r ' -*-

5T Mullard technical handbook

oo

to

2 3 Book one 3 J? « devices ZOO to I? o Part two 03 BFQ10 to OC36 including 2N numbers

to T3 r+ to 3 o- to

CO September 1974 (3 Z! The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

'Mullard' is the trademark of Mullard Limited and is regis- tered in most of the principal countries of the world.

© Mullard Limited, September 1974

Book 1 comprises the following parts— Part 1 Transistors and accessories Part 2 Transistors and accessories Part 3 , photodiodes and phototransistors Part 4 diodes, rectifier stacks, medium and high-power voltage regulator diodes, transient suppressor diodes Part 5 , stacks and accessories Part 6 Digital integrated circuits Part 7 Linear integrated circuits

Made and printed in England by Wightman & Co., Ltd. 177 BOOK 1 (Part 2)

SEMICONDUCTOR DEVICES

Transistors BFQIOto OC36 (including 2N types)

MULLARD LTD., MULLARD HOUSE, TORRINGTON PLACE, LONDON, WC1E 7HD Telephone 01-580 6633 Telex: 264341 DATA HANDBOOK SYSTEM

The Mullard data handbook system is made up of three sets of books, each comprising several parts.

The three sets of books, easily identifiable by the colours on their covers, are as follows:

Book 1 (blue) Semiconductor devices and

integrated circuits

Book 2 (orange) Valves and tubes

Book 3 (green) Passive components, materials, and assemblies.

Each part is completely reviewed annually; revised and reprinted where necessary. Revisions to previous data are indicated by an arrow in the margin.

The data contained in these books are as accurate and up to date as it is reasonably possible to make them at the time of going to press. It must however be understood that no guarantee can be given here regarding the availability of the various devices or that their specifications may not be changed before the next edition is published.

The devices on which full data are given in these books are those around which we would recommend equipment to be designed. Where appropriate, other types no longer recommended for new equipment designs, but generally available for equipment production are listed separately with abridged data. Data sheets for these types may be obtained on request. Older devices on which data may still be obtained on request are also included in the index of the appropriate part of each book.

Requests for information on the data handbook system and for individual data sheets should be made to

Central Technical Services Mullard Limited New Road Mitcham Surrey CR4 4XY Telephone: 01-648 3471 Telex: 22194

Information regarding price and availability of devices must be obtained from our authorised agents or from our representatives. SELECTION GUIDE SMALL/MEDIUM SIGNAL TRANSISTORS Germanium types

0} 03 Type '5 V max — CD C CE h FE min P, ot max No. z Q- .C z (V) 3 2 0' Z a. O Q. CO 5*15 5=30 3=60 =£30 <60 3=60

AC127 • • • • 340 T0-1 AC128 • • • • 1000 TO-1 AC176 • • • • 700 T0-1 AC187 • • • • 1000 TO-1 AC188 • • • • 1000 TO-1

P-N-P Silicon alloy types

3 — V ,C VCE max h FE min Ptot max Case JE Type u (V) (mW) No. fi 3=15 3=30 3*60 ==;30 <60 5=60 i a 3 a a. w

BCY30 • • • 250 TO-5 BCY31 • • • 250 TO-5 BCY32 • • • 250 TO-5 BCY33 • • • 250 TO-5 BCY34 • • • 250 TO-5 BCY38 • • • • 410 TO-5 BCY39 • • • 410 TO-5 BCY40 • • • • 410 TO-5 BCY54 • 410 TO-5 SMALL/MEDIUM SIGNAL TRANSISTORS (cont.) N-P-N Silicon planar types

,1' CO Case c VCE max h P tot max — to o Type z (V) (GHz) (mW) i s - No. c 9- i 1> 3 5 2=15 Ss30 5=60 <0'4 <1-0 >1-0 O a. en _l BC107| * • • • 300 TO-18 BCioat • • • • 300 TO-18 BC109t • • • • 300 TO-18 BC147 • • • 300 iock-fit BC148 • • • 300 lock-fit BC149 • • • • 300 lock-fit BC547 • • • 300 TO-92 BC548 • • • 300 TO-92 BC549 • • • • 300 TO-92 BCW31R • • • 200 M min BCW32R • • • 200 p min BCW33R • • • 200 \i min BCW71 R • • • 200 \i min BCW72R • • • 200 \i min BCX19 • • • • 310 p min BCX20 • • • • 310 |i min BCX31 • • • 1000 lock-fit BCX32 • • • 1000 lock-fit BCX33 • • • 1000 lock-fit BCX34 • • • 1000 lock-fit BF180 • • • 150 TO-72 BF181 • • • • 150 TO-72 BF194 • • • • 220 lock-fit BF195 • • • • 220 lock-fit BF196 • • • • 250 lock-fit BF197 • • • 250 lock-fit BF200 • • • • 150 TO-72 BF336 • • • 3000 TO-39 BF337 • • • 3000 TO-39 BF338 • • • 3000 TO-39 BF355 • • • 3000 TO-39 BF362 • • • 120 T pack BF363 • • • 120 T pack BFR63 • • • • 3500 Capstan BFR64 • • • • 3500 Capstan BFR90 • • • • 180 T pack BFR91 * • • • 180 T pack

tAlso available to BS 9365-F112 SMALL/MEDIUM SIGNAL TRANSISTORS (cont.) N-P-N Silicon planar types (cont,)

B 05 V max c o> ce *T "tot Case Type "o 2 (V) (GHz) max No. s (mW) c a. 5 ,S 3 5 o ^15 >Z0 3=60 <0-4 <1'0 >10 O a. w _i 6FR92 • • • • 180 |. min BFR93 • • • 180 |j min BFS17B • • • • 200 - min BFS20R • • • 200 \i min BFT24 • • t • 30 T pack BFT25 • • t • 30 !- min BFW16A • • • • 1500 TO-39 BFW17A • • • 1500 TO-39 BFW30 • • • 250 TO-72 BFX84 • • • • 800 TO-5 BFX85 • • • • 800 TO-5 BFX86 • • • • 800 TO-5 BFX89 • • • • 200 TO-72 BFY50t • • • • 800 TO-5 BFY51t • • • • 800 TO-5 BFY52t • • • • 800 TO-5 BFY53 • • • 800 TO-5 BFY90 • • • • 200 TO-72 BSS40 • • • 360 TO-18 BSS41 • • • 360 TO-18 BSV52R • • • 200 \i min BSW66 • • • 800 TO-5 BSW67 • • • 800 TO-5 BSW68 • • • 800 TO-5 BSX19 • • • • 360 TO-18 BSX20 • • • • 360 TO-18 BSX21 • • • 300 TO-18 BSX59 • • • 800 TO-5 BSX60 • • • 800 TO-5 BSX61 • • • 800 TO-5 BSY95A • • • 300 TO-18 2N1613 • • • • 800 TO-5 2N1711 • • • • 800 TO-5 2N2297 • • • • 800 TO-5 2N2369A • • • 360 TO-18 2N3053 • • • 800 TO-5

HAIso availabl e to B S 9365-F012 IVCE0 max = 5V 1A n

SMALL/MEDIUM SIGNAL TRANSISTORS (cont.) P-N-P Silicon planar types

01 vt V max P c CE to t Type — 0) "o (V) ra m sz Z (MHz) max Case No. o (mW) i 1 o >',5 3*30 5=60 <200 <400 >400 O 0. If) BC157 • • • 300 lock-fit BC158 • • • 300 lock-fit BC159 • • • • 300 lock-fit BC327 • • • 625 Plastic BC328 • • • 625 Plastic BC557 • • • 300 TO-92 BC558 • • • 300 TO-92 BC559 • • • • 300 TO-92 BCW29R • • • • 200 j mi BCW30R • • • • 200 |i min BCW69R • • • 200 \i min BCW70R • • • 200 M min BCX17 • • • • 310 \i min BCX18 • • • • 310 li min BCX35 • • • 1000 lock-fit BCX36 • • • 1000 lock-fit BCX37 • • • 1000 lock-fit BCY70f • • • • • 350 TO-18 BCY71 • • • • 350 TO-18 BCY72t • • • • • 350 TO-18 BF324 • • • • 250 TO-92 BF450 • ' • • • 250 TO-92 BF451 • • • • 250 TO-92 BFX29: • • • • 600 TO-5 BFX30{ • • 600 TO-5 BFX87 • • • • 600 TO-5 BFX88 • • • • 600 TO-5 BSV68 • • • 250 TO-18 2N2904 • • • • 600 TO-5 2N2904A • • • •" 600 TO-5 2N2905 • • • • 600 TO-5 2N2905A • • • • 600 TO-5 2N2906 • • • • 400 TO-18 2 N 2906 • • • • 400 TO-18 2 N 2907 • • • * 400 TO-18 2N2907A • • • • 400 TO-18 t Also available to BS9365-F009 t Also available to BS9365-F010/F011 L.F./H.F. POWER TRANSISTORS Silicon types

c VCE max h FE Type Q_ (0 V) H.F. u (V) min P tot max Case No. a. II 1 (W) i in S35 3=70 =s30

BD131 • • • • • 15 TO-1 26 BD132 • • • • • 15 TO-126 BD133 • • • • • 15 TO-1 26 BD135 • • • • • 6-5 TO-126 BD136 • • • • • 6-5 TO-1 26 BD137 • • • • • 6-6 TO-126 BD138 • • • • • 6-5 TO-1 26 BD139 • • • • • 6-5 TO-126 BD140 • • • • • 6-5 TO-1 26 BD181 • • • 117 TO-3 BD182 • • • 117 TO-3 BD183 • • • 117 TO-3 BD184 • • • 117 TO-3 BD201 • • • • 55 Plastic BD202 • • • • 55 Plastic BD203 • • • • 55 Plastic BD204 • • • • 55 Plastic BD232 • • • 300V 7 TO-126 BD233 • • • 25 TO-1 26 BD234 • • • 25 TO-1 26 BD235 • • • 25 TO-126 BD236 • • • 25 TO-126 BD237 • • • 25 TO-126 BD238 • • • 25 TO-126 BD433 • • • 36 TO-126 BD434 • • • 36 TO-1 26 BD435 • • • 36 TO-1 26 BD436 • • • 36 TO-126 BD437 • • • • 36 TO-126 BD438 • • • • 36 TO-126 BDX35 • • • • • 15 TO-1 26 BDX36 • • • • • 15 TO-126 BDX37 • • • • • 15 TO-1 26 BDY20 • • • • 115 TO-3 BDY38 • • • • 115 TO-3 L.F./H.F. POWER TRANSISTORS (cont) Silicon types (cont.)

c V max h — 0) CE FE Type z 'sia H.F. (V) min P,<,t max Case No. Z 11 (W) 03 3 1 z Q. 30 BDY90 • • • • • • 40 TO-3 BDY91 • • • • • • 40 TO-3 BDY9Z • • • • • • 40 TO-3 BDY93 • • • • 30 TO-3 BDY94 • • • • 30 TO-3 BDY95 • • • • 30 TO-3 BDY96 • • • 350V 40 TO-3 BDY97 • • • 300V 40 TO-3 BDY98 • • • 250V 40 TO-3 BSV64 • • • • • 5 TO-39 BUI 26 • • 750V 30 TO-3 BU133 • • 750V 30 TO-3 BU204 • • 1300V 10 TO-3 BU205 • • 1500V 10 TO-3 BU206 • • 1700V 10 TO-3 BU207 • • 1300V 12-5 TO-3 BU208 • • 1500V 12-5 TO-3 BU209 • • 1700V 12-5 TO-3 2N3055 • • • 115 TO-3 2N3442 • • • 117 TO-3 2N4347 • ^ • 100 TO-3

Germanium types

V max h ™ 0} c CE FE CO tfi Type z Q. H.F. (V) min P to ,max Case ? s. g (W) No, CL. z 1 z d1 CO >1§ 3=30 2*60 3=40 AD149 • • • 225 TO-3 AD161 • • • • 4 SO-55 AD162 • • • • 6 SO-55 OC28 • • • • 30 TO-3 OC29 • • • • • 30 TO-3 OC35 • • • • 30 TO-3 OC36 • • • • 30 TO-3 2 1

R.F. POWER DEVICES N-P-N Transistors

Type VCEmax PofC.W.) No. V.H.F. U.H.F. (V) (Wat MHz) Case

>18 >33 175 400 470 1000

BLX13 • • 25t Capstan BLX14 • • 50 Stripline BLX65 • • • 2 2 TO-39 BLX66 • • • 3 2'5 Capstan BLX67 * • • 3 3 Capstan BLX69 • • 20 Capstan BLX91 • • 1-4 1-4 Capstan BLX92 • • 3 2.5 Capstan BLX93 • • 8 5 Capstan BLX94 • • 20 Capstan BLY33 • • 21 TO-39 BLY34 • • 3 TO-39 BLY35 • • 7 TO-60 BLY36 • • 13 TO-60 BLY53A • • • 7-2 7 Capstan BLY55 • • 4 TO-60 BLYB3 • • 7 Capstan BLY84 • • 13 Capstan BLY85 • • 0-2 Capstan BLY89A • • 25 Capstan BLY90 • • 50 Stripline BLY93A • • 25 Capstan BLY94 • • 50 Stripline BLY97 • • 014 Capstan 2N3375 • • • 7-5§ 3 TO-60 2N3553 • • 2-5 TO-60 2N3632 • • 13-5 TO-60 2 N 3866 • • • 1 TO-39 2N4427 • • • 1 0-4 TO-39

t At 70MHz X A.M. (Carrier) § At 100MHz

Broad Band U.H.F. Amplifier Modules

Type No. Frequency V. supply Po min at Pdr range (MHz) (V) (W) (W)

BGY22 380-51 13-5 2-5 005 BGY22A 420-480 12-5 2-5 005 BGY23 380-51 13-5 7 25 BGY23A 420-480 12-5 7 2-5 4. DARLINGTON TRANSISTORS

Type VCE max h FE nin P tDt max Case No. z B. (V) at c z z Q. 45 60 80 100 (A) (W) BCX21 • • 2000 0-15 35 TO-39 BDX42 • • 1500 0-5 5 TO-1 26 BDX43 • • 1500 OS 5 TO-1 26 BDX44 • • 1500 0-5 5 TO-1 26 BSS50 • • 1500 0-5 5 TO-39 BSS51 • • 1500 0-5 5 TO-39 BSS52 • • 1500 0-6 5 TO-39 BD262 • • 750 1-6 36 TO-1 26 BD262A • • 750 1-5 36 TO-1 26 BD262B • • 750 1-5 36 TO-1 26 BD263 • • 750 1-5 36 TO-1 26 BD263A • • 750 1-5 36 TO-1 26 BD263B • • 750 1-5 36 TO 1 26 BDX62 • • 1000 3 90 TO-3 BOX62A • • 1000 3 90 TO-3 BDX62B • • 1000 3 90 TO-3 BDX63 • • 1000 3 90 TO-3 BDX63A • • 1000 3 90 TO-3 BDX63B • • 1000 3 90 TO-3 BDX64 • • 1000 5 117 TO-3 BDX64A • • 1000 5 117 TO-3 BDX64B • • 1000 5 117 TO-3 BDX65 • • 1000 5 117 TO-3 BDX65A • • 1000 5 117 TO-3 BDX65B • • 1000 5 117 TO-3 5. FIELD-EFFECTTRANSISTORS (n-c lannel, depletion) c X! > o — CD c c o 5j 2 3> | S £ O IE O c Type cj co a) (j - CO ~5 <° c Low U.H.F. V Ds max Case E D) ai P- No. w CO !j noise —1 c 1 (V) <5 a 5 2 BF245A • • • 30 TO-92 BF245B • * • 30 TO-92 BF245C • • • 30 TO-92 BFQ10 • • • 30 TO-71 BFQ11 • • • 30 TO-71 BFQ12 • • • 30 TO-71 BFQ13 • • • 30 TO-71 BFQ14 • • • 30 TO-71 BFQ15 • • • 30 TO-71 BF016 • • • 30 TO-71 BFR29 • • • 30 TO-72 BFR30 • • 25 \i min BFR31 • • 25 \i min BFS28 • • • • 20 TO-72 BFW10 • • • 30 TO-72 BFW11 • • • 30 TO-72 BFW61 • • 25 TO-72 BSV78 • • • 40 TO-18 BSV79 • • • 40 TO-18 BSV80 • • • 40 TO-18 BSV81 • • • 30 TO-72 2 N 3823 • • • 30 TO-72 2N3966 • • 30 TO-72 2N4091 • • • 40 TO-18 2 N 4092 • • • 40 TO-18 2N4093 • • 40 TO-18 2 N 4391 • • • 40 TO-18 2N4392 • • • 40 TO-18 2 N 4393 • • 40 TQ-18 2 N 48 56 • • • 40 TO-18 2N4857 • • • 40 TO-18 2N4858 • • • 40 TO-18 2N4859 • • • 30 TO-18 2 N 4860 • • • 30 TO-18 2 N 4861 • • • 30 TO-18 6. MICROMINIATURE TRANSISTORS

Type Low V max P ,max mm (P CE h t<1 No. z Q_ u Noise (V) (MHz) (mW) z 11 9 3 1 Z 0- v> 5=15 S30 S60 <200 <500 >100Q

BCW29R • • • • • 200 BCW30R • • • • • 200 BCW31R • • • • 200 BCW32R • • • • 200 BCW33R • • • • 200 BCW69R • • • • 200 BCW70R • • • • 200 BCW71R • • • • 200 BCW72R • • • • 200 BCX17 • • • • • 310 BCX18 • • • • • 310 BCX19 • • • • • 310 BCX20 • • • • • 310 BFR30f • • 200 BFR31f • • 200 BFR92 • • • • • 180 BFR93 • • • • 180 BFS17R • • • • • 200 BFS20R • • • • 200 + BFT25 • • • + • 30 BSV52R • • • • 200

+ Field effect transistors tVCE0 max = 5V GENERAL SECTION A =

SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

INDEX

Section I. Type Nomenclature

This section explains the system of type nomenclature used for Mullard Semi- conductor devices showing the significance of each type letter or number.

Section II. List of Symbols for Light Current Semiconductor Devices This section gives the main symbols used in quoting ratings and characteristics of Semiconductor Devices.

Section III. Explanation of Handbook Data

1 . Form of issue.

1.1 Types of data. Tentative Data, Final Data.

1.2 Presentation of data—division into description, Quick Reference, Out- lines, Ratings, Characteristics, Application information, Environmental data, Curves.

2. Ratings.

2.1 Definition of the three Ratings System—Absolute Maximum, Design Centre, Design Maximum.

3. Ratings.

3.1 Transistor Voltage Ratings. Definitions of the voltage main ratings, V CB , V EB , V CE under various circuit and current conditions, showing their interdependence. Voltage ratings charts and permissible area of operation.

3.2 Transistor Current Ratings.

Definitions of the main ratings, l l l current c , E , B , under various con- ditions.

3.3 Transistor Power Ratings.

Definition of P tot maximum—distinction between steady state and pulse—dependence on temperature—de-rating chart— heatsinks and thermal resistance considerations.

3.4 Temperature Ratings.

Definition of Tj , Tmb , T case .

Section IV. Mounting and Soldering Recommendations 1. Mounting of 'Lockfit' Transistors.

1.1 Mounting on printed wiring boards.

1.2 Soldering.

Section V. Field Effect Transistors

Section VI. Safe Operating ARea for power transistors

Mullard

MAY 1969 Page 1

SEMICONDUCTOR TYPE DEVICES NOMENCLATURE

Section 1

Milliard semiconductor devices are registered by Pro Electron. The type nomenclature of a discrete device or, in certain cases, of a range of devices, consists of two letters followed by a serial number. The serial number may consist of three figures or of one letter and two figures depending on the main application of the device.

The first letter indicates the semiconductor material used: A — germanium B — silicon

C — compound materials such as gallium arsenide D — compound materials such as indium antimonide R — compound materials such as cadmium sulphide

The second letter indicates the general function of the device: A — detection diode, high speed diode, mixer diode. B — variable capacitance diode

C — transistor for a.f. applications (not power types)

D — power transistor for a.f. applications E — tunnel diode

F — transistor for r.f. applications (not power types) G — multiple of dissimilar devices; miscellaneous devices

L — power transistor for r.f. applications N — photo-coupler

P — radiation sensitive device such as photodiode, phototransistor, photo- conductive cell, or radiation detector diode

Q — radiation generating device such as light-emitting diode R —controlling and switching device (e.g. thyristor) having a specified break- down characteristic (not power types) S — transistor for switching applications (not power types)

T — controlling and switching power device (e.g. thyristor) having a specified breakdown characteristic

U — power transistor for switching applications X — multiplier diode such as varactor or step recovery diode Y — rectifier diode, booster diode, effictency diode Z — voltage reference or voltage regulator diode, transient suppressor diode

The remainder of the type number is a serial number indicating a particular design or development and is in one of the following two groups: (a) Devices intended primarily for use in consumer applications (radio and television receivers, audio amplifiers, tape recorders, domestic appliances, etc.). The serial number consists of three figures.

(b) Devices intended mainly for applications other than (a), e.g. industrial, professional and transmitting equipments. The serial number consists of one letter (Z, Y, X, W, etc.) followed by two figures.

Mullard MARCH 1 974 Pagel TYPE SEMICONDUCTOR NOMENCLATURE DEVICES

Range Numbers

Where there is a range of variants of a basic type of rectifier diode, thyristor or voltage regulator diode the type number as defined above is often used to identify the range; further letters and figures are added after a hyphen to identify indi- vidual types within the range. These additions are as follows:

Rectifier Diodes and Thyristors The group of figures indicates the rated repetitive peak reverse voltage, whichever value Vrrm, or the rated repetitive peak off-state voltage, VDRM . is lower, in volts for each type.

The final letter R is used to denote a reverse polarity version (stud -anode) where applicable. The normal polarity version (stud cathode) has no special final letter.

Voltage Regulator Diodes, Transient Suppression Diodes The first letter indicates the nominal percentage tolerance in the operating voltage Vz. A-±1% D-±I0% B — ±2% E— ±15% C-±5%

The letter is omitted on transient suppressor diodes. The group of figures indicates the typical operating voltage Vz for each type transient suppressor at the nominal operating current l z rating of the range. For diodes the figure indicates the maximum recommended standoff voltage Vr.

The letter V is used to denote a decimal sign.

The final letter R is used to denote a reverse polarity version (stud anode) where applicable. The normal polarity version (stud cathode) has no special final letter. Examples: applica- BF362 Silicon r.f. transistor intended primarily for 'consumer' tions.

ACYI7 Germanium a.f. transistor primarily for 'industrial' applications. BTW24-800R Silicon thyristor for 'industrial' applications. In BTW24 range with 800V maximum repetitive peak voltage, reverse polarity, stud connected to anode. BZY88-C5V6 Silicon voltage regulator diode for 'industrial' applications. In BZY88 range with 5-6V operating voltage ±5% tolerance. RPY7I Photoconductive cell for 'industrial' applications. OLD SYSTEM Some earlier semiconductor diodes and transistors have type numbers consisting of two or three letters followed by a group of one, two or three figures

The first letter is always 'O', indicating a semiconductor device. The second (and third) letter(s) indicate the general class of device: A — diode or rectifier C — transistor AP — photodiode CP — phototransistor A'Z — voltage regulator diode

The group of figures is a serial number indicating a particular design or develop- ment.

Milliard Page 2 SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

Section II 1ST OF SYMBOLS FOR SEMICONDUCTOR DEVICES

These symbols are based on British Standard Specification No. 3363: "Letter Symbols for Semiconductor Devices." A full description of the system is contained in this publication. QUANTITY SYMBOLS Voltage Current Power in re v >with subscripts^ b instantaneous value of the varying component. pj l c

v ^-with subscripts-^ B instantaneous total value. pj U the r.m.s. value of the varying component, or with subscripts-; b with appropriate additional subscript the peak (m) or average (d.c.) (av) value of the varying j component.

~| the no-signal (d.c.) value or, with the appropriate with subscripts additional subscripts the total average value (AV) with signal or the total peak value (M).

Examples: Ie d.c. emitter current no signal.

le r.m.s. value of varying component of emitter current.

ie Instantaneous value of varying component of emitter current. IE Instantaneous value of total emitter current. lE(AV) Average (d.c.) value of total emitter current with signal applied. le(av) Average (d.c.) value of the varying component of the emitter current. 'em Peak value of the varying component of the emitter current. Iem Peak value of the total emitter current.

