY AND THE INSTITUTE FOR ADVANCED STUDY Communicated March 6, 1935 In this note are stated the definitions and results of a study of new connections between differential geometry and topology.
    [Show full text]
  • On the Topology of Ending Lamination Space
    1 ON THE TOPOLOGY OF ENDING LAMINATION SPACE DAVID GABAI Abstract. We show that if S is a finite type orientable surface of genus g and p punctures where 3g + p ≥ 5, then EL(S) is (n − 1)-connected and (n − 1)- locally connected, where dim(PML(S)) = 2n + 1 = 6g + 2p − 7. Furthermore, if g = 0, then EL(S) is homeomorphic to the p−4 dimensional Nobeling space. 0. Introduction This paper is about the topology of the space EL(S) of ending laminations on a finite type hyperbolic surface, i.e. a complete hyperbolic surface S of genus-g with p punctures. An ending lamination is a geodesic lamination L in S that is minimal and filling, i.e. every leaf of L is dense in L and any simple closed geodesic in S nontrivally intersects L transversely. Since Thurston's seminal work on surface automorphisms in the mid 1970's, laminations in surfaces have played central roles in low dimensional topology, hy- perbolic geometry, geometric group theory and the theory of mapping class groups. From many points of view, the ending laminations are the most interesting lam- inations. For example, the stable and unstable laminations of a pseudo Anosov mapping class are ending laminations [Th1] and associated to a degenerate end of a complete hyperbolic 3-manifold with finitely generated fundamental group is an ending lamination [Th4], [Bon]. Also, every ending lamination arises in this manner [BCM]. The Hausdorff metric on closed sets induces a metric topology on EL(S). Here, two elements L1, L2 in EL(S) are close if each point in L1 is close to a point of L2 and vice versa.
    [Show full text]
  • COXETER GROUPS (Unfinished and Comments Are Welcome)
    COXETER GROUPS (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] October 10, 2018 1 2 Contents Preface 4 1 Regular Polytopes 7 1.1 ConvexSets............................ 7 1.2 Examples of Regular Polytopes . 12 1.3 Classification of Regular Polytopes . 16 2 Finite Reflection Groups 21 2.1 NormalizedRootSystems . 21 2.2 The Dihedral Normalized Root System . 24 2.3 TheBasisofSimpleRoots. 25 2.4 The Classification of Elliptic Coxeter Diagrams . 27 2.5 TheCoxeterElement. 35 2.6 A Dihedral Subgroup of W ................... 39 2.7 IntegralRootSystems . 42 2.8 The Poincar´eDodecahedral Space . 46 3 Invariant Theory for Reflection Groups 53 3.1 Polynomial Invariant Theory . 53 3.2 TheChevalleyTheorem . 56 3.3 Exponential Invariant Theory . 60 4 Coxeter Groups 65 4.1 Generators and Relations . 65 4.2 TheTitsTheorem ........................ 69 4.3 The Dual Geometric Representation . 74 4.4 The Classification of Some Coxeter Diagrams . 77 4.5 AffineReflectionGroups. 86 4.6 Crystallography. .. .. .. .. .. .. .. 92 5 Hyperbolic Reflection Groups 97 5.1 HyperbolicSpace......................... 97 5.2 Hyperbolic Coxeter Groups . 100 5.3 Examples of Hyperbolic Coxeter Diagrams . 108 5.4 Hyperbolic reflection groups . 114 5.5 Lorentzian Lattices . 116 3 6 The Leech Lattice 125 6.1 ModularForms ..........................125 6.2 ATheoremofVenkov . 129 6.3 The Classification of Niemeier Lattices . 132 6.4 The Existence of the Leech Lattice . 133 6.5 ATheoremofConway . 135 6.6 TheCoveringRadiusofΛ . 137 6.7 Uniqueness of the Leech Lattice . 140 4 Preface Finite reflection groups are a central subject in mathematics with a long and rich history. The group of symmetries of a regular m-gon in the plane, that is the convex hull in the complex plane of the mth roots of unity, is the dihedral group of order 2m, which is the simplest example of a reflection Dm group.
    [Show full text]
  • Binary Icosahedral Group and 600-Cell
    Article Binary Icosahedral Group and 600-Cell Jihyun Choi and Jae-Hyouk Lee * Department of Mathematics, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3277-3346 Received: 10 July 2018; Accepted: 26 July 2018; Published: 7 August 2018 Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell. We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of a 600-cell by applying the Coxeter–Dynkin diagram of H4. Keywords: binary polyhedral group; icosahedron; dodecahedron; 600-cell MSC: 52B10, 52B11, 52B15 1. Introduction The classification of finite subgroups in SLn(C) derives attention from various research areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE singularity theory [1]. The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron), but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups, there are only three binary polyhedral groups(binary tetrahedral group 2T, binary octahedral group 2O, binary icosahedral group 2I) related to regular polyhedrons.