Milliard OCTOBER 1972 G.E.N. Notes Page 1 GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

Subscripts for quantity sumbols

A, a Anode terminal I, i Input AV, av Average J. j Junction B, b Base terminal K, k Cathode terminal BO Breakover M, m Peak value BR Breakdown O, o Open-circuit, output OV Average C, c Collector terminal, conversion, value of overload capacitive R, r Resistive, reverse, repetitive

S, s D, d Delay, Off-state (i.e. non trigger) Short-circuit, series, shield, drain terminal source T, E, e Emitter terminal t On-state (i.e. triggered) W, w Working F, f Forward X, x Specified circuit, reactive G, g Gate terminal Z, z Reference or regulator H, h Holding (i.e. Zener), impedance

The letter O is used with three terminal devices as a third subscript only to denote that the terminal not indicated in the subscript is open-circuited.

The letter S is also used with three terminal devices as a third subscript to denote that the terminal not indicated in the subscript is shorted to the reference terminal.

Sequence of subscripts

The first subscript denotes the terminal at which the current or terminal voltage is measured.

The second subscript denotes the reference terminal or circuit mode that the current or terminal voltage is measured.

Where the reference terminal or circuit is understood the second subscript may be omitted where its use is not required to preserve the meaning of the symbol.

The supply voltage shall be indicated by repeating the terminal subscript. The reference terminal may then be designated by the third subscript.

Examples VE e . VCc Vbd , VE eb

In devices having more than one terminal of the same type, the terminal subscripts shall be modified by adding a number following the subscript and on the same line.

Example B2

In multiple unit devices the terminal subscripts shall be modified by a number preceding the terminal subscript.

Example 2B

Milliard G. E. N. Notes Page 2 SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

Where ambiguity might arise the complete terminal designations shall be separated by hyphens or commas.

Example V lcl - 2 ci the voltage at the first collector of the first unit referred to the voltage at the first collector of the second unit. The first subscript in the matrix notation shall identify the element of the four pole matrix.

i input o output f forward transfer r reverse transfer A second subscript may be used to identify the circuit configuration. e common emitter b common base c common collector

Example V h h le = ie . lie + re .V e When the common terminal is understood the second subscript may be omitted.

Static value of parameters shall be indicated by the upper case (capital) subscripts.

Example hi E , hi B The four pole matrix parameters of the device are represented by lower case symbols with the appropriate subscripts

The four pole matrix parameters of external circuits and of circuits in which the device forms only a small part are represented by upper case symbols with the appropriate subscripts. Hi, Z„ Symbols for the components of small-signal equivalent circuits used to represent devices are qualified by lower case symbols.

•"b , re , ri,i)'

ELECTRICAL PARAMETERS Associated Device circuit Resistance r R Reactance X X Impedance z Z Admittance y Y Conductance g G Susceptance b B Mutual inductance m M Inductance 1 L Capacitance c C Distortion D Frequency limits f max. f min. Bandwidth Af Bandwidth (for associated circuits) B Noise factor N

— Milliard G.E.N. Notes Page 3 GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

List of Symbols for Semiconductor Devices Cd diode capacitance (reverse bias) bias) C f diode capacitance (forward Qb transistor input capacitance (grounded base) capacitance (grounded emitter) C ie transistor input Q junction capacitance (of the intrinsic diode) C min diode capacitance (at breakdown voltage) C diode capacitance (zero bias) Cob transistor output capacitance (grounded base) Coe transistor output capacitance (grounded emitter) parasitic (parallel) capacitance C p capacitance Cs stray CTe capacitance of the emitter depletion layer CTc capacitance of the collector depletion'layer frequency fco varactor diode cut-off , - transistor cut-off frequency (the frequency at which the ' b,b > parameter indicated by the subscript is 0.7 times its low h ' e J frequency value) transfer ratio modulus il frequency of unity current fmax maximum frequency of oscillations

fr tunnel diode resistive cut-off frequency fT transition frequency (common emitter gain-bandwidth product)

gj tunnel diode negative conductance (of the intrinsic diode) small signal gain g p power signal gain G p large power IB 1 the static value of the input resistance with the output voltage |]" IE r held constant h ic b The small-signal value of the input impedance with the output h' /h ! I hie (hn) >• short-circuited to alternating current hie J RB 1 The static value of the reverse voltage transfer ratio with the [J BE input current held constant |] f hRC J hrb ("12) | jne sm all-signal value of the reverse voltage transfer ratio n r e (hi2> f- w j tn tne out p U t voltage held constant hrc J

FB 1 The static value of the forward current transfer ratio with the [] rE output voltage held constant |] f r>FC J (h2i) htb 1 The small-signal forward current transfer ratio with the hie (h2i) >- output short-circuited to alternating current hf C Y°B \ The static value of the output conductance with the input OE r current held constant hocj|]

ob Tne smal l-signal value of the output admittance with the tl (h22>\h\ \ hoe >• input open-circuited to alternating current hoc J hFE(sat) transient forward current transfer ratio in saturation r j I Ic-lcBO inherent forward current transfer ratio = . —-r htfTjTFEL Ib+Icbo

Mullard G.E.N. Notes Page 4 SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

In, lc , Ie total d.c. current Ib(av) C(AV) Ie( av) average (d.c.) value of total current Ibbx base current (with both junctions reverse biased) base (respectively Ibex . 'CEX collector) cut off current in a specified circuit

Ibm, Icm i Iem peak value of total current lb, lc Ie r.m.s. value of varying component of current

Ibm , 1 m, 1 ™ peak value of varying component of current in. ic IE instantaneous total value of current lb Ie , lc instantaneous value of varying component of current l

I F(AV) average forward current Ifg thyristor forward gate current 'fgm thyristor peak forward gate current Ifm peak forward current

Ip(OV) I Ifok overload mean forward current If Jim repetitive peak forward current Ifsm surge (non-repetitive) forward current Igd thyristor gate non-trigger current Igt thyristor gate trigger current Igq thyristor gate turn-off current Ih thyristor holding current (d.c.) II thyristor latching current lo average output current loilM repetitive peak output current IP tunnel diode peak point current lp/lv tunnel diode peak to valley point current ratio Ir continuous (d.c.) reverse leakage current i'h instantaneous reverse leakage current Irg thyristor reverse gate current Irrm repetitive peak reverse current Irsm non-repetitive peak reverse current Is source current It thyristor continuous (d.c.) on-state current It(OV) thyristor overload mean on-state current It(AV) thyristor average on-state current Itrm thyristor repetitive peak on-state current Itsm thyristor non-repetitive peak on-state current

Milliard G. E. N. Notes Page 5 GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

tunnel diode valley point current I voltage regulator (zener) diode continuous (d.c.) operating l z current voltage regulator (zener) diode average operating current I voltage regulator (zener) diode peak current l ZM conversion loss L c inductance |_ series flicker noise |S| r noise figure at intermediate frequency N f N overall noise figure noise temperature ratio N r average gate power pG thyristor pGM thyristor peak gate power p total power dissipated within the device recovered (stored) charge q s

. base resistance rbh extrinsic source resistance rs series resistance rs thermal resistance Rth (zener) diode differential resistance rz voltage regulator tangential signal sensitivity S ts regulator (zener) diode temperature coefficient of the 5Z voltage operating voltage Tamb ambient temperature case temperature Tcas e T, junction temperature Tmb mounting base temperature temperature Tstg storage td delay time fall time t f forward recovery time t,r turn-on time t thyristor gate controlled gate controlled turn-off time tgcl thyristor pulse duration tp • thyristor circuit-commutated turn-off time

ton turn-on time time to!f turn-off time tr rise recovery time trr reverse time ta storage of heat sink h thermal resistance thermal resistance Q i contact junction to ambient 8j_ amD thermal resistance junction to case 6j_ case thermal resistance junction to mounting base 6<_ ml) thermal resistance Tc collector time coefficient of a switching transistor switching transistor Ts carrier storage time coefficient of a TF fall time factor tr rise time factor

— Mullard G.E.N. Notes Page 6 SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

VBE(sat) base-emitter saturation voltage V(BO) thyristor breakover voltage V(BB) breakdown voltage V(BB)CBO breakdown voltage collector to base (emitter open-circuited) V(BR)CBS breakdown voltage collector to base (emitter and base short- circuited) '(BR)CEO breakdown voltage collector to emitter (base open circuited) V(BR)CER breakdown voltage collector to emitter (with specified resistance between base and emitter) V(BR)( breakdown voltage collector to emitter (emitter and base- short-circuited) V(BR)( breakdown voltage collector to emitter (with specified circuit between base and emitter) V(BR)EBO breakdown voltage emitter to base (collector open-circuited) V(BR)R reverse breakdown voltage VC B collector-base voltage (d.c.) VcBO collector-base voltage (with emitter open-circuited) VcBfl collector-base floating potential Vcc collector supply voltage (d.c.) VCE collector to emitter voltage (d.c.) VcEO collector to emitter voltage (with base open-circuited) V C e collector to emitter r.m.s. voltage VcE(knee) collector knee voltage, VcE(sat) collector to emitter saturation voltage VcE(sust) collector to emitter sustaining voltage vD thyristor continuous (d.c.) off-state voltage Vdg drain to gate voltage Vdm thyristor peak off-state voltage Vdrm thyristor repetitive peak off-state voltage Vds drain to source voltage Vdsm thyristor non-repetitive off-state voltage Vdwm thyristor crest (peak) working off-state voltage Veb emitter-base voltage (d.c.) Vebo emitter-base voltage (with collector open circuited) Veb emitter-base r.m.s. voltage Vebh emitter-base floating potential Vech emitter-collector floating potential Vf D.C. forward voltage Vf instantaneous total value of the forward voltage Vfg thyristor forward gate voltage Vfgm thyristor peak forward gate voltage

V, r signal diode forward recovery voltage Vgb gate to Substrate voltage Vgd thyristor gate non-trigger voltage Vgs gate to source voltage Vgt thyristor gate trigger voltage Vi input voltage VlRM repetitive peak input voltage VlSM non-repetitive peak input voltage VlWM crest working input voltage Vo output voltage

Milliard G.E.N. Notes Page 7 GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

VP peak point voltage Vpp projected peak point voltage VR D.C. reverse voltage v R instantaneous total value of the reverse voltage Vrg thyristor reverse gate voltage Vrgm thyristor peak reverse gate voltage Vrm peak reverse voltage Vrrm repetitive peak reverse voltage Vrsm non-repetitive peak reverse voltage Vrwm crest (peak) working reverse voltage VT thyristor continuous (d.c.) on-state voltage Vt(to) thyristor threshold voltage Vv valley point voltage Vz voltage regulator (zener) diode operating voltage Zii intermediate frequency impedance Z v video impedance

y-parameters Common Common base emitter

yift (yn) yie (y'n) Input admittance ' gis (gu) gie (g'll) Input conductance Output Cib (en) Cie (c'll) Input capacitance short-circuited admittance ie Phase angle of input J

you (722) yoe (y'22) Output admittance Input gob (g22> goe (g'22) Output conductance Cobs (C22) Coes (c'22) Output capacitance short-circuited angle admittance ob oe Phase of output J

|y«b|(|y2i|) |y«e|(|y'.i|) Transfer admittance gfb gfe Transfer conductance Output Ctb Cfe Transfer capacitance short-circuited admittance ^fb (2l)

(y'12) Feedback admittance |yrb| (yi2) lYre I grb gre Feedback conductance Input Crb Cre Feedback capacitance short-circuited Phase angle feedback admittance <>rb (^12)

Scattering parameters In distinction to the conventional h, y and z parameters, s-parameters relate to travelling wave conditions. The figure below shows a two-port network with b which the incident and reflected travelling wave quantities a,, b,, a 2 and 2 , are square roots of power.

«1 «2 b "»2 z >'

D5S27

Milliard G.E.N. Notes Page 8 )

SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

a, 2 = the power incident at the input (= -^—\

2 a 2 = the power incident at the output ( = -^-

2 b, = the power reflected from (or generated at) the input ( = -~)

2 b 2 = the power reflected from (or generated at) the output ( = -^-\

Z„ = the characteristic impedance of the transmission line in which the two-port is connected

V, = incident voltage

V r = reflected (generated) voltage

The four-pole equations for s-parameters are:

b, = s^a, +s 12 a2-

D2 = S21 a-j +S2 2 a 2

Using the subscripts for 11. for 22, f for 21 and r for 12, it follows that

b, S| = s u = - 3l a 2 =

b 2 Sf - S21 ~ ] a, 1 a 2 =

b 2 S ~ S22 - | ° all a, = —b, s r — s 12 — a 2 a, =

a, can be made zero by terminating the input side with Z s = Z (no input power and no reflection from the source).

a 2 can be made zero by terminating the output side with Z, = Z (no reflection from the load).

b, V M . Because = , it can be seen that s, is the input reflection coefficient; in , the a, V n same way s is the output reflection coefficient.

Milliard G.E.N. Notes Page 9 GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

The s-parameters can be named and expressed as follows:

S| = s, , = Input reflection coefficient (for the given characteristic impedance) - Ratio between the square root of the power reflected from the input and the square root of the power incident at the input, output terminated with the characteristic impedance.

= = transmission coefficient (for the given characteristic s f s 21 Forward impedance) - Ratio between the square root of the power generated at the output and the square root of the power incident at the input, output terminated with the characteristic impedance.

given characteristic imped- s = s 22 = Output reflection coefficient (for the ance) - Ratio between the square root of the power reflected from the output and the square root of the power incident at the output, input terminated with the characteristic impedance.

= = transmission coefficient (for the given characteristic s r s, 2 Reverse impedance) - Ratio between the square root of the power generated at the input and the square root of the power incident at the output, input terminated with the characteristic impedance.

Mullard G.E.N. Notes Page 10 SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

Section III. Explanation of Handbook Data

1. FORM OF ISSUE The semiconductor data published in the Handbook follows the same pattern, as much as possible, concerning, (a) the forms of issue, (b) the ratings system and (c) the ratings preseotation.

1.1 Types of Data

The Handbook data is published either as tentative or final data. Tentative Data Tentative data aims at providing information on new devices as early as possible to allow the customer to proceed with circuit design. The tentative data may not include all the characteristics or ratings which will be incorporated later in the final data and some of the numerical values quoted may be slightly adjusted later on.

Final Data The transfer from tentative data to final data involves the addition of those numerical values and curves which were not available at tentative data stage and small adjustments to those values already quoted in tentative data. Reissue of final data may be made from time to time to incorporate additional information resulting from prolonged production experience or to meet new applications.

1.2 Presentation of Data

The information on the published data sheets is presented in the following form: —description of basic application and physical characteristics of the device. —quick reference data giving the most important ratings and characteristics. —outline and dimensions. Reference to standard outline nomenclature if applicable and lead connections. — Ratings. Voltage, current, power and thermal ratings. —Characteristics. —Application information or operating conditions. —Mechanical and environmental data if applicable. —Charts showing ratings and characteristics.

2. RATINGS

A rating is a limiting condition of usage specified for a device by the manufacturer, beyond which the serviceability may be impaired.

A rating system is a set of principles upon which ratings are established and which determines their interpretation. There are three systems which have been internationally accepted and which allocate responsibility between the device manufacturer and the circuit designer differently.

Mullard JANUARY 1966 Page D1 -

GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

2.1 Rating Systems Unless otherwise stated the ratings given in semiconductor data sheets follow the absolute maximum rating system. The definitions of the three systems accepted by the International Electro- technical Commission are as follows: ABSOLUTE MAXIMUM RATING SYSTEM Absolute maximum ratings are limiting values of operating and environ- mental conditions applicable to any device of a specified type as defined by the published data, and should not be exceeded under the worst probable conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of fhe device, taking no responsibility for variations in equip- ment or environment, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to variations in supply voltage, environment, equipment components, equipment control adjustment, load, signal or characteristics of the device under consideration and of all other devices in the equipment. DESIGN-CENTRE RATING SYSTEM Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey device of a specified type as defined by its published data, and should not be exceeded under normal conditions. These values are chosen by the device manufacturer to provide acceptable serviceability cf the device in average applications, taking responsibility for normal changes in operating conditions due to variations in supply voltage, environment, equipment components, equipment control adjust- ment, load, signal or characteristics of all other devices in the equipment. The equipment manufacturer should design so that initially no design- centre value for the intended service is exceeded with a bogey device in equipment operating at the stated normal supply voltage. DESIGN-MAXIMUM RATING SYSTEM Design-maximum ratings are limiting values of operating and environ- mental conditions applicable to a bogey device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the device under consideration. The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating cdnditions with respect to variations in supply voltage, environment, equipment components, equipment control adjustment, load, signal or characteristics of the device under consideration and of all other devices in the equipment.

Milliard — Page D2 SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

3 Transistor ratings The ratings are presented as voltage, current, power and temperature ratings. The list of these ratings and their definitions is given as follows:

3.1 Transistor voltage ratings Collector to base voltage ratings Vcb max The maximum permissible instantaneous voltage between collector and base terminals. The collector voltage is negative with respect to base in PNP transistors and positive w.r.t. base in NPN types.

V C b max (Ie = 0) The maximum permissible instantaneous voltage between collector and base terminals, when the emitter terminal is open circuited.

Emitter to base voltage ratings

Veis max The maximum permissible instantaneous reverse voltage between emitter and base terminal. The emitter voltage is negative w.r.t. base for PNP transistor and positive w.r.t. base for NPN types.

VEb max (lc = 0) The maximum permissible instantaneous reverse voltage between emitter and base terminals when the collector terminal is open circuited.

Collector to emitter voltage ratings Vce max The maximum permissible instantaneous voltage between collector and emitter terminals. The collector voltage is negative w.r.t. emitter in PNP transistors and positive w.r.t. emitter in NPN types. This rating is very dependent on circuit conditions and collector current and it is necessary to refer to the curve of Vce versus lc for the appropriate circuit condition in order to obtain the correct rating Vce max (Cut-off) The maximum permissible instantaneous voltage between collector and emitter terminals when the emitter current is reduced to zero by means of a reverse emitter base voltage, i.e. the base voltage is normally positive w.r.t. emitter for PNP transistor and negative w.r.t. emitter for NPN types.

NOTE: The term "cut-off" is sometimes replaced by Vji E > x volts, or D equivalent — , ^ y which are conditions under which the device may Ke be cut-off.

Mullard Page D3 GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

Vce max (lc = x mA) The maximum permissible instantaneous voltage between collector and emitter terminals when the collector current is at a high value, often the max. rated value.

Vce max (Ib = 0) The maximum permissible instantaneous voltage between collector and emitter terminals when the base terminal is open circuited or when a very high resistance is in series with the base terminal. Special care must be taken to ensure that thermal runaway due to excessive collector leakage current does not occur in this condition.

Due to the current dependency of Vce it is usual to present this information as a voltage rating chart which is a curve of collector current versus collector to emitter voltage (see Fig. 1). This curve is divided into two areas:

A permissible area of operation under all conditions of base drive provided the dissipation rating is not exceeded (area 1) and an area where operation is allowable under certain specified conditions (area 2). To assist in determining the rating in this second area, further curves are provided relating the voltage rating to external circuit conditions, for example: Rb

Rb , Zsg , Vbe > 'b or Re Rb An example of this type of curve is given in Fig. 2 as Vce versus for

two different values of collector current.

c CE

1 v°

1 I = I 1 c c ma>S^ 1

Area 1 \ \ Aroa2 \ \

\ - R /R *CE B E Fig1 Fig. 2

It should be noted that when Re is shunted by a capacitor, the collector voltage Vce during switching must be restricted to a value which does

not rely on the effect of Re . In the case of an inductive load and when an energy rating is given, it may be permissible to operate outside the rated area provided the specified energy rating is not exceeded.

Mullard Page D4 SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

3.2 Transistor Current Ratings

Collector current ratings

lc max The maximum permissible collector current.

Without further qualification, the dc value is implied.

Ic(av) max The maximum permissible average value of the total collector current.

Icm The maximum permissible instantaneous value of the total collector current.

Emitter current ratings

Ie max The maximum permissible emitter current. Without further qualification, the dc value is implied.

Ie(av) max The maximum permissible average value of the total emitter current.

Ier(av) max The maximum permissible average value of the total emitter current when operating in the reverse emitter-base breakdown region.

EM The maximum permissible instantaneous value of the total emitter current.

The maximum permissible instantaneous value of the total reverse emitter current allowable in the reverse breakdown region.

Base current ratings Ib max The maximum permissible base current (without further qualification, the dc value is implied).

Ib(av) max The maximum permissible average value of the total base current.

hu(av) max The maximum permissible average value of the total reverse base current allowable in the reverse breakdown region. The maximum permissible instantaneous value of the total base current. The rating also includes the switch off current.

The maximum permissible instantaneous value of the total reverse current allowable in the reverse breakdown region.

Milliard Page D5 GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

3.3 Transistor Power Ratings permissible continuous power dissipation Pto t max: The total maximum dissipation and the in the transistor and includes both the collector-base emitter-base dissipation. Under steady state conditions the total power is given by the expression:

Ptot = VcexIc + VhexIu "pulse" conditions In order to distinguish between "steady state" and (P )" are often used. the terms "steady state power (Ps)" and "pulse power P temperature The permissible total power dissipation is dependent upon in figure 3. and its relationship is shown by means of a chart as shown

Temperature

Fig. 3

The temperature may be ambient, case or mounting base temperatures. allowable Where a cooling clip or a heatsink is attached to the device, the of the heatsink. power dissipation is also dependent on the efficiency of its thermal The efficiency of this clip or heatsink is measured in terms in degrees centigrade per watt resistance (6 h ) normally expressed of the (deg. C/W). For mounting base rated device, the added effect contact resistance (6i) must be taken into account. resistance The effect of heatsinks of various thermal resistance and contact is often included in the above chart. ambient Thus for any heatsink of known thermal resistance and any given temperature, the maximum permissible power dissipation can be estab- will occur lished. Alternatively, knowing the power dissipation which and the ambient temperature, the necessary heatsink thermal resistance can be calculated. power A general expression from which the total permissible steady state dissipation can be calculated is: Tj—Tamb Plot. — Oj-amb transistor junction to the where 6j_ amb is the thermal resistance from the thermal ambient. For case rated or mounting base rated devices, the resistance junction to case resistance 8j- a mb is made up of the thermal resistance and the or mounting base (8- m b), the contact thermal (6i) heatsink thermal resistance (9h ).

Milliard Page D6 T

SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

of pulse For the calculation pulse power operation PD , the maximum power is obtained by the aid of a chart as shown in figure 4.

-t-1

the general expression from which the maximum pulse power dissipation can be calculated is:

p Tj— amb~PsX "j-amb 6t+d(0Case-amb) thermal where 6 t and d are given in the above chart and Ocase-amb is the resistance between case and ambient for case rated device. For mounting base rated device, it is equal to 8h+6i and is zero for free air rated device because the effect of the temperature rise of the case over the ambient

for a pulse train is already included in t .

3.4 Temperature Ratings Tj max The maximum permissible junction temperature

which is used as the basis for the calculation of power ratings. Unless otherwise stated, the con- tinuous value is implied. Tj max (continuous The maximum permissible continuous value. operation)

Tj max (intermittent The maximum permissible instantaneous junction operation) temperature usually allowed for a total duration of 200 hours. Tmb The temperature of the surface making contact with a heatsink. This is confined to devices where a flange or stud for fixing onto a heatsink forms an integral part of the envelope.

Tease The temperature of the envelope. This is confined to devices to which may be attached a clip-on cooling fin.

Milliard Page D7 .

GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

Section IV. Mounting and Soldering Recommendations

1. MOUNTING OF "LOCKFIT" TRANSISTORS

1.1 Mounting on printed-wiring boards

The "Lockfit" encapsulation is usable with printed-wiring boards having either the standard e-grid or the more closely spaced E-grid. The relevant

dimensions of these boards are given in Table 1

TABLE 1 Dimensions of Printed-wiring Boards

Hole Maximum Board Grid diameter board thickness

e-board 2-54mm 105±0-05mm 1 7mm (OTin) (upto 1 -30mm allowable)

t-board 0635mm 0-80±0-03mm 1 -1mm (0025in)

The pins of "Lockfit" transistors each have three enlargements along

their length, as shown in Fig. 1 . At the tip is a spade-shaped (lock 'B'); partway up is a tapered cross-piece (lock 'A') that projects further left

and right than lock 'B'; and nearest to the body of the assembly is another cross-piece (lock 'C') that extends even further left and right than lock 'A'.

Hole spacing in either type of grid allows the insertion of the "Lockfit" pins; but as the holes of the closely spaced t-grid are necessarily of smaller diameter than those of the other grid, the pins cannot be (or should not be) pushed in beyond the middle expansion - lock A'. Thus the functions of the three locks are as indicated in Fig. 1a for e-grid boards and Fig. 1b for t-grid boards. '///////. Lock C Lock C

Lock A \ [^~ Lock A / 'e'grid \j~~^-LockB Lock B board

(a) D5536

- Detail of "Lockfit" pins, and function of three "locks" when used with (a) e-grid and (b) z-grid printed-wiring boards

Milliard MAY 1973 G.E.N. Pagel SEMICONDUCTOR GENERAL EXPLANATORY DEVICES NOTES

1.1.1 Mounting procedure with e-grid boards

The best insertion procedure with the e-(2-54mm) grid is as follows: (1) Place the rear two pins into their corresponding printed-circuit board holes with the transistor at a slight angle to the vertical (Fig. 2a). (2) Place the centre pin into the remaining hole by light pressure at a slight angle to the vertical on the device. Continue this light pressure until both the 'A' locks of the rear two leads are inside the holes (Fig. 2b).

(3) Tilt the device with light pressure from the rear until it is in a vertical position. Lock 'A' of the centre lead will now enter the hole (Fig. 2c). (4) Move the device perpendicularly downwards with light pressure until all three 'A' locks snap into position beneath the printed-wiring board, and the 'C locks rest on the upper side of the board (Fig. 2d.)

|q662||

(O.) (b)

Rear

Lock A Lock C

(c)

Fig. 2 - Mounting procedure for "Lockfit" transistors using e-grid printed-wiring boards ; procedure is similar for s-grid boards

Milliard G.E.N. Page 2 GENERAL EXPLANATORY SEMICONDUCTOR NOTES DEVICES

1.1.2 Mounting prodedure with e-grid boards The best insertion procedure with the s-(0-635mm) grid is as follows: (1) Place the rear two pins into their corresponding printed-circuit board holes with the transistor at a slight angle to the vertical. at a (2) Place the centre pin into the remaining hole by light pressure slight angle to the vertical on the device. Continue this light pressure until both the 'B' locks of the rear two leads are inside the holes.

it in vertical (3) Tilt the device with light pressure from the rear until is a position. Lock 'B' of the centre lead will now enter the hole. until (4) Move the device perpendicularly downwards with light pressure all three 'B' locks snap into position beneath the printed-wiring board, and the 'A' locks rest on the upper side of the board. No attempt should be made to force lock 'A' through this type of board.

1.2 Soldering For both boards, the temperature should not exceed 300°C and the application time should not exceed 3 seconds.

— Milliard G.E.N. Page 3 FIELD EFFECT GENERAL EXPLANATORY TRANSISTORS NOTES

INTRODUCTION TO TECHNICAL DATA

1. LEAD DESIGNATIONS Source S, s. Drain D, d. Gate G, g. Substrate B, b.

2. SEQUENCE OF SUBSCRIPTS

The first subscript denotes the terminal at which the current or voltage is measured.

Where the reference terminal or circuit is understood, the second subscript may be omitted where its use is not required to preserve the meaning of the symbol.

The letter is used with three terminal devices as a third subscript only to denote that the terminal not indicated in the subscript is open circuited. The letter S is used as a third subscript to denote that the terminal not indicated in the subscript is short circuited to the reference terminal. The letter X is used as a third subscript to denote measurements taken under specified circuit conditions.

2.1 Quantity Symbols V — Voltage

I — Current P — Power

i d v with subscripts s instantaneous value of varying component P 9

i D v with subscripts S instantaneous total value P G

I d the r.m.s. value of the varying component or V with subscripts s with appropriate subscript the peak (m) average P g (d.c.) (av) value of the varying component

I D the no-signal (d.c.) value of or with the V with subscripts S appropriate additional subscripts the total P G average value (AV) with signal or the total peak value (M)

The letter symbol usually indicates by two subscripts the two reference

terminals. The first subscript indicates the terminal which is positive with respect to the second subscript, e-g.

Vds = 6V: Drain is 6V positive w.r.t. Source

Vds = — 6V: Drain is 6V negative w.r.t. Source

Milliard AUGUST 1969 G.E.N. Page 1 GENERAL EXPLANATORY FIELD EFFECT NOTES TRANSISTORS

Reversal of the subscripts also changes the polarity sign For example the following statements are identical

Vds = -6V; Vsd = 6V; -Vds = 6V The supply voltage shall be indicated by repeating the terminal subscript. The reference terminal may then be designated by the third subscript.

Examples VD u, Vss, Vssd

2.3 Current Conventionally, current which flows into the transistor terminals has a positive value.

e.g. Id = 1mA means 1mA flowing into the drain terminal (in the conventional sense)

Is = —1mA means 1mA flowing out of the source terminal (in the conventional sense) i D ..

No •-signal- -With signal Examples u d.c. drain current— no signal d(av) Average (d.c.) value of total drain current with signal applied dm Peak value of total drain current d(Rms) Root-mean-square value of total drain current

i) Instantaneous value of total drain current dm Peak value of the varying component of the drain current

iid-ins) Root-mean-square value of varying component of drain current

id Instantaneous value of varying component of the drain current

The following are examples of the implied relationship

)'2 : -- ~~ ~ Id.M llJIAV)-t"llIll>; il) llXAV) * iii; IniHMS) -- V I IJI A V -f- Idlrnisj To avoid any misunderstanding with maximum or minimum values the

negative sign is always put in front of the letter symbol and not in front of the value given.

Milliard G.E.N. Page 2 FIELD EFFECT GENERAL EXPLANATORY TRANSISTORS NOTES

For example in quoting a limit value

— Is max = 50mA

and in quoting a spread value -V,.,gs) =S 1-5V In devices having more than one terminal of the same type the terminal subscripts shall be modified by adding one number following the subscript and on the same line. Examples: Vgis, Vg2.s, refers to a dual gate M OS device |Vgisi — Vg2.s2| refers to a matched pair of junction FET's where the gate-source voltage of the first device is referred to the gate- source voltage of the second device, as a modulus of their difference over a given temperature range.

2.4 The first subscript in the matrix notation identifies the element of the four pole matrix.

i — input o — output f — forward transfer r — reverse transfer. A second subscript may be used to identify the circuit configuration. d — common drain s — common source g — common gate Examples

t*ls t^os *ts Input, output and reverse feedback capacitances in common source configuration.

3. TYPES OF FIELD EFFECT TRANSISTORS 3.1 Junction gate Field effect transistors N-channel-junction FET (Vp(gs) < 0, Idss > 0)

GO- Oc

-vgs

-V P(GS> B96Q3I

Milliard G.E.N. Page 3 GENERAL EXPLANATORY FIELD EFFECT NOTES TRANSISTORS

P-channel-junction FET (Vp(gs) >0, loss <0)

GO- Oc

Vgs 3.2 Insulated gateM.O.S. field effect transistors Vp(GS) N -channel- M.O.S.-FET(depletion mode) IB9804] (Vp,gs) < 0, loss > 0)

GO-

N-channel-M.O.S.-FET (enhancement mode) B9805

(Vp(gs) > bss ^ 0)

^D*

-O D -O B eo- m -O S VGS

Mullard G.E.N. Page 4 FIELD EFFECT GENERAL EXPLANATORY TRANSISTORS NOTES

P-channel-M.O.S.FET (enhancement mode)

(Vp(gs) < 0- li>ss * 0)

-O D -O B GO- ® -OS VGS

BASIC CIRCUITS CONFIGURATIONS

Output f Input GO- J ®s Input ^- *-^n Output Input

Grounded-source Grounded-drain Grounded-gate The source is The drain is The gate is common to input common to input common to input and output and output and output

An additional subscript s, d or g may be used to identify the circuit configuration

Example Cis is input capacitance with grounded source

CHARACTERISTICS

The characteristics are given in data sheets as either typical values and/or minimum and maximum values. Published curves are usually typical curves and are applicable only at the stated temperature.

Milliard G.E.N. Page 5 GENERAL EXPLANATORY FIELD EFFECT NOTES TRANSISTORS

I n (mA) A 'DSS == 0) (V'GSr, — Note: this is the breakdown voltage of the device and operation in this region is not recommended-

v (v) -VGS (V> DS IB9809J

5.1 Cut-off Voltage (Vnosi)

The cut-off voltage V p ,gs> is the gate-source voltage for a given small value of drain current Id at a stated drain source voltage Vds

TEST CIRCUIT FOR V P (cs)

5.2 Drain-source short circuit current (Idss)

The drain-source short circuit

current I is the current flowing ( dssi between drain and source with the gate short-circuited to the source (Vgs = 0) and at a stated drain- source voltage (Vds)

TEST CIRCUIT FOR loss

Milliard G.E.N. Page 6 FIELD EFFECT GENERAL EXPLANATORY TRANSISTORS NOTES

5.3 Leakage currents r DSS

B9812 B9B13

Gate-source leakage/current Drain-source leakage current less Ids* (enhancement mode device) ^ 'DSV - I SDV v OS-T +

Drain-source leakage current Source-drain leakage current Idsv, at specified Vds and Vos Isdv with specified Vsd and V G s and grounded source with grounded drain m -ISBS »sbt

B9816 B9817 Drain-substrate leakage current Source-substrate leakage current Idbs Isns

6. SMALL SIGNAL-Y PARAMETERS

Four-pole equivalent circuit

Milliard G.E.N. Page 7 GENERAL EXPLANATORY FIELD EFFECT NOTES TRANSISTORS

short im . input admittance with output Vout _ un y n = W - v^ - circuited reverse transfer admittance with input j ln w yi2 = Vr = Vln Vout ~ ° short circuited = = iout_w _ n fofwafd transfer admittance with output V21 yt V^ ut " short circuited short iout _ n Output admittance with input = = In ~~ V22 y ° V^~ circuited

A second subscript on the y-parameter indicates the circuit configuration

e.g. vis = input admittance in common source configuration

where yu is the complex form

yis = gis+jbi S and bis = wcis

For example Cis = input capacitance in common source and Crs = feedback capacitance in common source

The forward transfer admittance in common source configuration at low frequency (e.g. below about 1MHz) is indicated in the following forms

gm = g2is = gts = |yrs|

at high frequency this parameter is a complex quantity and the modulus

is usually given i n the data with a specified frequency of measurement. |yr s |

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environ- mental conditions applicable to any device of a specified type as defined by the published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for variation in equipment or environment, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to variations in supply voltage, environment, equipment components, equipment control adjustment, load, signal or characteristics of the device under consideration and of all other devices in the equipment.

Milliard G.E.N. Page 8 FIELD EFFECT GENERAL EXPLANATORY TRANSISTORS NOTES

7.1 Ratings (maximum permissible values) Vds max — Drain-source voltage Vdb max — Drain-substrate voltage Vsis max — Source-substrate voltage Vou max — Gate-drain voltage Vi;s max — Gate-source voltage Vcb max — Gate-substrate voltage Id max — Drain current Is max — Source current *Ig max — Gate Current

"applies only to junction F.E.T.'s if a forward-voltage is applied to the gate. 7.2 Power Dissipation

where Tj max = maximum permitted junction temperature Tamb max = maximum permitted ambient temperature Tease max ~ maximum permitted case temperature Rth(j-amb) = Thermal resistance junction to ambient Rth(ease-amt)) = Thermal resistance case to ambient.

The limiting value of the maximum permitted device dissipation P t „i ma) is stated for either —^ Tj max -T8mb max I amb ^ Kth(J-amb)

, „ Tj max -Tease max ananr1 Pmt max = — luhUase -amb) 8. SOLDERING AND WIRING RECOMMENDATIONS

8.1 When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should, if possible, be kept to a minimum by the use of a thermal shunt. 8.2 Transistors may be dip-soldered at a solder temperature of 245°C for a maximum soldering time of five seconds. The case temperature during soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 15mm above a board having plated-through holes. 8.3 Care should be taken not to bend the leads nearer than 1 -5mm from the seal.

8.4 If devices are stored at temperatures above 100°C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances, the leads should be retinned using a suitable activated flux.

9. OPERATING NOTE (M.O.S. insulated gate F.E.T.'s) Mounting and handling instructions To exclude the possibility of damage to the gate oxide layer by an electrostatic charge building up on the high resistance gate electrode, the device is fitted with a conductive rubber ring around the leads. This ring should not be removed until after the device has been mounted in the circuit.

Milliard G.E.N. Page 9

SOAR GENERAL EXPLANATORY NOTES

SECTION VI Safe Operating ARea for power transistors

INTRODUCTION

One of the main restrictions in the operation of power transistors is the phenomenon known as 'second breakdown'. This is the name given to a transistor condition whereby the collector-emitter voltage abruptly switches from a high to a low voltage with increased current.

A diagram illustrating the output characteristics of a power transistor is shown in Fig. 1. It is not representative of any particular device but merely serves to

demonstrate the Io against We characteristics of a transistor as it goes into second breakdown. On the horizontal axis the forward and reverse-biased base regions are clearly grouped, with the base open-circuit condition dividing the two regions. The transistor will enter second breakdown at a certain critical current value

» \

\ K \ Locus of second breakdown \ critical current points for d.c. \ V \ and pulse operation

VCB0 Collector-emitter voltage

Base forward biassed Base reverse biassed

Fig. 1 —Output characteristics of a power transistor

Mullard 1974 JULY SOAR Page 1 Three which is low at high collector-emitter voltages and higher at low voltages. loci for critical current values are shown on the diagram; these represent d.c, pulse, and short pulse operation. The extension of the second-breakdown locus for lesser extent, pulse operation is dependent on the pulse duration t p and also, to a on the duty cycle d (see Figs. 2 and 3). Thus the greatest extension is permissible with single-shot pulses (d ^ 0Q1) of short duration, say lO^s. (The value d = 0-01 can be considered as single-shot because there is ample time for cooling between power pulses).

Observation of second breakdown Consider the Ic against Vcf. characteristic ABCDE shown in Fig. 1. At point B the device goes into avalanche, otherwise known as first breakdown. At this point the collector current starts to rise sharply for very little increase in the collector- emitter voltage. If the current is allowed to increase up to a critical value at C the device will enter second breakdown. This is noted by an abrupt switching of the collector-emitter voltage to a low value at point D. In second breakdown the device offers only a very low resistance to collector current, and is invariably transistor. destroyed if the current is not specially limited by a circuit external to the to point in Beyond point C the process is generally ' irreversible whereas up C avalanche the trace can be returned with no serious alteration to the transistor of properties. It is in the forward-biased mode of operation that the phenomenon second breakdown has been extensively studied over recent years, and a method of presenting the Safe Operating ARea (abbreviated to SOAR) is now being published in Mullard data for power transistors. In many applications, however, the reverse-bias breakdown characteristics are also of importance. For example, when a power transistor with an inductive .load will rise above the is turned off by reverse biasing the base, the collector voltage supply voltage because of the stored inductive energy of the coil. For such applica- tions transistors have been developed which permit excursions outside the VcEOtnax rating under specified conditions. With reverse bias on the base, second breakdown is always preceded by first- breakdown. At low collector currents the voltage across the transistor can exceed avalanche, the device the Vceo rating as shown in Fig. 1 . In first breakdown, or goes through a negative resistance region until a critical current value is reached at which point the collector-emitter voltage abruptly switches to a very low value in second breakdown. Second breakdown in the transistor is usually caused by current concentration 1 at a point in the emitter active area; this is described in detail elsewhere* )

SIMPLE METHOD OF USING PUBLISHED SOAR CURVES (1 In addition to the methods described in the MTC article ) sufficient SOAR to cover information is provided in the published data of each power transistor 90% of all applications.

"'TP 1454 reprinted from MTC No. 122 APRIL 1974

Mullard SOAR Page 2 SOAR GENERAL EXPLANATORY NOTES

Thus, in most cases the user will merely select the appropriate SOAR curve already constructed—without having to calculate and manipulate Msb value.s. In general, the data provides SOAR curves for pulse durations in multiples of

1, 2, 5, and 10, starting at pulse durations in the region 10 to 50yts. The families of curves are plotted at duty cycles of 001 (single-shot) 01, 0-2, 0-5, and 10 (d.c.). The transient thermal impedance curves are also included so that the operating mounting-base temperature can be calculated. Typical SOAR data curves for duty cycles of 0-2, 0-5 are illustrated in Figs. 4 and 5. These curves will be used in the examples that follow. In the few applications (about 10%) which are not covered by the published SOAR curves, the user can derive Msb curves from the single-shot and d.c. SOAR information, and construct the boundaries using the method fully described in the reference TP 1454 All Mullard data, including pulsed power ratings, assume the use of square waves and resistive loads. Therefore, the system for using the SOAR and transient thermal impedance curves to be described deals with this type of waveform first,

and then methods for other practical cases will be considered. It is assumed that the electrical and time conditions are the fixed parameters of an application at the design stage, and that the thermal conditions can be most easily adjusted. The maximum

J

d=:1 -Eil! (J 7b -

h ! =

0.2 "' 1 '' (15

"'

2 5 s 5 7 » ' ' ' 10"2 * ' " 2 ' 10',n3 10-*n-3 ' 10-' ' 1 ' 10 ' ' 10 ' '

Fig. 2 —Typical thermal impedance curves at various duty cycles

Mullard SOAR Page 3 — t

condition power must be calculated at the worst-case condition ; when the worst-case

is not obvious, all discrete sets of conditions need to be assessed.

T

d=-^-

Fjg. 3—^Relationship between duty cycle (d), pulse duration

(t D ) and period (T)

Construction of SOAR using published data

The procedure for constructing a SOAR for one specific set of conditions is des- cribed with reference to the curves shown in Figs. 4 and 5, and to the transient thermal impedance curves in Fig. 2.

1) Note the pulse duration t p (for example, I -7ms).

2) Note the time between pulses (T— p) (for example, 2-9ms).

3) Calculate the dutycycle d from the equation d = t p/T (in this example 0-37).

4) Note the peak collector current Icm (for example 300mA).

5) Note the peak collector emitter voltage Vcem (for example, 35V).

6) Select the SOAR curve with time conditions greater than or equal to the time conditions of the application (in this example, for d = 0-37 use d = 0-5 and for

t p = 1 -7ms use t p = 2-0ms). in 7) Plot the point given by the specific Iom and Vcem values, shown as point Q Fig. 5.

8) The point Q is acceptable if it is contained within the area of the 2ms/0-5 SOAR as shown in this example.

Thermal calculations

The maximum permissible mounting base temperature is now determined as follows:

1) Determine peak power by multiplying Icm by Vcem.

2) Calculate the transient thermal impedance for l-7ms at 0-37 duty cycle.

The equation used is :

ZtlKtdl ={Rth— Zth(to)(d-f Zth(to),

Where Zth(t

Zth(to) is the thermal impedance for pulse duration t at duty cycle d - 001 (from

Fig. 2). Milliard SOAR Page 4 .

SOAR GENERAL EXPLANATORY NOTES

3) Calculate the difference between the junction and mounting-base temperature from:

(Tj — Tmb) =Zth(td) X Icm X VcEM.

4) Calculate the maximum permissible mounting-base temperature Tmbmax from:

Tmt>max =Tjmax — (Tj — Tmb).

5) A heatsink which limits the mounting-base temperature to this value is required. The thermal capacity of the heatsink will be such that the transient effect of the

power will be averaged. Hence the thermal resistance is calculated using average power. Thus: Tmbmax-Tamb Rth(h-a)=- — r— Rth(mb h)degC/W, IcMXVcEMXd

Where Rth(h-a) is the thermal resistance of heatsink to ambient and Rth(mb-h) is the contact thermal resistance.

6) The physical size of the required heatsink can be determined from heatsink pub-

lished data or from the nomogram in Appendix 1

Operating selected outside SOAR

Suppose the application had required an Icm of 400mA instead of 300mA. In this case the point P on Fig. 4 would be given. Point P is outside the 2ms area which indicates that the condition may be unacceptable. Thus a closer approximation to the true conditions is necessary.

1) Using linear interpolation between the 1 and 2ms curves at d =0-5 (Fig. 5)

draw a SOAR curve for t p = 1 -7ms. If point P is within this area then the con- ditions are acceptable and the heatsink thermal resistance can be calculated.

2) If point P is outside the 1 -7ms area, then determine the 1 -7ms area on the family

of curves for d = 0-2 (Fig. 4). A further linear interpolation between the two

1 -7ms areas is then needed to approximate to the 1 -7ms SOAR at duty cycle of 0-37.

3) If point P is outside this area, then the condition is unacceptable, and a different transistor should be considered.

The above method is not absolutely accurate, but the approximation errors in- volved are allowed for in the published data tolerances. More accurate calculations can be made by going back to first principles, and calculating the multiplying factor

1 for the specific condition, f )

11 'TP 1454 reprinted from MTC No. 122 APRIL 1974 Milliard SOAR Page 5 _ q- (0 i ITTT tn g -^ o __ u in £-5 °- — o o 'd J- — V/ II V J3 e "3 E •— / t. in O o

•o

' »—o w _>- £ ® — to p ^ */ EC < o CO

X X O o E £

u IT) _. i^ ~±

_2o I w w JQ --H .1 1 u_ -J- o -- Q <_> m -r -- ~ o "o *s- ~v O y ^^ ^/^iy , — V II o CM £ 3 1 X X CM O Q.

II T3

" ,5 _> 1 «*- EC < O CO "5 o '5. X .x > 1

^< 'o

Mullard SOAR Page 6 SOAR GENERAL EXPLANATORY NOTES

PRACTICAL APPLICATION

This section discusses a typical application in which power transistors are used.

Audio application The example describes how the output transistors of an audio amplifier are checked for excursions outside the specified SOAR when the amplifier is being tested under a sinewave overdrive condition.

This example describes how the SOAR curves are used to check the suitability of the BD131 power transistors in a television audio amplifier application. The amplifier is a class A design capable of delivering an output of 2W. The circuit configuration is shown in Fig. 6.

I V supply

I TY"

Vdrive /P\ (to™'

Test resistor Feed back T X i

U5/29

Fig. 6— Circuit configuration of television audio output stage

Milliard SOAR Page 7 but the second breakdown The amplifier provides the required output power requirements of the heatsinks are acceptability has to be checked, and the thermal to be calculated.

considered in the event of the transis- In this example the SOAR acceptability is resistor of 0- fl is period 960|is. A test 1 tors being overdriven by a sinewave signal of

Oscilloscope

o.i n

oscilloscope to Fjg. 7 Method of connecting dual-trace

obtain simultaneous display of l c and V CE

. (V)

30 L^ \ 1 20 1 1 ' 10 / \ \ / / ^ 100 200 300 400 500 600 700 800 900 1000 Time (psl

lc

1 ImAI 300 s N ' \ 200 \ 100 \ \ V ) 100 200 300 400 500 600 700 800 900 1000 Time ()js)

characteristics Fig. 8 V CE and l c „ s „,

Mullard SOAR Page SOAR GENERAL EXPLANATORY NOTES

inserted in the emitter circuit of the lower transistor TRi. A simultaneous display of the Vcb and Ic waveforms is then obtained by connecting the probes of a dual- trace oscilloscope in the manner shown in Fig. 7. The traces of Vcb and Ic taken from the oscilloscope are shown in Fig. 8 and the measurements from the wave- forms are recorded in Table 1. These readings were recorded every 20[xs through

the complete cycle of 960ns. In the final column of Table 1, values of instantaneous

power are calculated and plotted against time in Fig. 9. This curve is then converted into a series of equivalent squarewave pulses having the same peak power values as the actual pulses. The equivalent squarewave pulses are shown by the dashed line and are marked Pi, P2, and P3 in Fig. 9.

Each pulse is then checked individually. The duty cycle for each equivalent squarewave pulse is calculated, and the Vcb and Ic values recorded over the dura- tion of the pulse are checked on the appropriate SOAR curve.