    [Show full text]
  • Reflection Groups 3
    Lecture Notes Reflection Groups Dr Dmitriy Rumynin Anna Lena Winstel Autumn Term 2010 Contents 1 Finite Reflection Groups 3 2 Root systems 6 3 Generators and Relations 14 4 Coxeter group 16 5 Geometric representation of W (mij) 21 6 Fundamental chamber 28 7 Classification 34 8 Crystallographic Coxeter groups 43 9 Polynomial invariants 46 10 Fundamental degrees 54 11 Coxeter elements 57 1 Finite Reflection Groups V = (V; h ; i) - Euclidean Vector space where V is a finite dimensional vector space over R and h ; i : V × V −! R is bilinear, symmetric and positiv definit. n n P Example: (R ; ·): h(αi); (βi)i = αiβi i=1 Gram-Schmidt theory tells that for all Euclidean vector spaces, there exists an isometry (linear n bijective and 8 x; y 2 V : T (x) · T (y) = hx; yi) T : V −! R . In (V; h ; i) you can • measure length: jjxjj = phx; xi hx;yi • measure angles: xyc = arccos jjx||·||yjj • talk about orthogonal transformations O(V ) = fT 2 GL(V ): 8 x; y 2 V : hT x; T yi = hx; yig ≤ GL(V ) T 2 GL(V ). Let V T = fv 2 V : T v = vg the fixed points of T or the 1-eigenspace. Definition. T 2 GL(V ) is a reflection if T 2 O(V ) and dim V T = dim V − 1. Lemma 1.1. Let T be a reflection, x 2 (V T )? = fv : 8 w 2 V T : hv; wi = 0g; x 6= 0. Then 1. T (x) = −x hx;zi 2. 8 z 2 V : T (z) = z − 2 hx;xi · x Proof.
    [Show full text]
  • William P. Thurston the Geometry and Topology of Three-Manifolds
    William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed by Princeton University. The text was typed in TEX by Sheila Newbery, who also scanned the figures. Typos have been corrected (and probably others introduced), but otherwise no attempt has been made to update the contents. Genevieve Walsh compiled the index. Numbers on the right margin correspond to the original edition’s page numbers. Thurston’s Three-Dimensional Geometry and Topology, Vol. 1 (Princeton University Press, 1997) is a considerable expansion of the first few chapters of these notes. Later chapters have not yet appeared in book form. Please send corrections to Silvio Levy at [email protected]. CHAPTER 5 Flexibility and rigidity of geometric structures In this chapter we will consider deformations of hyperbolic structures and of geometric structures in general. By a geometric structure on M, we mean, as usual, a local modelling of M on a space X acted on by a Lie group G. Suppose M is compact, possibly with boundary. In the case where the boundary is non-empty we do not make special restrictions on the boundary behavior. If M is modelled on (X, G) then the developing map M˜ −→D X defines the holonomy representation H : π1M −→ G. In general, H does not determine the structure on M. For example, the two immersions of an annulus shown below define Euclidean structures on the annulus which both have trivial holonomy but are not equivalent in any reasonable sense.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Computing Invariants of Hyperbolic Coxeter Groups
    LMS J. Comput. Math. 18 (1) (2015) 754{773 C 2015 Author doi:10.1112/S1461157015000273 CoxIter { Computing invariants of hyperbolic Coxeter groups R. Guglielmetti Abstract CoxIter is a computer program designed to compute invariants of hyperbolic Coxeter groups. Given such a group, the program determines whether it is cocompact or of finite covolume, whether it is arithmetic in the non-cocompact case, and whether it provides the Euler characteristic and the combinatorial structure of the associated fundamental polyhedron. The aim of this paper is to present the theoretical background for the program. The source code is available online as supplementary material with the published article and on the author's website (http://coxiter.rgug.ch). Supplementarymaterialsareavailablewiththisarticle. Introduction Let Hn be the hyperbolic n-space, and let Isom Hn be the group of isometries of Hn. For a given discrete hyperbolic Coxeter group Γ < Isom Hn and its associated fundamental polyhedron P ⊂ Hn, we are interested in geometrical and combinatorial properties of P . We want to know whether P is compact, has finite volume and, if the answer is yes, what its volume is. We also want to find the combinatorial structure of P , namely, the number of vertices, edges, 2-faces, and so on. Finally, it is interesting to find out whether Γ is arithmetic, that is, if Γ is commensurable to the reflection group of the automorphism group of a quadratic form of signature (n; 1). Most of these questions can be answered by studying finite and affine subgroups of Γ, but this involves a huge number of computations.
    [Show full text]
  • Regular Elements of Finite Reflection Groups
    Inventiones math. 25, 159-198 (1974) by Springer-Veriag 1974 Regular Elements of Finite Reflection Groups T.A. Springer (Utrecht) Introduction If G is a finite reflection group in a finite dimensional vector space V then ve V is called regular if no nonidentity element of G fixes v. An element ge G is regular if it has a regular eigenvector (a familiar example of such an element is a Coxeter element in a Weyl group). The main theme of this paper is the study of the properties and applications of the regular elements. A review of the contents follows. In w 1 we recall some known facts about the invariant theory of finite linear groups. Then we discuss in w2 some, more or less familiar, facts about finite reflection groups and their invariant theory. w3 deals with the problem of finding the eigenvalues of the elements of a given finite linear group G. It turns out that the explicit knowledge of the algebra R of invariants of G implies a solution to this problem. If G is a reflection group, R has a very simple structure, which enables one to obtain precise results about the eigenvalues and their multiplicities (see 3.4). These results are established by using some standard facts from algebraic geometry. They can also be used to give a proof of the formula for the order of finite Chevalley groups. We shall not go into this here. In the case of eigenvalues of regular elements one can go further, this is discussed in w4. One obtains, for example, a formula for the order of the centralizer of a regular element (see 4.2) and a formula for the eigenvalues of a regular element in an irreducible representation (see 4.5).
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]