TABLE 1

Measured values of I c and Vce and derived P (t ot) obtained from oscilloscope display

Time Ic Vcb P(tot) Os) (mA) (V) (W)

260 2 0-52 20 220 6 1-32 40 180 12 216 60 140 16 2-24 80 90 20 1-80 100 50 25 1-25 120 5 29 015

then no important changes unl il 500 5 25 014 520 40 25 100 540 80 20 L60 560 130 15 1-95 580 180 10 1-80 600 220 5 110

620 260 1 0-26 until

940 280 1 0-28 960 260 2 0-52

Milliard SOAR Page 9 :

v -£-£ £ =. a. a. F <-> 3-0 o -o o

3 >t "O Q.

o *^O o X ^ o ~ X rr to o < O -C Ml « w o ,— £ c> 1= T- n o m CO

1 1 o o u T— ro

a e o

> 3 3 O 0) O C en .5 a> t— D) o c 00 o o .c O (A ^ <]} o « (A si CO 0- o •1 o in o si ^J c o a V) > a c "5 £ o a- 3 o to CM ro o o aT qT 1 U- o 1 2?

Mullard SOAR Page 10 — —

SOAR GENERAL EXPLANATORY NOTES

ai in t/i *A i/i m •n > 3. Ul Orr E o O .Om - O O rr o Q > If) _,^

ti-

o ll (/)

II >: "J >c "D a

O <> u X **— o—. rr J* to o < V/" O x: w u >- B X 1 n 1^ a hi ca n

1 0) CM o T— CD

a E u -x

vt Irt*; a. 3. E"E £ cj o o~p lis o £ ci"

' / £ 3 ; : J J; *fi* if ^ c c 3 o rr JZ \ # < o A v^ MA* r o .c e '/v ys* CO o // > ; $' v- — / C!

Q 03 CQ

E o

Milliard

SOAR Page II 82-5(xs the total cycle Consider pulse Pi: the equivalent pulse time t p i is and is 82-5/960 or 0086. The Vce and Ic time T is 960(xs. Therefore the duty cycle di the values recorded up to the end of the pulse time t p) are then plotted on SOAR within the curve for d = 01 as shown in Fig. 10. The locus of this plot falls well = this condition is acceptable. In figs. 10 to 12, the 5mA t p 100ns limit, therefore this makes no difference to the point is plotted on the 10mA line for convenience, result.

of pulses and P3 . The same procedure is followed for checking the acceptability P 2 the and Ic measurements recorded For P 2 the duty cycle is 420/960 or 0-44; thus Vce 0-5 in Fig. 1 For P 3 for pulse Pa are plotted on the SOAR curve for d = as shown 1. recorded for pulse the duty cycle is 70/960 or 0073, so the Vce and Ic measurements curve for d ="01 as in Fig. 12. P 3 are again plotted on the SOAR since not even the d.c. In all three cases the pulse conditions are acceptable break- SOAR limits are exceeded. Thus, the transistor will not fail through second down even when the amplifier is continuously overdriven.

Heatsink calculations

The heatsinks have to be designed to keep the junction temperature below the rating of 150°C. The known thermal restraints are the standard ambient tempera- ture of 60°C allowed for in television enclosures, and the thermal impedances associated with the BD131. The thermal impedance curves for the BD131 are shown is in Fig. 13, and the contact thermal resistance Rth(mb-n) 1 degC/W.

ai too e — oc i (deg C/W) o

o

= = R if) = d 1.0 th[i l =d

0.5 -

1.0 441

- I — T u d Z 0.1 Zih (to)) + thltol 1 TT ' = Steady state thermal resistance, d = --: (s) = Transient thermal impedance, d=0 (t0)

II in III I 0.01 5 7 2 5 7 2 5 2 5 7 2 5 7 2 5 7 -2 5 3 10" if* o- 10 V' 1 1 D

Pulse jurat ion (i 1

Fig. 13—Thermal impedance curves for BD131

Milliard SOAR Page 12 : T : t

SOAR GENERAL EXPLANATORY NOTES

The calculations used to determine the size of the required heatsinks involve average power values, as follows

Tmbmax-Ta Kth(h-a)= — K.th(mb-h), ••(.') "av where: Tmbmax=Tjmax — (Tj— Tmb)max. ...(2)

... T , f D /Tjmax-(Tj-Tmb)max-Ta\ D Therefore: Rthoi-a> = | |— Rth(mb-iu ...(3)

Two average powers have to be considered; that during the overload condition

and that during the quiescent state. Since this is a class A amplifier, 2W will be dissipated in each of the output transistors during the quiescent condition, and this will be the d.c. bias condition. Under the overload condition the average power

value is calculated as follows: average heat input per cycle

[(tpl = x Pl)+(tp2 x P 2)+(tp3 x P3)]/T, . . .(4)

=[(82.5 x2.24)+(420x0.15)+(70x 1.96)]/960 = — =0.4W. 960ys

The calculation of heatsink sizes should be determined under worst-case condi-

tions. This occurs when the quiescent state is followed by the overload conditions.

Since the average overload power is less than the quiescent power the first cycle of overload will define the (Tj— mb)max. The maximum value of (Tj—Tmu) is to be the greater of the two values given by the equations (5) and (6) below.

(Tj-Tmb)max = PQ xRth+(Pi-PQ)Zthtpi, . . .(5)

and (Tj -Tmb)max = PQ x R th +(Pi -PQ)Zth(tp i + t p2 +tp3 )

-(Pl-P2)Zth(tp2+tp3)+(P3~P2)Z thtp3, ...(6) where quiescent power Pq=2W tp3=70[«

Pi=2.24W R th =6degC/W

P2 =0.15W Zth tpi=0.72degC/W

P3 = 1 .96W Zth(tP i +tp2 + p3) =2.0degC/W

t P i=82.5[xs Zth(tp2 +tp3) = 1.8degC/W

t P i+t P 2+tp3 =572.5(is Zthtp3 =0.63degC/W.

t P 2+tp3 =490.0[xs

Mullard SOAR Page 13 T

Thus, Eq. 5 becomes:

(Tj-Tmb)max =(2x6) +(0.24x0.72) =(12+0.2) =12.2degC.

Eq. 6 becomes:

(Tj-Tmb)max=(2x6)+(0.24x2)-(2.09xl.8) + (1.81x0.63),

= 12+0.48-3.76 + 1.14 =9.9degC.

Therefore the maximum value of (Tj— Tmb) is 12.2degC from Eq. 5 .

Thus Eq. 3 becomes:

/150-12.2-60\ „ „ , Rth (h -a)= 1-1 =37.9degC/W.

Therefore the maximum value of (Tj— mb) is 12.2 degC from Eq. 5. Therefore heatsinks used for the BD131 transistors in this application should each have a thermal resistance of 37degC/W or less. The foregoing calculations

assume a contact thermal resistance value of IdegC/W, which is true only if a heat-

sink mounting compound is used.

APPENDIX I Transistor heatsink sizes

The heatsink size for any transistor can be found from the nomogram shown

in Fig. 14 provided that the power dissipation is no greater than 100W, and that the heat is dissipated by free convection. This nomogram should not be used where

forced air cooling is employed, or where heatsink material other than aluminium

is desired. The nomogram is operated as follows, with reference to the simplified curves in Fig. 15.

1) Calculate the worst-case dissipation Ptotmax and hence the thermal resistance

of heatsink to ambient Rth(h— a). Thus: Tmbmax— — Tamb _ Kth(h—a) — Ktli(mb—h) Ptot

2) Enter the nomogram in section 1 of Fig. 15. Move horizontally to the left until the appropriate orientation (either horizontal or vertical) and the appropriate

surface finish is reached.

3) Move vertically upwards to intersect appropriate power dissipation curve

(Ptot) in section II.

4) Move horizontally to intersect the curve in section III for the desired thickness

of sheet aluminium heatsink. If an extrusion is required, move vertically upwards

Mullard SOAR Page 14 SOAR GENERAL EXPLANATORY NOTES

from the point of intersection on the chosen extrusion curve and read off the required length on the top horizontal scale. (The 30D and 40D are shown in outline in Fig. 16. These types belong to the family of extrusions which has been used with Mullard power devices requiring special heatsink considerations, such as thyristor stacks and power . Similar curves for alternative extrusions could also be plotted in section III using the heatsink manufacturer's data

relating Rth(ii—a) and power, and length). 5) Move vertically down from point A in section III to intersect with the appro- priate curve for the transistor encapsulation style.

6) Move horizontally to the left and read off the required area of one side of flat aluminium heatsink. 7) The heatsink dimensions of height to width should not exceed the ratio 1-25:1.

-length of extruded heatsink (em) — 1 10 100 1 US/il

1 Mill 1 1 type of heatsink pawei dissipation 20W |

^ ^thickness of flat a urn mum 5W S &SJ7 heatsink(mm) 2W. ivy

"* !» 50 W>£ 1 extrusion^"

Z

ioowy 3

*> • I extr jsion e 400

Soo

(orientation ond type of envelope {surface finish z - / / 4 i /A •, ! A4 irigh t h orizont

Brigh t V crtical 1 black* ned ior zontal Mackc ncd ver ical ays" 10 i /'i * '.<<' » 6v % A A Yt \M0-3 and TO- P3 (plastic) /x ,^-10-66 end TO-220lplostiO / V TO -39 TO -126 / # '//

in //j # 1

Fig. 14—Heatsink nomogram. *(For outlines of extrusions see Fig. 16) Mullard SOAR Page 15 length of extruded heatsink (cm) U5/48

5 Fig. 1 —Simplified nomogram

-max 109-

LLO OJU max (a) 30D 32 27 hnn on

1 I m a* lb) 40D g

4 — max 109 ».

All dimensions in mm

Fig. 16—Outlines of extrusions: (a) 30D, (b) 40D

Milliard SOAR Page 16 TRANSISTORS

B =

DUAL N-CHANNEL BFQ10 FIELD EFFECT TRANSISTORS to BFQ16

Dual ri-charmel silicon planar epitaxial junction field-effect transistors inTO-71 metal envelope, with electrically insulated gates and a common substrate connected to the enve- lope; intended for high performance low level differential amplifiers.

QUICK REFERENCE DATA

Characteristics measured at Tamb = 25 °C; Irj = 200 \iA; Vjxj =15 V

BFQ10 11 12 13 14 15 16

Difference in AIG < 10 10 10 10 10 10 10 pA gate current |

Gate -source AV < 5 10 10 10 15 20 50 mV voltage difference GS | Thermal drift of dAV gate -source voltage GS < 5 5 10 20 20 40 dT 50 MV/°C difference

Transfer con- glfs > 0,98 0,98 0,98 0,98 0,98 0,95 0,95 ductance ratio g2fs < 1.02 1,02 1,02 1,02 1,02 1,05 1,05

Difference in A -J- < 6 6 12 12 12 20 30 Q transfer impedance gfs

Difference in gos A < 10 30 30 30 30 30 100 MV/V penetration factor gfs Common mode CMRR > 100 90 90 90 90 90 80 dB rejection ratio

MECHANICAL DATA Dimensions in mm TO -71 All leads insulated from the case

£0,48 4,8 a max max t

*- M _^ •« —\ max 12,7min

Milliard SEPTEMBER 1973 BFQ10 Page 1 RATINGS Limiting values in accordance with the Absolute Maximum System Voltages

Drain -source voltage ±VDS max. 30 V

Drain -gate voltage (open source) vDGO max. 30 V Gate -source voltage (open drain) -Vgso max. 30 V

Voltage between gate 1 and gate 2 ±Vig-2G max. 40 V

Currents

Drain current id max. 30 mA

Gate current IG max. 10 mA

Power dissipation

Total power dissipation up to Tamb = 75 °C Ptot max. 250 mW

Temperatures

Storage temperature l stg -65 to +200 °C

Junction temperature max. 200 °C

THERMAL RESISTANCE

junction to ambient in free air 0,5 °C/mW From Rth J -a

Mullard BFQ10 Page 2 DUAL N-CHANNEL BFQ10 FIELD EFFECT TRANSISTORS to BFQ16

CHARACTERISTICS (total device) Tamb =25 °C unless otherwise specified

Measured at: Irj = 200 uA; Vrjo = 15 V except for drain current ratio.

BFQ10 11 12 13 14 15 16 Drain current ratio 1) tiD-ISS > 0,97 0,95 0,95 0,95 0,92 0,90 0,80 VDG = 15 V; VGS = I2D-2SS < 1,03 1,05 1,05 1,05 1,08 1,10 1,20 Difference in |AIG < 10 10 10 10 10 10 10 pA gate current |

Gate -source kvGS < 5 10 10 10 15 20 50 mV voltage difference |

Thermal drift of d AVGS gate -source voltage < 5 5 10 20 20 40 dT 50 (jV/°C difference

Transfer con- glfs > 0,98 0,98 0,98 0,98 0,98 0,95 0,95 ductance ratio g2fs < 1,02 1,02 1,02 1,02 1,02 1,05 1,05

Difference in a-L < 6 6 12 12 12 20 30 Q transfer impedance 2) gfs

Difference in gos A < 10 30 30 30 30 30 100 uV/V penetration factor 3) gfs Common mode CMRR > 100 90 90 90 90 90 80 dB rejection ratio 4)

1) Measured under pulse conditions.

2) The difference in transfer impedance is equal to the ratio of the change of the gate- source voltage difference to the change of drain current, at constant drain -gatevoltage.

.. 1 d AVpc (A = —JT "° at Vnouu = constant) gfs dlD

3) The difference in penetration factor is equal to the ratio of the change of the gate -source voltage difference to the change of drain -gate voltage, at constant drain current. gos dAVGS (A = constant) gfs d VDG 4) Common mode rejection ratio

CMRR (in dB) = -20 log A-i21

gfs I

Milliard BFQIOPage 3 CHARACTERISTICS (Individual transistor) Tamb = 25 °C unless otherwise specified

Gate cut-off current < 10 A -VGS = 20 V; VDS = -less ° P < 20 nA -VGS = 20 V; VDS = 0; Tamb = 125 °C -IGSS

Gate current

I < 10 nA ID = 200 |JA; VDG = 15 V; Tamb = 125 °C G

Drain current

x °' 5 t0 10 mA ) VDS = 15 V; VGS = toss

Gate -source voltage

< 2,7 V I D = 200 uA; Vdg = 15 V "GS

Gate-source cut-off voltage

5 t0 3 ' 5 V ID = 1 nA; VDG = 15 V -V(P)GS °-

Transfer conductance at f = 1 kHz

> 1,0 mA/V ID = 200 |jA; VDG = 15 V gfs

Output conductance at f = 1 kHz < uA/V ID = 200 |jA; VDG = 15 V gos 5

Input capacitance at f = 1 MHz

8 pF 2) ID = 200 uA; Vqg = 15 V

Feedback capacitance at f = 1 MHz

1,0 pF 2 ID = 200 (jA; VDG = 15 V )

Equivalent noise voltage

I D = 200 pA; Vds = 15 V B = 0,6 to 100 Hz < 0,5 jjV

1) Measured under pulse conditions. 2) Measured with case grounded.

Milliard BFQ10 Page 4 DUAL N-CHANNEL BFQ10 FIELD EFFECT TRANSISTORS to BFQ16

10 J ^^ -VGS = 20V (nA) VDS =

lC

10

' tvp

10"

10"

-3 10 50 100 150 Tj (°C) 200

Mullard BFQ10 Page 5 10 1 — id 1 (mA) 1 V =15V typ. values DS 1 Tj = 25 °C Tj = 25°C 1 — 7,5

,

1

1

1 "V < GS=l n f — ± I L f 1 = m IX -VGS 0,5V. 2,5 / — / ir 1 yp \ n J V -f- t' f I y / miny f 7,5 5 2,5 10 15 -VGS (V) Vds

7Z6719 10

typ. values VDS = 15V + * f=lkHz [Yfs| T = 25°( (mA/V) amb <><$*^£ YCgS^^ i/ ^$>'

1

in-1

10" 10" I D (mA) 10 Mullard BFQ10 Page 6 DUAL N-CHANNEL BFQ10 FIELD EFFECT TRANSISTORS to BFQ16

s 7267187 10 I 1 1 1 1 1 1

typ. correlation between -V/pvjg 1 1 1 1 1 1 1 1 and IDSS iii - m In = 200 \x A V(P)GS ros| IV f=lkHz \ai iq iha; Vf)R-15V (MA/V) \$ Tamb = 25 C T|-25 °C 4

^ O^sfefc*,-v ^ S -jSci jo, ? \ N^pKi, ,^i/i ^ V -^^-th > ^ \ fV*5<^

1 1 2 - ^ x >L | «M ^ Ja&^Lj_ ^ ^ ^ ? 7 r

n 10" 5 10 10 15 20 !DSS at VGS = 0(mA) VDS (V)

10 7192 1 III" l l l l typ. values VDS = 15V |yos f=lkHz | 5° MA/V) Tamb = 2 C

1

JDSS - i" m;i.-"^*^

I DSS = 5 niA-' _] = tos: 5 0, 3 m.k-

io-i -2 10 10" 1 I D (mA) 10 Mullard BFQIOPage 7 >

7Z6718

10 VDS =15V 0,6 VDS = 15V - = Tamb = 25°C Tamb 25°C c '-'rs - is f = lMHz f = lMHz (pF) (pF) case grounded case grounded

7,5 0,5 .typ.

0,4

yp

2,5 0,3

n 9

2,5 5 7,5 2,5 5 7,5 -v (V) -VGS (V) GS

= <— vDs 15V 200 iA = 'amb :!5 °C 10z

10

3 4 10 10^ 10 10 £ (Hz) 10=

Milliard BFQ10 Page 8 N-CHANNEL INSULATED GATE BFR29 FIELD EFFECT TRANSISTOR

Depletion type, insulated gate, field effect transistor in a TO -72 metal envelope with the substrate connected to the case. It is intended for linear applications in

the audio as well as the i. f. and v.h. f. frequency region, and in cases where high input impedance, low gate leakage currents and low noise figures are of importance.

QUICK REFERENCE DATA V max. 30 V DB ±V max. 10 V GB = I V 15V ' V 0> 10 to 40 mA DSS< DS = GS = 1 1 min. (I = 5mA , = 15V , f 1kHz) 6.0 mA/V y D V

(T = = , f = -C max. 5mA , V^ 15V 1MHz) 0.7 pF rs D DS

Nmax. (I =5mA, V =15V, f = 200MHz,

G =lmA/V, B = optimum) 5.0 dB

V /•/Btyp. = 5mA, =15V, f=lkHz) 100 nV/VHz UD V

OUTLINE AND DIMENSIONS

Conforms to BS 3934 SO-12A/SB4-3 J.E. D. E.C. TO -72

0.48 max

us M max =z£

. 5.3 _ 12.7 . max min

* Substrate connected to envelope

All dimensions in mm

NOTE

To exclude the possibility of damage to the gate oxide layer by an electrostatic charge building up on the high resistance gate electrode, the device is fitted with a conductive rubber ring around the leads. This ring should not be removed until after the device has been mounted in the circuit.

Mullard FEBRUARY 1972 BFR29 Page I )

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical V max. Drain -substrate voltage 30 V DB V max. Source -substrate voltage 30 V SB max. Gate -substrate voltage (continuous) 10 V ±VGB ±V max. Repetitive peak gate voltage G .N (gate to all other terminals) V V °' f>100HZ 15 V SB= DB = 20 mA I max. Drain current (d. c.

maX - Peak drain current TjM t =20ms, d = 0. 1 50 mA r P max. Total power dissipation tot 200 mW . < Tamb — 25°C

Temperature T Storage temperature -65 to +125 stg. T max. Junction temperature 125 J THERMAL CHARACTERISTIC Thermal resistance, junction th(j-amb) to ambient, in free air 0. 5 degC/mW

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) Min. Typ. Max.

Gate current, V =0 - 10 pA V 10V ' V GSS GS = DS=° = 10 pA J V 10V ' V GSS GS = DS ° - = = = 125"C 200 pA V 10V ' V 0, T ^GSS GS DS J = = 125C 200 pA V 10V ' V GS DS ' Y Substrate current, V_, =0

= 30V, I =0 10 HA BDO BD = 30V, 10 liA BSO V Drain current TJSS V. 15V,V = 10 40 mA DS Gg

-V Gate -source voltage GS I^lOOnA.V^lSV 0.5 3.5

Milliard BFR29 Page 2 )

N-CHANNEL INSULATED GATE BFR29 FIELD EFFECT TRANSISTOR

ELECTRICAL CHARACTERISTICS (contd. Min. Typ. Max.

-V Gate -source cut -off voltage (P)GS I = 100iA,V = 15V 4.0 V D DS

N Noise figure at f = 200MHz

T = 5mA, V = 15V , T , = 25°C D DS amb

G = ImA/V , B = optimum 5.0 dB

V /VB Equivalent noise voltage, T =25 C

I = 5mA, V = 15V, f= 120Hz 300 nV/VHz D DS f = 1kHz 100 nV/VHz f=10kHz 35 nV/VHz

y -parameters

I =5mA,"""*' V_.„ = *"'15V, T = 25°C *D 'ds ' 'amb

Transfer admittance at f = 1kHz 6.0 mA/V 'fs'

Output admittance at f = 1kHz 0. 4 mA/V

Input capacitance at f = 1MHz 5.0 pF

Feedback capacitance at f = 1MHz 0.7 pF

Output capacitance at f = 1MHz 3.0 pF

Mullard BFR29 Page 3 -

20 dp ^^ vBS = j

*U dp itlB-b Xd -k^s (mA) ^ s- VDS -lbV 15 Tamb-25 C r-V typical curves N^ A

»v 10 -^ ^ 5

-2 -2 5 -1. 5 -1 -0. 5 c Vr, c( /) 0.

Mullard BFR29 Page 4 —

N-CHANNEL INSULATED GATE BFR29 FIELD EFFECT TRANSISTOR

typical curves 20 V DS =15V

Id (mA)

15

Vgs = + 0-5V

10 U

0.5V

-1V

-1.SV

50 100 Tj (°C) 150

03867 | 15 | — I

| ] V s=15V iOO VDS =15V D Vbs = Ves = l"fsl

I '0,1 f=1kHz f=1kHz (mA/V) (uA/V) C Tamb --25°C ^amb-25

300 10 y v

lyp

200

5

100 I / / / /

10 20 I D (mA) 30 10 In (mA) 20

Mullard BFR29 Page 5 . T 1

03666 3 10' 10' 10 —- -H+- zX-—

T -- In = bis b Crs 9is T rs 15V (pF) (uA/V) I (mA|VI (uA/V) = 25°C J

/s,s / 2 y 10 ---- /L^ -c£ * As /\,

10"1 10

— . . cal curves -- 5mA

= Vds 15V i Tomb = 25°C

10"' I I Mil J 2 3 2 (MHz) 10 10 10 f (MHz) 10 10 f

D3870 3 i 10 10 ——1 1 1 1

typic al curves b» s 9 fs - Id =e 9os ~y (mA|VI Vds = 15V luA/V) ~t "bfs boy^ 7 ImA/V) 25°C -+ J

fi C.—A 10 2 10

9fs

10" 1 10

+ n ; cal curves --

Vds M5V " bfv lamb = 25°C

1 I I Mil 2 3 2 3 (MHz) 10 10 f (MHz) 10 10 f

Mullard BFR29 Page 6 -

N-CHANNEL INSULATED GATE BFR29 FIELD EFFECT TRANSISTOR

m 7?

I I I I I typical curves Tamb = 25 C typical curves 0.6 U Tamb=25°C — ^ ^ r-* *^ Cis ^ -c rs — --. = *»- ^DS (pF) (pF) \ 5V \ . > / 15V \ 0.5 / \v / N^ LVps = 5V p

0.4 2 15V~j^ R-

i

0.3 1 ! i

II

-5 + 2.5 -2.5 Vr,<={V> -5 + 2.5 -2.5 VGB (V)

Mullard BFR29 Page 7 Hmin. N-CHANNEL SILICON BFR30 TRANSISTORS FIELD EFFECT BFR31

N -channel silicon planar epitaxial junction field effect transistors in microminiature encapsulation. They are intended for low-level general purpose amplifiers in thick and thin film circuits.

QUICK REFERENCE DATA

±V max. 25 V DS - V maX - 25 V GSO

P max - 200 mW tot amb^ BFR30 BFR31

I =0) min. 4.0 1.0 mA (V 10V ' V DSS DS = GS max. 10 5.0 mA

(I ' = lmA ' V = 10V l^sl D DS min. 1.0 1.5 mA/V f = 1kHz) max. 4.0 4.5 mA/V

Unless otherwise stated data are applicable to both types

OUTLINE AND DIMENSIONS

max Identification code:M1 = BFR30 M2=BFR31

All dimensions in millimetres Plan view from above

Milliard JULY 1973 BFR30- Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

±V,_,„ max. Drain -source voltage 25 V DS max. Drain -gate voltage (open source)ource) 25 V 'dgo "V^,^^ max. Gate-source voltage (open drain) 25 V GSO

l max. Drain current 10 mA D

I max. Gate current 5.0 mA

max. Power dissipation (T 25°C) tot amb mounted on a ceramic substrate of 7 x 5 x 0. 5mm 200 mW Temperature

T Storage temperature -65 to +150 stg r. max. Junction temperature 150 j THERMAL CHARACTERISTICS

R Thermal resistance between junction th(j-amb) and ambient, the device mounted on a ceramic substrate of 7 x 5 x 0. 5mm 0.62 C/mW

ELECTRICAL CHARACTERISTICS (T 25 C unless otherwi 3e stated)

Min. Max.

Gate cut-off current GSS - 10V - V < V 0.2 nA GS = DS=° Drain current DSS 10V, V BFR30 4.0 10 mA DS GS BFR31 1.0 5.0 mA

Gate -source voltage GS I = lmA,V = 10V BFR30 0.7 3.0 V D DS BFR31 1.3 V

50nA, V. 10V BFR30 - 4.0 V DS BFR31 2.0 V

Gate -source cut-off voltage (P)GS - 0. 5nA , V 10V BFR30 5.0 V D DS BFR31 - 2.5 V

Milliard BFR30- Page 2 Hmin.N-CHANNEL SILICON BFR30 FIELD EFFECT TRANSISTORS BFR31

ELECTRICAL CHARACTERISTICS (contd.

Min. Max.

y-parameters, T = 25 C ' amb

Transfer admittance at f = 1kHz

I = lmA,V = 10V BFR30 1.0 4.0 mA/V D DS BFR31 1.5 4.5 mA/V

20 V 10V BFR30 0.5 mA/V t = °^' DS = BFR31 0.75 mA/V

Output admittance at f = 1kHz 40 fiA/V I = lmA,V = 10V BFR30 D DS BFR31 25 fiA/V

20 ^A/V : 200nA, V = 10V BFR30 BFR31 15 HA/V

C. Input capacitance at f = 1MHz 1mA, V 10V 4.0 pF D DS 4.0 pF = 200fiA , V 10V DS

Feedback capacitance at f = 1MHz,

I = 1mA, V = 10V, T =25°C 1.5 pF D DS amb 1.5 pF = 200/iA, V „ = 10V, T , =25°C ID DS amb

Equivalent noise voltage

I = 200mA, V = 10V D DS B = 0. 6 to 100Hz 0.5 MV

Mullard BFR30- Page 3 D33i1.1 33333 10 6 typical correlation between -V -VGS =10V (P)GS v =o DS and I 'gss DSS "

V | (nAI 1 1 (PIGS [ at I D = ).5nA

in'

2 m-2

*•

3 ' [ ,n _lL_J | 50 100 150 TiCC) 5 10 Idss °* VGS = ImA)

D3331 6

I I

. Id ±n — typical values VDS =10V (mA) ImAI VOS =10V

-Vr,s = 0V 4

-

"0.5^ _

s=

U. 2

, 1 (14 - 1.5 0.6 0.8 — ? _ T > -L 1

n 25 75 Tj (°C) 125 25 75 Tj (°C) 126

Milliard BFR30- Page 4 ,

M min. N-CHANNEL SILICON BFR30 FIELD EFFECT TRANSISTORS BFR31

D3329 15 BFR30

V DS =10V I Tj = 2 5°C in typical values ImA]

10 /

i / " - • / / \l' / s "-i 1 p ** •* 5 r- ' y ' 0.5 I / ty p 1 f , 1- > /<- _ * f ' / 1 «- m n - -1 S - ' ' 2 '

. T• • -' f V (V) 10 U -Vos (V) 2 5 DS

- BFR31

V DS -.u. Tj = 25°C Id _, - ImA) in=25 J. — f-

~l I _ Vgs -nv

1 : r f : ^-t 0.2 — — max--f -j *- •^^" ^ / ^ - . 2 _/ // / 1 [/ I | ^typT ** 4^ -0.6 7 r r/

r 7 I i /--jC— J_^_ OR ^— V— min»- y .1 y- 1.2 _/ 7 E*" — T* "7 .._ I I E ^t 10 U -V GS (V) 5 V DS (V)

Milliard BFR30- Page 5 10 D333i

I !

IVfsl ImA/V] typical values VDS =10V f = 7.5 1kHz Tamb=25°C

_ BFR31 BFR30 -

2 5 ~

5 In ImA) 6

100 D3335

I

|Vos| — typical values HA/V) V05 =:10V f =1kHz 75 Tamb = 25°C

50

BFR30

-E3FR31 25

5 I n ImA) 6

Mullard BFR30- Page 6 y

H min. N-CHANNEL SILICON BFR30 FIELD EFFECT TRANSISTORS BFR31

4 10 1 T"" — 1 — I typical values - f = 1kHz IVosI JQm b=2S°C (uA/V) I

3 10 4- 1 I i 4 \ \ \ ii d- 4niA 10' —

1mA BFR30 —BFR31 10 10 20 V DS (V) 30

7.5

V =10V VD5 =10V DS f=1MHz Cis f=1MHz T„mb=25°C -C rs Ta m b = 2 5 C (pF) (pF)

_ty_D

2.5 0.5 •t yp

2.5 -V (V) 2.5 -VGS (V) 5 M

Milliard BFR30- Page 7 - — "u — — :- -4444m—t= 44- e„ ~ 1- — V =10V DS nV fN Tt T a a,b=25°C

! ^ ' *~ ! | BFR31 I = mA 10 3 D -^.o. I.. _

10 2

h - ...... j. — typ 10

T

—i-

- - '* ! t-t M - = = BFR30 ~f ! 4 "j" 4^1-p # —h4

I 1 ! ill i; 1 jl

J 10 10* 10 10<* 10 5 10 6 f (Hz) 10 7

lO'pr: ~ - - -- I Mlllll 444- ...... _._...

FA — Tamb = 25°C

BFR30 I D = 4mA - BFR31 I =1 mA 10 3 D " — ~7 -_: - "ill

10' ___ _ (31

10 - :S — t"

i . .... _j_.

10 10 y 10 3 10^ 10 b 10 6 f (Hz) 10 7

Milliard BFR30- Page : . . . .

N-P-N SILICON PLANAR BFR63 EPITAXIAL TRANSISTORS BFR64

N-P-N multi-emitter silicon transistors in capstan envelopes. The transistors have extremely good intermodulation properties and high power gain. The devices are intended {or output (a) Final and driver stages of channel and band aerial amplifiers with high power for band I, II, III and IV/V (40 to 860MHz)

(b) Final and driver stages of wideband amplifiers (40 to 230MHz)

(c) Final stages of the wideband vertical amplifier in high speed oscilloscopes

(d) Frequency multiplier and oscillator circuits

QUICK REFERENCE DATA

V maX (Peak ValU6) 40 V CBOM " 25 V maX - VCEO 500 mA

f 3 5 W P max. (T , -<60°C, ->lMHz) tot mb T. max. 150 °C

J BFR63 BFR64

1200 f min. (f = 500MHz, I = 75mA, V = 20V) 1000 MHz c CE

P typ. (f = 200MHz, I = 70mA, o C V„ =20V, d. = -30dB) 150 150 mW CE lm

(f = I = 70mA, V = 20V) 16 16 dB G typ. 200MHz, CE

Unless otherwise stated data is applicable to both types

OUTLINE AND DIMENSIONS

For details see page 2

Milliard JANUARY 1971 BFR63-Page 1 OUTLINE AND DIMENSIONS

Millimetres

Min. Max.

A 5.25 5.75

Bl 0.107 0.147

B2 0.7 1.1

B3 5.60 5.85

0D1 9.0 9.6

0D2 2.7 2.9

E 10.5 10.7

F 1.0 1.5

H 25.0 29.0

L 14 nom.

M 1.4 1.6

N 11.2 12.0

Nl - 1.6

N2 7.5 8.5

N3 2.93 3.68

Q 2.85 3.00

Diameter of hole in heatsink: max 4. 17mm

Torque on nut

min. 7.5kg cm (0.75Nm)

max. 8.5kg cm (0.85Nm)

When looking is required, an adhesive instead of a lock washer is preferred.

Mutlard BFR63-Page 2 N-P-N SILICON PLANAR BFR63 EPITAXIAL TRANSISTORS BFR64

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical = lOOuA) 40 V V max . (peak value , I„ CBOM C = = 40 V V maX

£ >1.0MHz) 500 mA CM max. (peak value, 3.5 W (T . <60°C, f >1.0MHz P max. - - tot mb™h - Temperature

-40 to +150 stg T. max. 150 J THERMAL CHARACTERISTIC R 25 degC/W th(j-mb) 0.5 degC/W R., th(mb-h) ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) Min. Typ. Max. Collector cut-off current CBO V = 2 °V 10 fiA V ' CB Collector-emitter saturation voltage CE(sat) 0.75 I = 100mA, I = 10mA C B

Static forward current transfer ratio FE I = 50mA, V = 5V 25 c CE I = 150mA, V- = 5V 25 CE

Collector capacitance Tc 4.5 pF I =i =o, V =20V, f=1.0MHz E e CB

-C Feedback capacitance

I = 10mA, V = 20V, f=1.0MHz, CE = 1.7 PF T ,. 25 C mb

Noise figure

I =40mA,= 40mA, V\ = 20V, c CE dB = R =75£2, T = 25°C 6.0 f 200MHz, mb

Mullard BFR63-Page 3 ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ Max. f Transition frequency at f = 500MHz - I = 15mA, V„ =20V BFR64 1000 MHz

- I = 75mA, V = 20V BFR63 1000 MHz c CE BFR64 1200 - MHz

- I = 150mA, V„ =20V BFR63 1100 MHz BFR64 - 1200 MHz

Output power at f = 200MHz, T = 25°C

I =70mA, V„ =20V, v.s.w.r. at output < 2 C CE f =202MHz, f = 205MHz, d. = -30dB p q lm measured at f _ =208MHz (channel 9) ( q P) BFR63 150 mW BFR64 130 150 mW

**Output power at f = 800MHz, T = 25°C h

I =70mA, V„ =20V, v.s.w.r. at output <2 C Cb

f = 798MHz, f = 802MHz, d. = -30dB P q lm measured at f = 806MHz (channel 62) - < 2q p> BFR64 70 90 mW

Power gain (not neutralised)

I = 70mA, V =20V, T =25°C, C CE mb f= 200MHz BFR63 16 dB BFR64 15 16 dB

f= 800MHz BFR64 dB

*See test circuit etc. on Page 5

**See test circuit etc. on Page 6 CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Dept. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from the Service Department, Mullard Limited, New Road, Mitcham, Surrey.

Mullard BFR63-Page 4 N-P-N SILICON PLANAR BFR63 TRANSISTORS EPITAXIAL BFR64

ELECTRICAL CHARACTERISTICS (contd.)

Intermodulatlon characteristics

1. Output power at f = 200MHz, T =25°C

I =70mA, V„ =20V, v.s.w.r. at output <2, C CE t =202MHz, t = 205MHz, d. 30dB, p q lm measured at t 208MHz (channel 9) (2q-p)

Test circuit

BFR63 or BFR64

R S =50A

L = 3 turns of 1.4mm silver plated copper wire, winding pitch 2.7mm, int. dia. 8mm, taps 1.5 and 0.5 turns from earth. L =5.5 turns of 1.4mm silver plated copper wire, winding pitch 2.2mm, int. dia. 8mm. L = 3 turns of 1.4mm silver plated copper wire, winding pitch 3.3mm, int. dia. 8mm. L = 5.5 turns of 1.4mm silver plated copper wire, winding pitch 2.2mm, int. dia. 11mm.

Basis of adjustment = Intermodulation distortion at dj m -30dB is caused by clipping in h.f . output cur- rent and voltage. The maximum undistorted output power is attained when

(a) Clipping in current and voltage is simultaneous; this occurs if ^oad^CE^cek^C

Where V is the high frequency knee voltage

Milliard BFR63-Page 5 ) .

ELECTRICAL CHARACTERISTICS (contd.)

Basic of adjustment (contd .

(b) The h.f . collector current is as low as possible; this occurs if

load oe

Where C is the output capacitance of the transistor with short-circuited input.

Experimentally obtained values of R and C , for maximum output power at

an intermodulation factor of -30dB, are:

220S2, C -4pF load load

Procedure

1. Remove the transistor and connect a dummy load, consisting of a 220S2 resistor in parallel with a 4pF capacitor, between the collector and the emitter connec- tions of the output circuit

2. Tune and match the output circuit for zero reflection at 205MHz (i.e. v.s.w.r.=l).

3 . Replace the dummy load by the transistor . Tune and match the input circuit for maximum power gain and good bandpass curve. The v.s.w.r. of the output will then be < 2 over most of the channel. Corrections can be made by tuning L2, this will not disturb the bandpass curve.

U Output power at f = 800MHz, T = 25 mb C I = 70mA, V„ =20V, v.s.w.r. at output <2,

f = 798MHz, f = 802MHz, d = 30dB, p q 1m = measured at f ,„ , 806MHz (channel 62) (2q-p)

Test circuit

12pF

50 n

R S = 50A

Choke

L^ = 25 x 7 x 0.85mm silver plated copper strip, input tap at 5mm from earth. L2 = 13 turns of 0.6mm enamelled copper wire, int. dia. 8mm. L3 = 1.5 turns of 1.3mm copper wire, int. dia. 8mm.

Milliard

BFR63-Page 1 .. .

N-P-N SILICON PLANAR BFR63 EPITAXIAL TRANSISTORS BFR64

ELECTRICAL CHARACTERISTICS (contd.)

Basis of adjustment

At 800MHz a dummy load cannot be used to adjust for optimum collector load, because at these frequencies the impedance transformations of the dummy load are too high

A small signal with a frequency of the midchannel 802MHz is fed to the input. The signal is increased until clipping occurs, that is until the output power no longer to allow increases linearly with increasing input signal . Care should be taken not the voltage swing to exceed the V^ER value as this may result in the destruction of the transistor by second breakdown

The output circuit is then tuned to eliminate clipping.

output is given The PQ by Po^C^CE^cek)/^ 480^

where V is the high frequency knee voltage

Keeping the input signal as small as possible at P = 480mW, the output circuit is maxi- adjusted for minimum intermodulation . The input circuit is then adjusted for mum gain and good bandpass curve. The v.s.w.r. is found to be £2 over the whole channel

Mullard BFR63-Page 7 0236 3 10 l l l

1 1 1 1 Tmb=85°C 1c

(rnA) n

2

2 10 \ \ \ \

i \ \

10 \

5

z VCE (V) 10

Safe Operating Areas with the transistor forward biased

I Region of permissible d.c. operation

II Permissible extension for repetitive pulsed operation; f >lMHz

III Repetitive pulsed operation in this region is allowed, provided RBE < 10J2 and f >lMHz

Milliard BFR63-Page 8 N-P-N SILICON PLANAR BFR63 EPITAXIAL TRANSISTORS BFR64

100 r

5V Tj = 25' C

80 \\ \\

60

40 ! J s m2 Ic (mA) 10

2000

typical values f=500MHz Vce = 20V Tj=25°C ^ (MHz) = r •k '* r; Xs, y4 ,4 \v , // \v 1000 y \v Jr BFR64 ,r ^ \ BFRi t* > '

10

Mullard BFR63-Page 9 f = 1MHz I E =Ie = Tj = 25°C

(pF)

typ

20 VCB (V) 30

Milliard BFR63-Page 10 N-P-N SILICON PLANAR BFR90 EPITAXIAL U.H.F. TRANSISTOR

Silicon planar epitaxial n-p-n transistor in a plastic T -package. It is primarily intended for use in u. h.f. and microwave amplifiers such as aerial amplifiers, radar systems, oscilloscopes, spectrum analysers etc. The transistor features very low intermodulation distortion, high power gain and excellent wideband pro- perties combined with very high transition frequency and a low noise figure.

QUICK REFERENCE DATA V maX 20 V CBO

V m3X - 15 V CEO

I max. 25 mA

P max. (T £ 60°C) 180 mW tot amb T. max. 150 °C

tj-typ. (I = 14mA, V „ =10V, f = 500MHz) 5.0 GHz C Ct,

-C typ. (1 =2mA, V„=10V, f=lMHz) 0.4 pF re C CJi N typ. (I =2mA, V =10V, f = 500MHz) 2.4 dB C Ch G (1=1 4mA, V =10V, f=500MHz) 19.5 dB UM ^ C Ch = = 75fi d tyP " (I 14mA, V^ =10V, R T im C Ch L- V =150mV, f, =493. 25MHz) -60 dB o (p+q-r)

OUTLINE AND DIMENSIONS

0,5 n 4,8 max

0,24 0,10

0,9 2,7 max

All dimensions in mm

Milliard SEPTEMBER 1972 BFR90 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX - 20 V CBO

V maX " 15 V CEO

V maX - 2,0 V EBO

I max. 25 mA

P max. (T ^^60°C) 80 mW tot amb

Temperature

T -65 to +150 stg

T max. 150 i

THERMAL CHARACTERISTIC

R in free air, mounted on a '- 1 m ' glass -fibre print of 40 x 25 x 1mm (see fig. 1) 0.5 C/mW

Fig.l

Requirements for a glass -fibre print

Milliard BFR90 Page 2 )

N-P-N SILICON PLANAR BFR90 EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T.=25 C unless otherwise stated) Min. Typ. Max.

Collector cut-off current CBO i =o,v = iov 50 nA E CB

"Static forward current transfer ratio FE I = 14mA, V = 10V 25 50 CE

"Transition frequency

I = 14mA, V_=10V, f = 500MHz 5.0 GHz C Cb

Collector capacitance Tc I =i =0, V =10V, f=1.0MHz 0.5 pF E e CB

Emitter capacitance Te I =1 =0, V„ =0. 5V, f=1.0MHz 0.8 pF C c EB

Feedback capacitance at T , =25 C amb

I =2. 0mA, V_, =10V, f = 1.0MHz 0.4 pF C CE

Noise figure at optimum source

impedance and T . =25°C ^ amb

I =2. 0mA, V^ =10V, f = 500MHz 2.4 dB C Cb

UM Maximum unilateralized stage gain at T , =25°C amb Calculated from s -parameters:

2 ,- i fel GUM = 101°S ~ S ^> S ° > lol | oo!

I = 14mA, V,-, =10V, f = 500MHz 19.5 dB C v-fc.

'"Measured under pulsed conditions.

Milliard BFR90 Page 3 . ) ^ 5 1

ELECTRICAL CHARACTERISTICS (contd.

Mln. Typ. Max.

Intermodulation distortion at T , =25 C amb = = 75S2, <2 I =14mA,V„, 10V, R T V.S. W.R V =V =150mVatf =495. 25MHz p o p V =V -6dBatf =503. 25MHz q o q V =V - 6dB at f = 505. 25MHz r o r -60 measured at f . = 493. 25MHz dB (p+q-r) *2UV Intermodulation test circuit

820X1

680pF —]|—07511

75H.O T.U.T.

16X1

LI =4 turns of Cu wire (0. 35mm) winding pitch 1mm, int.dia. 4mm L2=L3 = 5fiH - ' 30 Bs 1 1 1 1 Gain versus frequency (mA/V) \ ov v\ V =10V (dB) 50 CE \ s. Ic='4 mA l = * 3 *- = a mb 'amb 25"C \> alues vS 20 ^ 7 *- ^ ™ ^ ^ 5^ — — A. "" ™ ^ ~~ 2! i£ ^ s* 5 — 5 y 2 _j& ""^ ^ C -35 \ *KI ~\ _flt S — t^ — L— W , I" L 9 / S V GUM 1 \_J-^' — j ** n"-' j!k > / / ' — "* s 2 K§ ^ j ...i\ U\ NV"'' ^^ j*^ ^^c;_5" ^! *- -._.- **

|

-50

57-2 57, 2i2 3 10 10 f(MHz) HT 50 G s (mA/V) 100

Constant noise figure circles

Milliard BFR90 Page 4 N-P-N SILICON PLANAR BFR90 EPITAXIAL U.H.F. TRANSISTOR

1 E = I, = 100 VCE =10V T = 25°C j

(pF) f = 1MHz hFE

75 0.8

50

0.6

Typ. 25

0.4 10 V (V) 20 20 I c (mA) 30 CB

D4717

i

| ]c =KmA fT f = 500MHz

(GHz) fyp- (GHz) T =25"C j

j / T - / ** * >+ * / r i f

VCE =10V

f = 500MHz T = 25 ,'C j

10 V (V) 20 20 I c (mA) 40 CE

Mullard BFR90 Page 5 N (dB) VCE =10V Ic =2mA 7.5 Zs = opt. Tamb = 25°C

Typ.

2.5

* f(GHz) 10

vCE =iov N f = 500MHz (dB) Zs= optimum Ub=25 C

15 I c (mA) 20

Mullard BFR90 Page 6 N-P-N SILICON PLANAR BFR90 EPITAXIAL U.H.F. TRANSISTOR

V 10V CE =

I = 14mA

Tamb, =25°C

Input impedance derived from input reflection coefficient Sj e coordinates in ohm x 50

90°- V =10V ^C=:::=! CE 120°^*^ ^!5?°

I = 14mA T = 25°C amb \^1000MHz N 150^/

\ \\ H ^oo\/\ \ \ w

0.05 | 0.10 0.15 I V 180'>| (

/ n

° 30 150 \C /7

120°^^-^ --s^^o D4721 Feedback coefficient s 90°

Milliard BFR90 Page 7 VCE = 10V

I = 14mA

T = 25°C ambU

Output impedance derived from output reflection coefficient s oe coordinates in ohm x 50

V = 10V CE 90°

I = 14mA nti^? ^60° T = 25°C ambU

r-200 150°//

' TypA^ *50o{ V H \ \\ + M> \80CiV^ \ w *l000MHz 20 ,0 10 20 180' I I \ 1 II

/ U

° 30 \i /y

120^^3- %o° Di723 Forward transfer coefficient s fe 90°

Mullard

BFR90 Page I N-P-N SILICON PLANAR BFR91 EPITAXIAL U.H.F. TRANSISTOR

Silicon planar epitaxial n-p-n transistor in a plastic T -package. It is primarily intended for use in u. h.f. and microwave amplifiers such as aerial amplifiers, radar systems, oscilloscopes, spectrum analysers etc. The transistor features very low intermodulation distortion, high power gain and excellent wideband pro- perties combined with very high transition frequency and a low noise figure.

QUICK REFERENCE DATA

V m3X - 15 V CBO

maX - 12 V VCEO

I max. 35 mA

max. (T s 60 C) 180 mW amb T. max. 15Q °C

J

f typ. =30mA, V,., -5V, f = 500MHz) 5.0 GHz T ^ = 0.8 pF -C typ.' y ,. =2mA, V =5V, f lMHz) re C Chi

= = = dB N typ. lV. 2mA, V , 5V, f 500MHz) 1.9

. V = 16.5 dB GUM W - =30mA, =5V)f 500MHz

= = d typ - ^ 30mA, V^ =5V, R, 75Q im C CE L V =300mV, f, =493. 25MHz -60 dB o (p+q -r)

OUTLINE AND DIMENSIONS

5 mc X

i 1 \ ! 6,8 max

i

0,2(4 -J -i -i I- >- max 0,10 0,8 1,3 •- 1,6 max 0,9 2,7 ma X

All dimensions in mm

Milliard SEPTEMBER 1972 BFR91 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V m3X - IS V CBO

V maX - 12 V CEO

V maX - 2.0 V EBO

I max. 35 mA

P max. (T u =s60°C) 180 mW tot amb

Temperature

T 65 to +150 °C stg

T max. 150 °C J

THERMAL CHARACTERISTIC

R in free air, mounted on a -1 glass -fibre print of 40 x 25 x lmm

(see fig. 1) 0.5 C/mW

Fig. 1

Requirements for a glass -fibre print

Mullard BFR91 Page 2 N-P-N SILICON PLANAR BFR91 EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise stated) J Min. Typ. Max.

Collector cut-off current CBO I =0,V = 5.0V 50 nA E CB

!: Static forward current transfer FE ratio

I =30mA, V = 5.0V 25 50 c CE

"Transition frequency

T = = 30mA , V^ = 5. OV , f 500MHz 5.0 GHz C CE

Collector capacitance Tc I =1 =0, V^ =10V, f=l. 0MHz 0.7 pF E e CB

Emitter capacitance "Te = I=i =0, V T,„ 0. 5V, f=1.0MHz pF C c EB

-C Feedback capacitance at T , =25 amb C

I =2. 0mA, V„ =5.0V, f=1.0MHz 0.8 pF C CE

Noise figure at optimum source = impedance and Tamb, 25°C

I = 2.0mA, V„„ =5.0V, f = 500MHz 1.9 dB

UM Maximum unilateralized stage gain atT = amb 25°C Calculated from s -parameters:

1= 12 fe = GUM 101°S <*)(! A (1 s \ ) te I oe I

I = 30mA, V^ =5. 0V, f = 500MHz 16.5 dB C CE

''Measured under pulsed conditions.

Mullard BFR91 Page 3 10

N (dB) VCE =5V = I c 2mA 7.5 Z s = opt. Tamb=25'C

IWyf

2.5

f(GHz)

VCE = 5V N f = 500MHz (dB) Z s = optimum Tamb=25'C

Typ

20 30 I c (mA) 40

Mullard BFR91 Page 6 N-P-N SILICON PLANAR BFR91 EPITAXIAL U.H.F. TRANSISTOR

V 5V CE =

I = 30mA

T = 25°C ambU

Input impedance derived from

input reflection coefficient Sj e coordinates in ohm x 50

90° ^ nti^s^ :==:::c:: 00 ^il V = 5V CE

I = 30mA

T , amb =25°C 150°// Typ^KSOO \ ><^ Vi

"~7f500 \^\ \ \\

^200^\ \ \ \ \

0.10| 0.20 1 180' \ \ 1

° 150 30 V^ ~^jx / //

120°^^^ ^-c^^o" Feedback coefficient s 90°

Mullard BFR91 Page 7 VCE= 5V

I = 30mA

Tamb,=25 C

Output impedance derived from output reflection coefficient s oe coordinates in ohm x 50

V 5V CE =

I = 30mA T =25°C amb

Forward transfer coefficient s^ e

Mullard

BFR91 Page i Mmin. N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR BFR92

Silicon n-p-n planar epitaxial transistor in a micro -miniature plastic envelope. It is primarily intended for use in u. h.f. and microwave amplifiers in thick and thin film circuits, such as in aerial amplifiers, radar systems, oscilloscopes, spectrum analysers, etc.

QUICK REFERENCE DATA

V max. 20 V CBO

maX - 15 VCEO V

x max. 25 mA c

P max. (T , ==60°C) 180 mW tot amb T. max. 150 °C j f typ. (I = 14mA, V „ = 10V, f = 500MHz) 5.0 GHz T C CE -C typ. (I„ = 2mA, V„„ = 10V, f = 1MHz) 0.7 PF re C Lb N typ. (I = 2mA, V_„ = 10V, f = 500MHz) 2.4 dB C Cb G typ. (I = 14mA, V_„ = 10V, f = 500MHz) 18 dB UM C GE d typ. (I = 14mA, V_,„ = 10V, R, = 75S2, V = 150mV, lm C CE L o f(p+q-r) = 493. 25MHz, see also page 4) -60 dB

OUTLINE AND DIMENSIONS - For details see page 2

2-r x actual size

Milliard MARCH 1973 BFR92 Page 1 OUTLINE AND DIMENSIONS

All dimensions in millimetres

Plan view from above

Identification code: P1 = BFR92

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical V max. 20 V CBO V max. 15 V CEO V max. 2. V EBO

1 max. 25 mA

, P max. , T , < 60 C mounted on a ceramic tot amb — substrate of 15 x 10 x 0. 5mm 180 mW

Temperature

T -65 to +150 C stg

T . max. 150 °C 3 THERMAL CHARACTERISTIC

R Thermal resistance between junction th(j -amb) and ambient, the device mounted on a ceramic substrate of 15 x 10 x 0. 5mm 0. 50 C/mW

Milliard BFR92 Page 2 umin. N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR BFR92

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated) Min. Typ. Max.

Collector cut-off current 'CBO I °' V =10V 50 nA E = CB

h * Static forward current FE transfer ratio

I = 14mA, V = 10V 25 50 c CE

fT *Transition frequency I = 14mA,V14mA, V =10V,= f = 500MHz 5.0 GHz cC CE

C Collector capacitance Tc I =1 =0, V^ =10V, f=1.0MHz 0.75 pF

C Emitter capacitance Te =1 =0, = f = 1.0MHz 0.8 pF I V T, D 0.5V, 'C^C^EB^C c EB

-C Feedback capacitance, T = 25°C re amb

I = 2.0rnA,V = 10V, f=l. 0MHz 0.7 pF c CE

tNoise figure at optimum source impedance, T = 25°C h

I =2. 0mA, V-,„ = 10V, f = 500MHz 2.4 dB C Cii UM Max. unilateralized stage gain at T , =25°C,= 25°C , calculatedc: from amb s -parameters:

"fel 10 log UM 2 (1 S )(1 - ) ie| oe|I |

I = 14mA, V_,„ = 10V, f = 500MHz 18 dB C Cb

*Measured under pulsed conditions. tCrystal mounted in a BFR90 envelope.

Milliard BFR92 Page 3 ELECTRICAL CHARACTERISTICS (Cont'd)

Min. Typ. Max. d. Intermodulation distortion at T = 25

I = 14mA, V = 10V, CE R = 75S2, V.S.W. R. -=2 -60 dB

V = V = 150mV at f = 495. 25MHz p o p V =V -6dB at f =503. 25MHz q o q V = V -6dB at f = 505. 25MHz I-26V r o r

Measured at f, . = 493.25MHz (p+q-r) 1 82011 Intermodulation test circuit: L3 390A 3.9kll vi , .

30011 680pF 680pF L2 —\\— 75H L1

680pF = LI 4 turns of Cu wire (0.35mm), 75x1.0 II winding pitch 1mm, int. dia. 4mm ©- L2 = L3 = 5nH

16X1

^Z

Circles of constant noise figure

30 Bs Mill Gain versus frequency (mA/V) f = 500MHz Ic = 2inA V = !0V 50 CE (dB) V C E = 10V lei4mA 'an b-» ^ -- I.mk = 25*C

Typ. v alues 20 > ' % 4.b /, £ s 4 y\|h..|2 3.5 \ 3 — 2.4

1 Gum 1J ( A1 Wf s

-50

2 5 2 5 1 J1 ' L 50 G (mA/V) 100 0* 10 f(MHz) 10' s

Milliard BFR92 Page 4 Umin. N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR BFR92

1.0

— I = I =0 100 VCE =10V E e T = 25"C Tj = 25'C j (pF) f = 1MHz hFE -

75 0.8

Typ

50 Typ.

0.6

25

0.4 10 VCB (V) 20 20 I r (mA) 30

0i 716 6

lc =KmA h f = 500MHz IGHz) - - - Typ. (GHz) Tj=25°C

U

T)

k" ' *»

/' /

2 /

VCE =10V

f = 500MHz

Tj = 25°C

20 I r (mA) i0 10 VCE (V) 20

Mullard BFR92 Page 5 10

N (dB) VCE =10V lc*=2mA 7.5 Zs = optimum

Ta mb=25»C

Typ.

2.5

f(GHz)

VCE = IOV N f=500MHz (dB) Zs= optimum W=25'C -

Lj

15 l c (mA) 20

Mullard BFR92 Page 6 M min. N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR BFR92

V 10V CE = I = HmA

T = 25°C ambu

Input impedance derived from

input reflection coefficient s. le coordinates in ohm x 50

V 1W CE = I = 14mA c ° Tamb= 25 C

Reverse transfer coefficient s

Milliard BFR92 Page 7 V 10V CE =

I = 14mA

T = 25°C amb

Output impedance derived from output reflection coefficient s coordinates in ohm x 50

V = 10V CE

I = 14mA

T = 25°C amb

Forward transfer coefficient s

Milliard BFR92 Page 8 umin. N-P-N SILICON PLANAR BFR93 EPITAXIAL U.H.F. TRANSISTOR

Silicon n-p-n planar epitaxial transistor in a micro-miniature plastic envelope. It

is primarily intended for use in u.h.f. and microwave amplifiers in thick and thin film circuits, such as in aerial amplifiers, radar systems, oscilloscopes, spectrum analyers, etc.

QUICK REFERENCE DATA

V max. 15 V CBO V max. 12 V CEC max. 35 mA 'c p max. (T £60°C) 180 mW tot amb T. max. 150 °C 1

f typ. (1 = 30mA, V = 5V, f = 500MHz) 5.0 GHz T -C typ. (U, = 2mA, V D = 5V, f = 1MHz) 0.8 pF re

= = f = 1.9 dB N typ. (!,_, 2mA, V„ r 5V, 500MHz)

typ. = 30mA, V = f = 500MHz) 16.5 dB GUM (U , 5V, d. typ. (I = 30mA, V,^ = 5V, R = 75S2, V = 300mV C CE LT o f, ,=493. 25MHz, see also page 4) -60 dB (p+q-r)

OUTLINE AND DIMENSIONS

For details see page 2

2- x actual size

Milliard MARCH 1973 BFR93-Page 1 OUTLINE AND DIMENSIONS

All dimensions in millimetres

Plan view from above

2.9 n

1.9

0.95

0.01' A.

^fc • solder n material Identification code: 0.85 0.43" v R1=BFR93 1.2'

Limiting values of operation according to the absolute maximum system.

Electrical V maX> CBO 15 V V maX 12 V CEO " V^max. 2.0 V

I max. 35 raA

P^ max. , T , < 60°C , mounted on a ceramic tot amb — substrate of 15 x 10 x 0. 5mm 180 mW

Temperature

T -65 to +150 C stg T. max. 150 °C J THERMAL CHARACTERISTIC

Thermal resistance ^vw i-x between Jjunction th(i-amb) , and ambient, the, device mounted on a ceramic substrate of 15 x 10 x 0. 5mm 0.50 C/mW

Mullard BFR93 Page 2 M min. N-P-N SILICON PLANAR BFR93 EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) Min. Typ. Max.

Collector cut-off current CBO i = o,v = iov 50 nA E CB

'""Static forward current FE transfer ratio

I = 30mA,V =5V 25 50 c CE

'"Transition frequency

I = 30mA,V30mA, V =5V,= ! f = 500MHz 5.0 GHz cC CE

Collector capacitance Tc I =1 =0, V =10V, f=l. (MHz 0.7 pF E e CB

Emitter capacitance

I =1 =0, V,=0.5V, f=l.QMHz pF C c EB

-C Feedback capacitance, T -25°C amb

I =2. 0mA, V- =5V, f = 1.0MHz pF C CE

tNoise figure at optimum source

impedance, T , amb =25°C

I =2. 0mA, V_ =5V, f=500MHz- dB C CE UM Max. unilateralized stage gain at T = 25°C , calculated amb from s -parameters:

"fel UM 10 log (1 )(1

16.5 dB I = 30mA, V^ =5V, f=500MHz C Lh

''Measured under pulsed conditions tCrystal mounted in a BFR91 envelope

Milliard BFR93 Page 3 ELECTRICAL CHARACTERISTICS (Cont'd) Min. Typ. Max.

d tlntermodulation distortion at T , =25°C im amb I„ = 30mA, V „ = 5V, R. = 75S2.V.S. W. R.==2 -60 dB C CE L V =V = 300mV at f = 495.25MHz p o p

V = V -6dB at f = 503. 25MHz q o q V = V -6dB at f = 505. 25MHz r o r

Measured at f (p+q-r) = 493.25MHz

Intermodulation test circuit: + 2^V

56011

39011

680pF 75H —| J—

75no-

Ll = 4 turns of Cu. wire (0. 35mm), winding pitch 1mm, int. dia.4mm

L2 = L3 = 5nH tCrystal mounted in a BFR91 envelope

Circles of constant noise figure

04726 Bs 30 1 1 1 II versus Gain frequency (mA/V) f = 500MHz I c =2mA - " V 5V ~ CE" V = 5V (dB) 50 CE I = 30 mA c T omb= 25 C amb" 25°C ; IT "" typ. values ,' 20 7 ^k ' -&* "V V --3.5 — — -* \ - 1Z* ,-* ^ N L„ 5 -3Z* *** ?2 ., \ 3 \\r\ 2 WZ^ \ -- l - A * - |h F E tv \ 1 1 »- 1 A X /"-I , / is^« 1 J£^ ^ r / s 2 £>^ l H SS^ / ^s *-« y'

-50

2 3 50 G (mA/V) 100 10 10 f(MHz) 10' s

Milliard BFR93 Page 4 limin. N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR BFR93

1.1

1 ._. - 100 VCE = 5V - T = 25'C - 1^25*0 j (pFI -1 - _J

75 0.9

--

—-- - 50 Typ. - y' / 0.7

-

- -- — 0.5 10 V (V) 10 20 I c (mAI 30 CB 20

D4 729 6 - - - - ...... - - I =30mA - - _. c h _ f= 500MHz (GHz) (GHz) - T =25"C - - j Typ. -- - -

U ------

T) P- - s k y

- >-- 2 -

_ VCE = bv

f = 500MHz

Tj = 25*C

20 I r (mA) 40 10 VCE (V) 20

Mullard BFR93 Page 5 10

N (dB) VCE =5V = l c 2mA 7.5 Z s = opt. Tamb= 25 c

Typ-y/

25

J

f(GHz)

; !

VCE = 5V N f-500MHz (dB) Zs=optimum Ub = 25*C

20 30 I c lmA) 40

Milliard

BFR93 Page 6 [i min. N-P-N SILICON PLANAR BFR93 EPITAXIAL U.H.F. TRANSISTOR

V 5V CE =

I = 30mA

T , = 25°C

Input impedance derived from

input reflection coefficient s. coordinates in ohm x 50

5V CE

I = 30mA

T = 25°C amb

Reverse transfer coefficient s

Milliard BFR93 Page 7 CE 5V

I = 30mA

T = amb 25°C

Output impedance derived from output reflection coefficient s coordinates in ohm x 50

CE 5V

I = 30mA

T = 25°C amb

Forward transfer coefficient s

Milliard BFR93 Page 8 Umin. N-P-N SILICON PLANAR BFS17R EPITAXIAL TRANSISTOR

Silicon n-p-n planar epitaxial transistor ina subminiature plastic envelope, intended

for a wide range of v. h. f. and u. h. f . applications in thin and thick films.

QUICK REFERENCE DATA

max. 25 V VCBOM max. 15 V VCEO 50 mA ICM max. P max., T s 25°C 200 mW tot amb T. max. 150 °C

h atl =2mA ,V = lV 20-150 FE c CE f = 1.3 GHz f tvp. . I =25mA, V = 5V, 500MHz T c CE = 2mA, = N typ. , I V 5V, rE R = 50fl, f = 500MHz 4.5 dB

OUTLINE AND DIMENSIONS

0.1 sG

_0.01 min w

0.85^ -" max max Identification code E4 = BFS17R max D5700

All dimensions in millimetres Plan view from above

Mullard JULY 1973 BFS17R Page 1 )

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

max. (peak value) 25 CBOM V VCEO max. (I = 10mA) 15 V max. 2.5 V EBO max. (d. c. 25 mA CM max. (peak value) 50 mA

max. T '-- 25 C, mounted on a ceramic amb substrate of 7 x 5 x 0. 5mm 200 mW Temperature

T -65 to +150 stg

T. r 150 ] THERMAL CHARACTERISTICS

R Thermal resistance between junction th(j-amb) and ambient, the device mounted on a ceramic substrate of 7x5x0. 5mm 0.62 C/mW

Mullard BFS17R Page 2 Hmin. N-P-N SILICON PLANAR BFS17R EPITAXIAL TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

I Collector cut-off current CBO 'e^cb^ - 10 nA - I = 0, V = 10V, T. = 100°C 10 IjA

h Static forward current transfer ratio FE I = 2.0mA, V = 1.0V 20 150 c CE - I =25mA.V = 1.0V 20 c CE f Transition frequency T - - I =2. 0mA, V = 5.0V, f = 500MHz 1. GHz

- - I =25mA, V ,, = 5.0V, f = 500MHz 1. 3 GHz C Cii C Feedback capacitance re - T = 2. 0mA , V„ = 5. 0V , f = 1. 0MHz 65 pF C Lh C Collector capacitance Tc - I =1 =0, V = 10V, f=1.0MHz 1.5 pF E e CB C Emitter capacitance Te - - I =i =0, V =0. 5V,f = 1.0MHz 2.0 pF C c EB N Noise figure

I = 2.0mA, V = 5.0V, c CE - - R = 50a, f = 500MHz 4. 5 dB

d. Intermodulation distortion lm T = = 37.5Q, 10mA, V =6.0V, R T

Tamb = 25°C V = lOOmV at f = 183MHz

V = lOOmV at f = 200MHz o q - -45 - measured at f,„ , = 217MHz dB (2q-p)

* Crystal mounted in a BFY90 envelope

Milliard BFS17R Page 3 1 . "

D6657 60 1U -= V =10V -_— --EE"::=E::^ E 7 CB _ T- -MCE 1V -- s ,* l 1 25°C i if:::: ! - 'cbo " r C ::f.ri InA) Typ (mA) typ / i —1-|~- - -_4_. .- j/

'—- . _L I J i L - -- - — -/J- h h- t- 40 J

-

/ .. I -- j V i ~ "

...... ^ ::::!: :::: - j / 20

~-t - - -~t- u 5 —...... _____ - -- -t- /r- --

' 0.001 _ -i- -L -L - 50 100 Tjt"C) 150 500 700 Vbe(tiV) 900

60 60

| II I I typical uriliie«: vn1ii^«; | ] typi<~nl | | j j

! J t'-p^op I i i ?4v-V-k- Ti'=25°C - -T-- k ::._.::rt:...:::.r.' - _t,f r t t\mvt~ ^-tftftfi (mA) (mA) LoGmA u^< cfipp - /// ^ jn — 1 * +- +4^'^^^-oB££ Vi f * "" -05mA -sf'iLr*'*' ""^jrf*"""r (Y7rv\A wf -**'*"^ AHi ,* ! r* y^ 40 > ^^tT 40 Mi" i ^ JrJ J *y \1 1 j Vj s ^.^ 0,4mA :|tfzffif;i4-S^ft , "' * / / r- ,,,, ny ^ -""^ - i ^,^

""" --^^ *",,,, lS5C^" i 20--1 -i-i •—- -t 0.3mA 20 " -"*' p j i— ""* — 7 e-" - __-_-___ ^ --m mA

' / I "T 1 ' — -IxLLi ._^- .- -0.1mA nr- "T ' *—L -^ ~ *-rth^TT_Tl4 l. | Jr -t±4-—4- r! I \ Fff 1 VCE (V) 2 10 VC e (V) 20

Mullard BFS17R Page 4 Hmin. N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BFS17R

150 --U-c=1\i ":! = 2 5»C *FE

100

tyD 50

|

1 0.1 10 I c (mA) 100

-.\*-F = 5^ T = + W30MHz T 1 =2 5°C i:" ] (fiH7)

? ...

^.t\yp V

\1

\^

. -

n 0.1 10 I C (mA) 100

Mullard BFS17R Page 5 — 1

)S 59 lb '-" II 1 11 I 1 ! II "iE _Je =u " -'--- _ _ Crystal mounted in a i -1MHz BFY90 envelope - r ~ N VC E = 5V Wr _: ; ;_ . (MP) f = 500MHz --- - ::__: :_: (nf) Rs = 5on Tj = 25°C

10

__ _

typ -

::_::::_.! :5=i;-;---.::typ:::: 5

(\k.

o ::._ .: ± :.. n 10 20 VCB(V) 30 10 I c (mA) 20

D5658 tb V = 5V V < Crystal mounted in a BFY90 envelope 4 CE -H- I C - 2 mA :

j

1 N 1 z optimurrl IdB) X s" \ i Ii = 25 °C 1! ! ! ! \ i

! ! H^ i

; \ : l j

1

:

10 '

: ii

1 1 \ i

I \ i

!

: L '

1 \\ : I V _[_ TT 5

1 typ j 4 T

, — — -( — ^

\

1

1 1 I :

1 , X l l J _Lm _ - 0.001 0.01 01 100 f(MHz) 1000

Milliard BFS17R Page 6 ,

M min. N-P-N SILICON PLANAR BFS20R EPITAXIAL TRANSISTOR

Silicon n-p-n planar epitaxial transistor in a microminiature plastic envelope, intended for i.f. and v. h.f. applications in thin and thick films. The device features a very low feedback capacitance.

QUICK REFERENCE DATA V max. 30 V CBO V max. 20 V CEO max. 25 mA 'c

=s p max. T ,_ 25°C 200 mW tot amb T. max. 150 °C

h min.,I =7mA,V = 10V 40 FE c CE

f typ. I =5mA,V = 5V,f = 100MHz 450 MHz T c CE = -c max. , I =lmA, V = 10V, f lMHz 0.4 pF re OUTLINE AND DIMENSIONS

max Identification code. G4 = BFS20R D5661

All dimensions in millimetres

Plan view from above

Milliard JULY 1973 BFS20R Page 1 RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

max. 30 V CfiO max. (I = 2.0mA) 20 V 'ceo V max. 4.0 V EBO max. 25 mA

P max. T , ^ 25 C , mounted on a ceramic tot amb substrate of 7 x 5 x 0. 5mm 200 mW Temperature

T -65 to +150 C stg max. 150 °C 3 THERMAL CHARACTERISTICS

R Thermal resistance between junction th(j-amb) and ambient, the device mounted on a ceramic substrate of 7 x 5 x 0. 5mm 0.62 C/mW

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

Collector cut-off current CBO l = 0, V 2 °V 100 nA E CB = J = = = o, V 2 °V ' T. 100 c 10 HA h CB J Base-emitter voltage BE ! = 7. 0mA, V = 10V 740 900 mV c CE Static forward current FE transfer ratio

I = 7.0mA, V = 10V 40 85 c CE T Transition frequency I1 ==55.0mA,-° v =: 10V, f = 100MHz 275 450 mA ' V „ MHz C CE -C Feedback capacitance

I = 1.0mA, V = 10V, f = 1.0MHz 0.35 0. 40 pF c CE Collector capacitance Tc I I o,v = iov, f. l.OMIIz 0.8 pF CB

Mullard BFS20R Page 2 Hmin. N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BFS20R

WT 1M Tj =25°C I~t (mA)

40

20 / / / 1 I ' J / A ,' n 100 Tj (°C) 150 500 700 VBE (mV) 900

60 typical values T ?w

(mA) (mA)

40

*.<< K -h v^T -^r o^^ "^ -> -^f* J f-T* i^T ^ «£"*"" ~ 20 at *^ W ^e- —.Ji ^ X i / * i*^^^"""'^ ^M^j "" *"^ -**"*' - ^"""A'JrnA L^L^ ' m '*** tf/S^* ^ ?*—'m U-i» — " K/^^ ^_ _ .^ — — - — r'~ ' T *" * _M t £ "" "" 1*1 --K^ 0,1mA

iv I rl I I (V) 20 1 VCE (V) 2

Milliard BFS20R Page 3 150 - VrF -1 5v - Tj =Z 5°C 'FE + " 100

-v^yp ,S s /y 50 sr

! I

I j

ai 10 Ic (mA) 100

..vfcp=KV "" T =HJOMHz -T| =2 5°C 'r (MHz)

400

. cyp

200

\11 1 10 lr (m M 1C

Mullard BFS20R Page 4 [i min. N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BFS20R

20 VCB (V)30

Mullard BFS20R Page 5 .

MATCHED N-CHANNEL BFS2IA FIELD-EFFECT TRANSISTORS BFS2I

Two matched N-channel silicon epitaxial planar junction-gate field-effect transistors in TO-72 metal envelopes, mounted together in an S-clip. This device is intended for low level differential amplifiers, sample and hold circuits,

chopper circuits , etc . in instrumentation and control

QUICK REFERENCE DATA BFS21 BFS21A

I Gate cut-off leakage current

T = 25°C, V„ =15V, I =0. 5mA <0.5 < . 5 nA amb DG D

AV Differential gate-source voltage

1 =0. 1 T = 25°C, V_, =15V, I 5mA <20 <10 mV amb DG D

dAV Thermal drift of differential GS gate-source voltage

I T , =25°C, V„=15V, =0.5mA <75 <40 MV/degC amb DG D

Difference of penetration factors T =25°C, V =15V, I =0.5mA <1.0 <0.5 xl0~ g amb DG D fs

A^ Difference of transfer impedances g T =25°C, V„ =15V, r = 0.5mA <15 <7.5 a fs amb DG D

C M R R Common mode rejection ratio >60 >66 dB

OUTLINE AND DIMENSIONS

Two devices conforming to J.E.D.E.C. TO-72 mounted in an S clip

For details see page 5

Milliard JANUARY 1971 BFS21A-Page 1 RATINGS (of the total device)

Limiting values of operation according to the absolute maximum system

Electrical V Voltage between any two terminals 30 V max.

I max. Drain current 4.0 mA

I max. Gate current 0.5 mA G < 100 30 P^ . max. Total power dissipation (T C) mW tot

Temperature

Operating ambient temperature -20 to +100 °C amb

CHARACTERISTICS (total device, T = 25°C unless otherwise stated) ELECTRICAL amb BFS21 BFS21A Drain current ratio DSS1 =15V =0, T. = 25°C >0.95 >0.95 V < V„ i DG dss2 <1.05 <1.05

V -V Differential gate-source voltage GS1 GS2 I V = 15V <20 <10 mV D =500MA, dg = <20 <10 mV ID =100/iA, V„„DG 15V

A V -V Thermal drift of differential

I G1S1 G2S2 AT gate-source voltage amb I = 500,A, V =15V <75 <40 MV/degC D dg I =100^,V =15V <75 <40 MV/degC D DG A V -V Differential gate-source voltage 1 G1S1 G2S2 change with ambient temperature T =25tol00°C amb I = 500mA, V =15V <6 <3 mV d dq

I V =15V <6 <3 mV d =100mA, dq

Difference of penetration factors (see note 1) 3 T =500mA, V_ =15V <1 <0.5 io~ B fs 3 I =100^, V =15V <1 <0.5 io" D DG

Difference of transfer impedances (see note 2) L-=500mA, V„ =15V <15 <7.5 a °fs lJ D(jr

I =100,A,V =15V <75 <37.5 a D DG

C MR R Common mode rejection ratio (see note 3) I =500mA, V„ =15V >60 >66 dB D D(j L = 100nA, V„=15V >60 >66 dB D DCj

Differential gate-source voltage = |V -IV temperature G1S1 G2S2 T G1S1 G2S2 T change with ambient amb2 ambl

Mullard BFS21A-Page 2 . . .

MATCHED N-CHANNEL BFS2IA FIELD-EFFECT TRANSISTORS BFS2I

ELECTRICAL CHARACTERISTICS (contd.)

NOTES

1 . The difference between the penetration factors is equal to the ratio of the change

of the differential gate-source voltage ( AVqs) to the change of drain-gate voltage (Vrjg) with the drain current (I D) constant

d AV GS at constant B dV. fs DG v

2 . The difference between the transfer impedances is equal to the ratio of the change

of the differential gate-source voltage to the cit n e °f drain current (I ( AVqs) ^ S D), with the drain- gate voltage (V„_) constant.

d AV GS at V^_, = constant B dI DG fs D

3 . The common mode rejection ratio

g„ 1 g .4-!- C MRR 6 2 cs g fs fs

where gog in this formula is the output conductance of the summing current source

The guaranteed values of C MRR apply

at g = . 1/jmho

m

9cs

Milliard BFS21A-Page 3 .

RATINGS (of the individual field-effect transistor)

Limiting values of operation according to the absolute maximum system

Electrical

±V max. Drain-source voltage 30 V DS

V maX " Drain-gate voltage (open source) 30 DGO V - V maX - Gate-source voltage (open drain) 30 GSO V I max. Drain current 20 mA

I_ max. Gate current 10 mA

P. t max. Power dissipation (T , < 25°C) 300 mW tot amb Temperature

T Storage temperature -65 to +200 stgt T. max. Junction temperature +200 J

THERMAL CHARACTERISTICI STIC

for individual transistor without th(j-amb) S-clip in free air 0.59 degC/mW

ELECTRICAL CHARACTERISTICS (of the individual field-effect transistor)

T = 25 C unless otherwise stated amb

I Gate cut-off leakage current I =500mA, V„ =15V <0.5 nA

I V„ =15V, T =100°C < 25 nA D =500nA, DG amb

Drain current DSS V =0 25° >1.0 =15V ' V C mA DG GS 'V Gate- source cut-off voltage (P)GS I = 0.5nA V = <6.0 D ( DG 15V

s Transfer conductance fs I =500/jA, V„ =15V, f=lkHz >1.0 mmho

Output conductance

I =500/jA, V„ =15V, f=lkHz <15 iumho

Input capacitance I = 500mA, V„ =15V, f=lMHz <5.0 pF D IXj

Feedback capacitance I =500mA, V__ = 15V, f=lMHz <0.75 pF U DC*

Equivalent noise voltage (B = 5Hz) n I =500mA, V_, =15V, f=10Hz <200 nV//Hz

V^ =15V, V_, =0, f=10Hz <75 nV/vlli JDC* (jo

Mullard BFS21A-Page 4 . .

MATCHED N-CHANNEL BFS2IA FIELD-EFFECT TRANSISTORS BFS2I

OUTLINE AND DIMENSIONS

•— 1.17max

1.16 max 5. 8ma>i

t II Jl I II II

0.48max diameter of leads controlled from bottom 1) = shield lead (connected to case) to 12.7mm.

All dimensions in mm D1222

SOLDERING AND WIRING RECOMMENDATIONS

1. Devices maybe soldered directly into a circuit with a soldering iron at a maximum iron temperature of 245°C for a time of up to 10 seconds at least 1 .5mm from the soldering is 5 seal . At an iron temperature of 245°C to 400°C the maximum time seconds at least 5mm from the seal.

2. These devices may be dip-soldered at a solder temperature of 245°C for a maxi- mum soldering time of 5 seconds. The case temperature during dip-soldering must

not at any time exceed the maximum storage temperature . These recommendations apply to a device mounted flush on aboard having punched-through holes, or spaced

at least 1 . 5mm above a board having plated-through holes

3. Care should be taken not to bend the leads nearer than 1.5mm from the seal.

incorporation into equip- 4 . If devices are stored at temperatures above 100°C before ment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated flux

Milliard BFS21A-Page 5 SILICON N-CHANNEL BFS28 DUAL-INSULATED-GATE FIELD-EFFECT TRANSISTOR

- dual - insulated - gate The BFS28 is a silicon n-channel, depletion type of applications M.O.S. field effect transistor. It is intended for a wide range in communications, instrumentation and control. QUICK REFERENCE DATA V max. Drain-source voltage 20 V Dg V max. Gate 1 -source voltage 8.0 V ± Gls voltage 8.0 V V maX - Gate 2rSource ± G2S max. Drain current 20 mA *D Total device power dissipation P. . max. tot (T ,s25 C) 200 mW 1 amb o„ T max Maximum junction temperature 135 J

Characteristic s 10mA V =13V V =+4 -°V V ' DS ' G2S Small signal forward transfer y typ - l fsl admittance in common source

(f = lkHz) 13 mmho 18 dB G typ. Power gain (f = 200MHz) a fF -c typ Feedback capacitance (f=10MHz) 25 rs Ntyp. Noise figure at optimum source admittance (f = 200MHz) dB

OUTLINE AND DIMENSIONS

Conforms to J. E.D.E.C. TO-72 B. S. 3934 SO-12A/SB4-3

For details see page 4

Milliard

APRIL 1969 BFS28 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system

Electrical V max. Drain-source voltage 20 0s V max. Gate 1-source voltage 8.0 ± Gls 8.0 V maX - Gate 2-source voltage ± G2S _+V max. Non-repetitive peak gate 1- G1SM source voltage (tslOms) 50

max. Non-repetitive peak gate 2- -+V_,„™.G2SM source voltage (tslOms) 50 V

Drain current 20 mA

dissipation P. . max. Total device power tot (T ,_:525°C) 200 mW x amb Temperature

T min. -65 stgx +135 T . max. stg T. max. +135 J THERMAL CHARACTERISTICS 0.55 degC/mW th(j-amb)

CHARACTERISTICS (T = 25 C unless otherwise stated) ELECTRICAL amb Min. Typ. Max.

Gate 1-source cut-off voltage G1S V =20V, I^IOO^A, V = +4V 5.0 DS Q2S

-V Gate 2-source cut-off voltage G2S V =20V, V =0 4.0 DS 1^50^, Q1S

Gate 1-source voltage G1S L^lOmA, V =13V, V = +4V 0.6 2.8 V DS Q2S

I = 4mA V =10V, V, +4V 1.0 3.2 V D > DS G2S

Gate 1 leakage current ^GISS = =0 ;8V °' V - V > V ± G1 G2S DS T. = 135°C 1.0 nA

^^SS Gate 2 leakage current V = 8V V V ± G2 ' G1S=°' DS=°' T. = 135°C 1.0 nA J

Mullard BFS28 Page 2 SILICON N-CHANNEL BFS28 DUAL-INSULATED-GATE FIELD-EFFECT TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd)

Small signal y-parameters (see also graphs on pages 6 and 7)

L=10mA, V_. = 13V, V„ =+4V, T , =25°C T) DS G2S amb Min. Typ. Max.

Forward transfer admittance 'fsl f = lkHz 8 13 mmho f= 200MHz - 12 mmho f = 500MHz - 11.3 mmho

Feedback capacitance f=10MHz - 25 fF

Power gain I-lOmA, V =13V, V = +4V, DS G2S f=200MHz, G =1.3mmho, G =lmmho, o LT B and B tuned for maximum gain - 18 dB o L

UM Max. unilateralised power gain (see note 1) L=10mA, V =13V,

V =+4V, f= 200MHz - 20.5 dB f= 500MHz - 7.9 dB

Noise figure at optimum source admittance

10mA, V =13V,V = +4V, V DS G2S f= 200MHz, G_. ., typ. =1.4mmho, S(opt) typ. =5.5mmho 3.0 4.0 dB S(opt) NOTE

'fs 1. 6 UM 4 g. xg

Milliard BFS28 Page 3 . .

OUTLINE AND DIMENSIONS

Conforms to J. E.D.E.C. TO-72 -A- Mil limetres

Min. Nom. Max. A - 4.8 B - 5.3 C 12.7 - - D 0.43 - E 1.0 - F 1.05 - G 2.54 - 3ft H 5.3 5.55 5.8 W Connections 1. Drain

2 . Gate 2 3. Gate 1

rftjiftll 4 . Source and substrate connected to case. SOLDERING AND WIRING RECOMMENDATIONS

1. Devices may be soldered directly into a circuit with a soldering iron at a maximum iron temperature of 245°C for a time of up to 10 seconds at least 1.5mm from the seal. At an iron temperature of 245°C to 400°C the maximum soldering time is 5 seconds at least 5mm from the seal for 2. These devices may be dip-soldered at a solder temperature of 245°C a maximum soldering time of 5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum storage tem- perature. These recommendations apply to a device mounted flush on a least 1 5mm above a board having punched-through holes , or spaced at . board having plated-through holes the 3. Care should be taken not to bend the leads nearer than 1.5mm from seal. above 100 C before incorporation 4 . If devices are stored at temperatures into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated flux.

HANDLING NOTE

To exclude the possibility of damage to the gate oxide layer by an elec- the device trostatic charge building up on the high resistance gate electrode , leads This ring should is fitted with a conducting rubber ring around the . not be removed until after the device has been mounted in the circuit.

Mutlard BFS28 Page 4 SILICON N-CHANNEL BFS28 DUAL-INSULATED-GATE FIELD-EFFECT TRANSISTOR

B96S7 rR ,. tot max (rtiWJ 200

100

n 25 50 75 100 125 150 TQmb(°C)

B9688 89689 MM! BFS28 I I I I I BFS28 V -13V I I I I I DS V v -w (mA| fe2S-* G2S - - Tj 25°C Tj 25°C : D. 4- -U (mA) V~ \ I 20 20 , w IV — I r t

I * j

1 -UbV / ** :z] l 10 10 -iV ** ~S f/ / VG1S=-U>V

-4 V (V) -2 5 VDS (V) 10 G , S

Milliard BFS28 Page 5 —^

B9690 V, -13V L)s Tj - 25°C

In - -i D "1 (mA)__T ir ^ v jyrjtsr.'Ti _ 20 ^ S t ^A#L..Tvt >^ tn-Jf -\- 15 V \AltZ - ^ -Lvi ^> sS^" J I 1MU ~*~™™ + 1 V-| tVt// ^^ — — — — -i532 T ttvAi T WZ 3 05 V -/A«?^ ^«- — "' 10 T aZ?£ (V mt-74$iA*' *" Ml?,*' Ij: irr% —======Q5 V - 7i 7 ill 'i>^~ M— ^— ™ , V r- — ~ J 9SS Vj =-15 "- — " G2S V o E/8^r TTT I N -4 2 V (V) 4 G , S

: t4fH4} ff "bl-S^B B9692 " v +: qS -13V -_.. |--vG2S -4v rr~~~i : ' - Tamb-25°C T T

: ; :

bfl\£>- "

* 9 " 1„* ' — *

::::::^w:^'!_::i"""::::" :

:.._> , » - - — ;1m^ VfzW*" b "rfSHp

- "* iiTJ* C^rLr +iJPC?^iif v Ss'JsrQf* "T^''''Vq J T ; J5 Ti IT 400 f(MHz) 600 200 400 f (MHz) 600

Milliard BFS28 Page 6 —

SILICON N-CHANNEL BFS28 DUAL-INSULATED-GATE FIELD-EFFECT TRANSISTOR

200 400 f(MHz) 600 400f(MHz)600

BFS28 - -t^t^T

vDS -uv -+- "-U v~io-4V _i_ (mA) G2S

- ~T>;

- 44- —

1U -IV — — -. — _

-1.5 V

n — 50 TjCC) 100 200 400 f(MHz)600

Mullard BFS28 Page 7 —

G (mmho) &c „0 2 4 6

— ii -^r~ —U [TrH4dB i U — >

5 H-- 'fff, ^r^^^rni iAti r ' H—

[ --- X- ( 4----i-.--i -fw r

N +- - £—-^0*-—- s i"- SnJT 1 1 \jn i s v V "~ ^; JKTTi'HL* / '

"* """ .+-.::-:- - (rmiho) zni.n: ± ~':_t_ V-m- ~Z-~~ if:: -.37 ± r :+:: l - * i t ..." n n . ~r rt"

1 b lu A) lb ID ( m

Circles of constant typical noise figure Typical noise fig ire versus drain current

Mullard BFS28 Page N-P-N SILICON PLANAR BFT24 EPITAXIAL U.H.F. TRANSISTOR

Silicon planar epitaxial n-p-n transistor in a subminiature plastic T-package, pri- marily intended for use in u.h.f. low power amplifiers such as in pocket phones, paging systems, etc.

The transistor features low current consumption (lOOnA-lmA), excellent wideband properties and low noise up to high frequencies.

QUICK REFERENCE DATA V max. 8.0 V CBO V CEO max. 5.0 V

T max. 2.5 mA c

=s p max. (T ,_ 135°C) 30 mW tot amb T max. 150 °C i f typ. (T = 1.0mA, V_„ = 1.0V, f = 500MHz) 2.3 GHz T C Lh C max. (T = 1.0mA, V„„ = 1.0V, f = 1.0MHz) 0.4 pF re C Ch

N typ. (I = 1.0mA, V = 1.0V, f = 500MHz,

at optimum source impedance) 3.8 dB

G typ. (I = 1.0mA, V „ = 1.0V, f = 500MHz) 17 dB UM C CJi

OUTLINE AND DIMENSIONS

0- 5 mc X

max

1

0.2ii — 0.10 _'.3 0.9 2 7 ma X

All dimensions in millimetres

Milliard JULY 1973 BFT24 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical V max. 8.0 V CBO max. 5.0 V VCEO V max. 2.0 V EBO max. 2.5 mA lc f > 1.0MHz) 5.0 raA lcu max. (peak value, ° max. £ 135 mW P 30 tot amb Temperature

T -65 to +150 °C stgr 150 °C T ; max.

THERMAL CHARACTERISTIC

, Thermal resistance from junction R , , , th (l-amb) . . . . . to ambient in free air, mounted on a glass -fibre print of 40 x 25 x lmm 0.5 C/mW

All dimensions in n

All dimensions in mm

Requirements for a glass -fibre print

Milliard BFT24 Page 2 N-P-N SILICON PLANAR BFT24 EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T : 25 C unless otherwise stated)

Min. Typ. Max.

Collector cut-off current CBO nA I =0,V = 5.0V 50 E CB Static forward current transfer ratio FE = = 20 30 - I 1 °'JA ' V 1.0V C CE - I = 1.0mA, V = 1.0V 20 40 c CE V Collector -emitter saturation voltage CE(sat) I_ = IOjuA, L = 1.0/iA - - 100 mV C D I„ = 1.0mA, L = 0.1mA - - 125 mV C D Base -emitter saturation voltage BE (sat) - - I, 10nA, I 1.0/iA 700 mV B - - 1.0mA, I, 0.1mA 850 mV C B Transition frequency GHz I = 1.0mA, V = 1.0V, f = 500MHz 1.2 2.3 c CE Collector capacitance at f = 1.0MHz Tc I =0, V 0. 5V 0.55 pF E e CBr Emitter capacitance at f = 1.0MHz Te : 0.45 pF 1^ :I = °' V c EB Feedback capacitance at f = 1.0MHz 0.4 pF T = 1.0mA, V r 1.0V, T =25 C 'C ' CE amb Noise figure at optimum source impedance,y f = 500MHz, Tamb = 25°C 5.5 dB I = 0.1mA, CE 1.0V dB I = 1.0mA, N r 1.0V 3.8 *C CE Max. unilateral power gain UM = (s assumed to be zero), T , 25 C v re amb

1 = 1.0mA, V 1.0V, f = 200MHz 24 dB CE

I = 1.0mA = i.ov, f = 500MHz 17 dB vCE

= dB : V = f 800MHz 11 1.0mA, CE^ 1.0V,

2 fel (indB) = 10 1o GuM g[r |s |2)(l s 12) le oe|

"Measured under pulse conditions.

Mullard BFT24 Page 3 60 -- -- Tj = 25°C V CE = 1V —

U0

-- typ

20

,2 572 57 2 57 3 572 10" 10"2 10"' 1 Ir(mA) 10

- V CE =1V f = 500MHz Tj = 25°C (GHz]

typ

1 0.5 1.0 1.5 20 I r (mA)

Mullard BFT24 Page 4 N-P-N SILICON PLANAR BFT24 EPITAXIAL U.H.F. TRANSISTOR

0.6

Tj = 25°C Ctc I E = I e = IpF] f = 1MHz

0.4

typ

0.2

5 VCB(V) 10

10 VCE = 1V f = 500 MHz N * IdB) Z s optimum ° TQmb= 25 C

7.5 - -

typ 2.5 —

1 I c (mA)

Mullard BFT24 Page 5 = i.ov vCE

I = 1.0mA

T = 25°C amb

Input impedance derived from input reflection coefficient s. coordinates in ohm x 50

v = i.ov 9 D° CE ~^ C=:::::a ° I_ = 1.0mA -laoV^ ^iN) amb 25°C —- f=J00MHK N^ 150°// / y\ \\30o

\ n

0.05 0.1 0.15 V j j

/ jj

1 50°X£

120^^ _—r=^C^^ Reverse transmission coefficient s D5625 90°

Milliard BFT24 Page 6 N-P-N SILICON PLANAR BFT24 EPITAXIAL U.H.F. TRANSISTOR

I = 1.0mA

T = 25°C amb

Output impedance derived from output reflection coefficient s coordinates in ohm x 50

V = 1 -°V CE

I = 1.0mA

T = 25°C amb

Forward transmission coefficient s

Milliard BFT24 Page 7 min. N-P-N SILICON H PLANAR BFT25 EPITAXIAL U.H.F. TRANSISTOR

Silicon planar epitaxial n-p-n transistor in a microminiature plastic envelope, pri- marily intended for use in u.h.f. low power amplifiers, in thick and thin film cir- cuits such as in pocket phones, paging systems, etc.

The transistor features low current consumption (lOOfiA-lmA), excellent wideband properties and low noise up to high frequencies.

QUICK REFERENCE DATA max. CBO 8.0 V CEO max. 5.0 V max. 2.5 mA s max. (Tamb 135 C) 30 mW max. 50 °C

typ. 1.0mA, V„ = 1.0V, f = 500MHz) 2.3 GHz T CE C max. 1.0mA, V„„ = 1.0V, f =1.0MHz) 0.45 pF

typ. (I. 1.0mA, V„„ = 1.0V, f =500MHz, CE at optimum source impedance) 3.8 dB

typ. 1.0mA, V_,„ = 1.0V, f =500MHz) 18 UM (V CE dB

OUTLINE AND DIMENSIONS

2.9 max

- 1.9 - 0.1 7 -0.95-

0.5 i.

1.3 2.5 max max _0.01 min

0.85^ Oi3 \ max^ max Identification code V1 = BFT25 max D5666

All dimensions in millimetres

Plan view from above

Milliard

JULY 1973 BFT25 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V max. 8.0 V CBO V max. 5.0 V CEO 2.0 V V maX - EBO

I max. 2.5 mA

max. (peak value, f > 1.0MHz) 5.0 mA I™CM, =s P max. (T , 135 C, mountec tot amb

a ceramic substrate of 1 mW

Temperature T -65 to +150 C stg T max. 150 °C ] THERMAL CHARACTERISTIC

resistance from junction R . Thermal to ambient in free air, mounted on a ceramic substrate of 15x10x0. 5mm 0.5 C/mW

Milliard BFT25 Page 2 SILICON PLANAR M min. N-P-N BFT25 EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max. Collector cut-off current CBO - I = 0,V = 5.0V - 50 nA E CB Static forward current transfer ratio FE I = lOfiA, V - CE 1.0V 20 30

I 1.0mA, V 1.0V 20 40 - C CE V Collector -emitter saturation voltage CE(sat) I = 10/iA, I = l.OnA - - 200 mV C B I = 1.0mA, I = 0.1mA - - 175 mV C B V Base-emitter saturation voltage BE(sat) T = 10|iA, I„ = l.OnA - - 750 mV

T 1.0mA, T = 0.1mA - - 900 mV

T Transition frequency I„ 1.0mA, V, 1.0V, f = 500MHz 1.2 2.3 - GHz C ' CE C, Collector capacitance at f = 1.0MHz Tc - - - I =0, V„„ 0.5V 0.6 pF e CB Emitter f = Te capacitance at 1.0MHz - - 0.5 pF

Feedback capacitance at f = 1. 0MHz - I = 1.0mA, V =1.0V,T ,=; - 0.45 pF C CE amb Noise figure at optimum source impedance, f = 500MHz, T 25°C amb

I =0.1mA,V = 1.0V 5.5 c CE dB I„ 1.0mA, V = 1 -° CE V 3.8 dB UM Max. unilateral power gain (s assumed to be zero), T , = 25 C re amb 1.0V, f = 200MHz 25 dB

= 1 I -°,nA ' V 1.0V, f =500MHz 18 C CE dB 1.0V, f = 800MHz 12 dB

s 2

I fe| (in dB) = 10 log z UM (1 )(l

''Measured under pulse conditions.

Milliard BFT25 Page 3 D5620 bU

Tj = 25°C VCE =1V FE

'ifl -^ -- typ s:^ s ^V

20

(1 5 7 2 5 7 1 I c (mA) 10

- VCE =1V f = 't 500MHz GHz) Tj = 25"C

typ

5 1 1 s ? n T- Im A1

Milliard BFT25 Page 4 Hmin. N-P-N SILICON PLANAR BFT25 EPITAXIAL U.H.F. TRANSISTOR

06

T, - 25°C (pF) I E _I e _

f = 1MHz

-

0.4

r- lyp

0.2

10 Vce = n f = 500MHz N Z s = optimum IdB) ° T amb= 25 C

7.5

- —

typ

2.5

5 7 2 5 7 1 I r (mA) 10

Mullard BFT25 Page 5 I = 1.0mA T = amb 25°C

Input impedance derived from input reflection coefficient s. coordinates in ohm x 50

90"

I = 1.0mA M^^^

T = amb 25°C f=800MHz^\ 500><^~ \ ^ 150°^/ ° A\30

+ 9 20CT\ JV\ \

0.05 0.1 0.15 V | 180'

150 ^30° \V

1 -3S^60° 2°^^l^__ __^= D5 90° Reverse transmission coefficient s_

Mullard BFT25 Page 6 H min. N-P-N SILICON PLANAR BFT25 EPITAXIAL U.H.F. TRANSISTOR

= VCE 1 -°V

I = 1.0mA c o + T = 25 J amb C

Output impedance derived from output reflection coefficient s coordinates in ohm x 50

V = 1 -°V CE

I = 1.0mA

T = 25°C amb

Forward transmission coefficient s fe

Milliard BFT25 Page 7 N-CHANNEL SILICON BFW10 FIELD EFFECT TRANSISTORS BFW11

N -Channel depletion mode silicon epitaxial planar junction field effect transistors designed for use in wide -band amplifiers (0 to300MHz). Their very low noise figure at low frequencies makes them suitable for differential amplifiers, electromedical and nuclear detector pre -amplifiers. They are in TO -72 encapsulation with a shield lead connected to case.

QUICK REFERENCE DATA

max. 30 ±VDS V

-V _,_,_. max. (open drain) 30 V ° P max - BFW10 BFW11

'dss^ds^^gs^ min - 8.0 4.0 mA max. 20 10 mA

-V max. a = a5nA,V = 15V) 8.0 6.0 V (p)Gg D DS -C max. (f=1.0MHz, V„ = 15V, rs DS V 0) 0.80 0.80 pF GS= '

I (f = = y min. 200MHz, V „ 15V > | n I *" v = o) 3.2 3.2 mA/V GS Nmax. (f=100MHz, V =15V,

V =0, R = 1K) 2.5 2.5 dB GS G V /VFmax. (f=10Hz, B = 5.0Hz) 75 75 nV/^Hz

Unless otherwise stated, data are applicable to both types OUTLINE AND DIMENSIONS

-72 Conforms to J. E. D. E. C. TO B.S. 3934SO-12A/SB4-3

1.16 max 0.48 max

4.8 & max

max - 12.7 min

All dimensions in mm

Insulated electrodes 'Shield lead (connected to case) Accessories available: 56246, 56263

Milliard JANUARY 1972 BFWIO-Page 1 5

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

±V max. Drain -source voltage (V_„ =0) 30 V DS

V max Drain -gate voltage (open source) 30 V DGO '

" V maX - Gate -source voltage (open drain) 30 V GSO

I max. Drain current 20 mA

I max. Gate current 10 mA Cj

P max. Power dissipation (T < 25°C) 300 mW tot Temperature

T min. -65 stg T max. 200 stg„

T . max. 200 J THERMAL CHARACTERISTIC

R., 0.59 °C/mW ' th(j-amb)

ELECTRICAL CHARACTERISTICS (T.=25°C unless otherwise stated) BFW10 BFW1BFW11

Gate cut-off current GSS - max. 0. 1 0.1 nA V 20V ' V ° GS = DS = - V 20V ' V °' GS = DS = T. = 150°C max. 0. 0.5 HA )

* Drain current DSS = V 15V ' V min. 8. 4.0 mA DS GS=° max. 20 10 mA

V Gate -source voltage GS = = I 40°,iA ' V 15V D DS min 2. V max. 7. V

I = 50,A,V = 15V D DS min. 1.25 V max. 4.0 V

*Measured under pulsed conditions.

Mullard BFWIO-Page 2 )

N-CHANNEL SILICON BFW10 FIELD EFFECT TRANSISTORS BFW11

ELECTRICAL CHARACTERISTICS (contd. BFW10 BFW11

Gate -source cut -off voltage (P)GS = = 8.0 6.0 ID 0.5nA, Vds 15V y-parameters V,=15V, V„ =0, T ,=25°C DS GS amb f=1.0kHz

w, Transfer admittance min. 3.5 3.0 mA/V I I max. 6.5 6.5 mA/V

max. 85 50 HA/V I y I Output admittance os I l f=1.0MHz

C. Input capacitance typ. 4.0 4.0 pF max. 5.0 5.0 pF

-C Feedback capacitance typ. 0.6 0.6 pF max. 0.80 0.80 pF

f = 200MHz

Transfer admittance min. 3.2 3.2 mA/V 'fs 800 g. Input conductance max. 800 HA/V

g Output conductance max. 200 100 MA/V

figure, ,=25°C N Noise Tamb f=100MHz, R =lkfi

= = (inpUt V 15V ' V DS GS °' tuned to minimum noise) 2.5 2.5 dB

V //§" Equivalent noise voltage = V 15V ' V °' f ^ 0HZ ' DS = GS T = 25°C 75 75 nV/VHz amb

Mullard BFWlO-Page 3 D3618

vD s(v)

D36 7

- Irvi D

— Tj =25°C "*"

-.-___ : m - i — 3 JtZ 4-- .' ____!__ \lr~e:V U(\ , GS,- . j _**"'"

~i -A^ ~< "1 V # ? / 5 / ^ mmm 2£l x&i / T / t :~ -+17- z Iz. yi - :iv. :::::::::::::?:::^:^;^:/r::::---::jsv.::::: :::::::::;^:::^:::^:|z:^:----;;;S"::: ::::::E^::::?f::::z::::J::::::::::::±::::: 4 -VG S(V) 2 10 VDS (V) 20

Mullard BFW 10-Page 4 ,

N-CHANNEL SILICON BFW10 FIELD EFFECT TRANSISTORS BFW11

D36I6 V D5 == 15V I--+WBFW10

.' .' 1

, , -*-! +4- H-U-! — -*- -+-+ D E --++4- (mA) if 1

- i i -t— r- - M (-•- -t~t-i— ^^fi h--

ZtZT

'

! ! I :£

i i i \ iik 10 xx^4+4+ -t- ffVJGQ^-fc^ - ft a " + 5 *rsK -t-+Tt !^ T^ -~~r -rirt^- fit" ^y

' - - ; ^|. [ + i r 1 4-t- i ++ ' 'i ijj i mi ? 5 JM p y

jffl-- ^2V ! ]_L

^t ; _1_1_L4_ III 1 iTT

1 ! n ±t ! ! ! 11 50 100 Tj(°C) 150 100 Tj (°C) 150

D3609 15 typical correlation between -V(p)gs

" and Idss V(P)0S I I I " at I D = 0.5nA (V) VDS =15V Tj = 25°C

10

BFW10

rBFW11-

5

s

10 20 Idss at VG s = (mA)

Mullard BFW 10-Page 5 10

iyfsi typical values (mA/V) VDS = 15V f = 1kHz 7.5 Tamb=25°C

BFW10 BFw 11

2.5

2.5 7.5 10 12.5 I D lmA) 15

100

l/osl typical values (uA/V) V DS =15V f=1kHz 75 Tamb=25 C

BFW 50

BF"W 11

25

2.5 7.5 10 12.5 I D (mA) 15

Mullard BFW 10-Page 6 N-CHANNEL SILICON BFW10 FIELD EFFECT TRANSISTORS BFW11

D1607 DMW 1 5

typical values typical values "Crs Tamb=25°C Cis Tamb=25°C f = 1MHz (pF) f=lMHz (pF)

1

Vd 3 " VDS =iov-

0.5 'ns= 15V"

5 -Vos (VI 10 Vos (VI 10

Mullard BFWIO-Page 7 4 10' 10 10 BFW10 BFW10 typical valu typical valu f I =8mA I D =8mA D V DS =15V V DS =15V bis b, -c, s T =25 (uA/V) — T = 25°C (mA|V) Qmb C Q mb ((jA/v) (pFI

b Sa 10-

bi s -Cr

10"

2 3 J 10 10 10' f (MHz) 10 10 f (MHz) 10

D3SS9 03600 3 15 m 10 I I I I I I 1 BFW10 [JBFW10 typical value typical value I = 8mA I D = 8mA D 9fs - V =15V b„s V DS =15V 90S DS Tamb =25°C ((lA/VI Tcmb=25°C (mAfV) (mA/V)

bo, / lo 2 10 m

10"' 5 10 Sfs

-b fl

3 2 J 10 3 f (MHz) 10 10 f (MHz) 10

Mullard BFWIO-Page 8 N-CHANNEL SILICON BFW10 FIELD EFFECT TRANSISTORS BFW11

10 2 10 BFW11 Bi-wn typical valu typical value Id=Utt\A I D =4mA V =15V V =15V 3,s DS bis DS -Crs IpA/V) Tamb = 25°C (mA|V) Tamb=25°C "" 9is/ ((JA/VI (pFI

b s>

10 10-

bis "Cr

10" 1

_; 10 2 3 10^ f [MHz) 10 J 10 10 f (MHz) 10

I I I I I 1L BFW11 BFW11 typical valu s typical valu I D = 4-rnA I D =4mA V =15V 9os V =15V bos -bfs DS DS Tamb= 25° C (MA/V) Tamb = 25°C [mA/Vl (mA/V)

b,s f lo 10

10 Sfs

-bfs

10"' I r- _ _ 2 10 10 2 f (MHz) 10 3 10 f (MHz) 10 3

Mullard BFWIO-Page 9 D36U 10' 4-WW 4-H4+- V DS = 15V ::: o t = nV 0ml, 25 C ThT' BFW10 I C =R mA ... - 8FW11 I c U mA 3 •to J

10 2

typ — 10 - = :

... BF\V11 ''' Bf\ 1/1 3

3 4 s 6 7 10 10^ 10 10 10 10 fiHzl 10

10' [*-•- ^4#f : in VdS-1SV

fA \ BFWlO I„=8mA -L

BF\A/11 I = *. niA 3 10 — S = " -:: :: is iS

_

- =™ - = 10' _ ::: h 3 S 4r - ._ ... Bp V1 i.

10 ::::typ =: ^^- ... ^^_

J 4 b 6 7 10 10 2 10 10 10 10 f (Hz) 10

Milliard BFWiO-Pagfe 10 ——

N.CHANNEL SILICON BFW10 FIELD EFFECT TRANSISTORS BFW11

10 3 D3610 r=^ 1= i

-VGS=20V Igss VD s=0 (nA)

2 10

10

t yp, 1

10" 1

10"2

trr 3 50 100 150 Tj (°C) 200

Milliard BFWIQ-Page 11 N-P-N SILICON PLANAR BFWI6A EPITAXIAL U.H.F. TRANSISTOR

N-P-N silicon planar epitaxial, multi-emitter transistor with extremely good inter- modulation properties and a high power gain. The BFW16A is primarily intended for the final and driver stages of channel and band aerial amplifiers with high output power in bands I to V (40-860MHz), and for the final stage of wideband vertical deflection amplifiers in high speed oscilloscopes. Encapsulated in a metal TO-39 envelope with the collector connected to case. The BFW16A is a ruggedized version of BFW16, which it succeeds.

QUICK REFERENCE DATA

VCBOM maX - 40 V

V maX - 25 V CEO I CM max. (f >1.0MHz) 300 mA

P, , max. (T <125°C) 1.5 W tot case — T. max. 200 °C

f typ. (I = 150mA, V = 15V, f = 500MHz) 1.2 GHz T c CE -C typ. (I = 10mA, V = 15V, f=1.0MHz) 1.7 pF rg c CE

G typ. (I = 70mA, V = 18V) f = 200MHz 16 dB P C Uh f= 800MHz 6.5 dB

P typ. (I = 70mA, V_, = 18V) f = 200MHz 150 mW ° CE ° f = 800MHz 90 mW

OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-3/SB3-3B J.E.D.E.C. TO-39 Millimetres - A- -B- Min. Typ. Max.

A 9.10 - 9.40 B 8.2 - 8.5 C 6.15 - 6.60 D - 5.08 - E 0.71 - 0.86 Fl - - 0.51 F2 12.7 - - F3 12.7 - 15 Gl - - 1.01 G2 0.41 - 0.48 G3 - - 0.53 H - 0.4 - J 0.74 - 1.01

Collector connected to case Accessories available:- 56218, 56245, 56265

Milliard APRIL 1970 BFW16A Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX pe,k) 40 V CBOM ' < V maX (peak R 50S2 10mA) 40 V CERM - " BE^ ' V = 25 V maX - (I 1 °mA) V CEO C 2.0 V maX - V EBO

I max. 150 mA 300 mA I CM max. (f >1.0MHz) 1.5 P . max. (T <125°C) W tot4 v case -

Temperature -65 T . min. °C stg 200 °C T . max. stg T. max. 200 °C ] THERMAL CHARACTERISTICS

in free air 250 degC/W 'th(j-amb) 50 degC/W 'th(j-case) R when mounted with a top K clamping washer of accessory 56218 and a boron nitride washer for electrical insulation 1.2 degC/W

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) Min. Typ. Max.

current CBO Collector cut-off V =20V I 0, T. = 150°C 20 /xA CB E

CEK Collector-emitter knee voltage I_, = 100mA, I =the value for c a which T = 110mA, at V = 1.0V 0.75 c en-

Mullard BFW16A Page 2 PLANAR N-P-N SILICON BFW 1 6A EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (contd.) Min. Typ. Max.

Static forward current FE transfer ratio = 50mA, V = 5.0V 25 Ic CE = = 5.0V 25 I 150mA, VCE

Transition frequency

I = 150mA, V = 15V, c CE 1.2 GHz f = 500MHz

Collector capacitance "To V =15V, I =1 =0, CB E e 4.0 pF f = 1.0MHz

Feedback capacitance

I = 10mA, V = 15V, c cCE = 1.0MHz, T 1.7 pF f amb

N Noise figure = 30mA, V\ =15V, I c CE 6.0 dB = 200MHz, = 75S2, T = 25°C f R amb

Power gain (not neutralised)

I = 70mA, V = 18V, c CE dB f = 200MHz 16 T , =25°C amb dB f = 800MHz 6.5

Intermodulation characteristics P Output power (see test circuits) o at ou I =70mA, V =18V, v.s.w.r. = T intermodulation factor -30dB, amb

f = 200MHz, f =202MHz, P f = 205MHz, q 130 150 mW f = 208MHz (channel 9) (2q-p)

f= 800MHz, f = 798MHz, P

f =802MHz, q 70 90 mW f = 806MHz (channel 62) (2q-p)

Milliard BFW16A Page 3 .

POWER OUTPUT TEST CIRCUIT (f = 200MHz)

77T Choke

L = 3 turns of 1.4mm silver plated copper wire, winding pitch 2.7mm, int. dia. 8mm, taps 1.5 and 0.5 turns from earth.

L = 5.5 turns of 1.4mm silver plated copper wire, winding pitch 2.2mm, int. dia. 8mm.

L = 3 turns of 1.4mm silver plated copper wire, winding pitch 3.3mm, int. dia. 8mm.

11mm.

ADJUSTMENT OF TEST CIRCUIT

Basis of adjustment

Intermodulation distortion at dj m = -30dB is caused by clipping in h.f. output cur- rent and voltage. The maximum undistorted output power is attained when

a) Clipping in current and voltage is simultaneous ; this occurs if

B = V V /l load < CE- oelP C

Where V is the high frequency knee voltage

b) The h.f. collector current is as low as possible; this occurs if

: +C "'load

Where C is the output capacitance of the transistor with short-circuited input.

Experimentally obtained values of Rioad &nd Cioa(j, for maximum output power at an intermodulation factor of -30dB, are:

R, = 220S2, C, = -5.6pF loadj load

In this case 4pF are provided by Coe of the transistor itself and 1.6pF by the mount-

ing system , with the boron nitride washer between the transistor and the chassis

Milliard BFW16A Page 4 . . .

N-P-N SILICON PLANAR BFW 1 6A EPITAXIAL U.H.F. TRANSISTOR

ADJUSTMENT OF TEST CIRCUIT (contd.) Procedure

1. Remove the transistor and connect a dummy, consisting of a 220J2 resistor in parallel with a 5. 6pF capacitor, between the collector and the emitter connections of the output circuit 2. Tune and match the output circuit for zero reflection at 205MHz (i.e.,v.s.w.r.= 1). 3. Replace the dummy by the transistor. Tune and match the input circuit for maxi- mum power gain and good bandpass curve. The v.s.w.r. of the output will then

be <2 over most of the channel. Corrections can be made by tuning L .

POWER OUTPUT TEST CIRCUIT (f = 800MHz)

Lx = 25 x 7 x o.85mm silver plated copper strip, input tap at 5mm from earth. L2 = 13 turns of 0.6mm enamelled copper wire, int. dia. 8mm. L3 = 1.5 turns of 1.3mm copper wire, int. dia. 8mm.

ADJUSTMENT OF TEST CIRCUIT

At 800MHz a dummy cannot be used to adjust for optimum collector load, because at these frequencies the impedance transformations of the dummy are too high. A small signal with a frequency of the midchannel 802MHz is fed to the input. The signal is increased until clipping occurs, that is until the output power no longer not increases linearly with increasing input signal . Care should be taken to allow the voltage swing to exceed the Vqer value as this may result in the destruction of the transistor by second breakdown. The output circuit is then tuned to eliminate clipping

The output P is given by

- V /2 : 480mW ^CE cek> knee voltage where Vcek is the high frequency Keeping the input signal as small as possible at Po = 480mW, the output circuit is

adjusted for minimum intermodulation . The input circuit is then adjusted for maxi- mum gain and good bandpass curve. The v.s.w.r. is found to be < 2 over the whole channel

Milliard BFW16A Page 5 .

tot BIWM BFW16A |

v^XT-Sa j -<23*-- \o ^ ± -4.9V-, j\a _,<3 tt4J& ^ ± ~~ _ ~ J- _,_ -i-- O.- ' V"* " -.—-I-«JX j^kV1 ' +>^ l\ ^ -T ,.o X £. 1 ' " lj_. _ tXTLJ -l±- _u _i_

" l with : JT "If" TT z\"Z~ o boron nitride ! \ "* , ] j [\ washer

/-\ s » I Vl'' c^v * w i rs!: irc'er. j. J. _L i\Vtefl chassis) with a .,—-..-.- x>iL//ii "X 1:., st -1+- J- "' " V*£? o; U-^iX'" -i^"" ; 1 | T>C?V -+ VS jl

ill ^^^ i ^\ M -f-»^--4— -4^flt -| H~ -+- -, -- - -.^ — _r" i "> ' " 1 1 1 1 1 1 1 : 1 II II II i l l l 3 M ! _T*^J\ l 1 1 I ! 1 II 1 1 I !"^— 1 1 1 1 1 1 1 ~ Q II 1 ; l-H-- 50 100 150 200 MAXIMUM PERMISSIBLE TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE X C - (nnA)

™1 \_

, \ '" yV

*.

3 W X

i 1 ^l

i _^ Sk

^k^km *l k. ( ' ^TT^ ™ k H^ L ^^ _L_ ^k.

| | \ -J —1__^_ too - ^^

, ^^__| —i -i- - -+- s *»^ , .. T _, ^^ 1 it .it: -^Liji ._ **t ~ s^ r*^

' '" T~ Ui ' \ i_j **«»— "" "".""" tt -i ;:.". i. . —^— ...:!. .1 Tl „_ o TO 20 30 40 V (V) CE AREAS OF SAFE OPERATION I. D,C. and A.C. operation is allowed under all base- emitter conditions, provided no limiting values are exceeded.

II. Operation is allowed under all base-emitter conditions at ( a 1MHz, provided no limiting values are exceeded.

HI. Operation is allowed under pulse conditions, provided the transistor is cut-off, R £500, andfalMHz. B&

Milliard BFW16A Page 6 ^

N-P-N SILICON PLANAR BFW 1 6A EPITAXIAL U.H.F. TRANSISTOR

r l-i-Li'-U RFWIfiA BS413 !-- - -^- --_r __ -_-_ (mA) —H ^i — j : ' " nfit t ^ ^t TOO 3' p "yOjLS*""

m '_** * FifO^ L^T"' L-^n" T-2 5°C

I ^^**^^ L_ ^0*^ _i_ _l_ rt"»A> ^*4* ?*^llrf^^^* r [ J ^^«^^ ^- «**!* ^ 10 O I ^^ a — — L_ **** ^^~ m*--Tl i sro^ — L- — •*^^^*^ 1 • — " * ^ ' Ml ' 1 1 mmm m iM g| #? ^i \* -l—

E ' K ! I'OtTtA p_ J »"-" ^T^** |-_,-j i^iiiB—f-— " ^ X J ~ r"-"p T~~ — '•H-t-I-H-hI t -1- I -0 - 5mA

'

1 . 1 f\ \ i i 5 10 15 20 VCE (V) TYPICAL OUTPUT CHARACTERISTICS BFWieA XC

10

10

10 '10* J 10" 10 10 IB

Milliard BFW16A Page 7 r

' , j | | | I B8415 h l V =5V ; FF c i CE - (mA) Tj = 25 C typ 150 60 - VCE =5V

Tj = 25'C "

typ - I-

- 100 40

t i

! 1 i , — iT - ~\~* * f i

'-f~^ I I i 4-- i

! 1 1 50 20 i - t- J "t -T- '-

"IX- 1 i L f- - 1 - — -j U 1^ | — —

' ' ' I i 1 I +-7 -'-

i i i " r • * ~t~ ri Tj . ' -4- ~'

' i - 1 ' oi- 700 800 50 100 150 (mA) VBE(mV) Ic Typical mutual characteristics Typical static forward current transfer ratio versus collector current

t |l|'i T j BFW16A B841 T ! | 1 1 (GHz) r (PF) - — Tj= 25"C :

V5 ' ! ; , - -f—

i -i-

/ I *& * t- t -f-

. 7T V =15V ! CE ! :t

i Tj = 25 C

10 ' 4-h t n - i 4 XI- - [ I | t XXT

"Mi! i , i^ ,

! i i ~r-

; i : I 1 j i ; .*-.;-- I ,

! ! : i 0-5 j

! :

i

'

. , j | r

j

;

.

i i - h U i ] 1 J^ |

1 -; - -r : j ; ! t j_-t j

!

i 1 ! ! n i n I 10 20 50 100 150 I (mA) VCB(V) c

Typical collector capacitance versus Typical transition frequency collector-base voltage versus collector current

Milliard BFW16A Page 8 N-P-N SILICON PLANAR BFWI6A EPITAXIAL U.H.F. TRANSISTOR

APPLICATION INFORMATION

Performance of channel and band amplifiers

channel channel channel band band band

4 9 55 I II III Frequency range 61-68 202-209 742-750 47-68 87.5-108 174-230 MHz

Transistor used in:

final stage BFW16A BFW16A BFW16A BFW16A BFW16A BFW16A

driver stage BFW16A BFW16A BFW16A

second stage BFY90

first stage BFY90 BFY90 BFY90 BFY90 BFY90 BFY90

Output power at:

d. =-30dB 150* 150* 100 mW lm d =-50dB 30 mW lm d. =-60dB 10 10 mW lm Power gain 50 44 26.5 51 43 39 dB

Noise figure 7 6 8 6.0-6.5 6.5 6.5 dB

V.S.W.R. over the whole channel or band

for the input <2 <2 <2 <2 <2 <2

for the output <2 <2 <2 <2 <2 <2

Load impedance 30 30 50 30 30 30 a

Source impedance 60 60 50 60 60 60 n

*V = 2.2V over R = 30S2 or o LT = V = 3V over R T 60fl o L

Milliard BFW16A Page 9 .

N-P-N SILICON PLANAR BFWI7A EPITAXIAL V.H.F. TRANSISTOR

N-P-N silicon planar epitaxial, multi-emitter transistor with extremely good inter- modulation properties and a high power gain. The BFW17A is primarily intended for the final and driver stages of channel and band aerial amplifiers with high output in bands I, II and III (40-230MHz). Encapsulated in a metal TO-39 envelope with the collector connected to the case. The BFW17A is a ruggedized version of theBFW17, which it succeeds QUICK REFERENCE DATA

VCBOM maX ' 40 V V max. CEO 25 V

I max. (f >1.0MHz) 300 mA

P, ,. max. (T <125°C) 1.5 W tot case - T. max. 200 °C

f typ. (I = 150mA, V == 15V f = 500MHz) 1.1 GHz T c CE = = = -C typ. (I 10 mA,V 15V , f 1.0MHz) 1.7 pF re c CE G typ. a = 70mA, V = 18V, f = 200MHz) 16 dB p c CE P typ. a = 70mA, V = 18V, f= 200MHz) 150 mW o c CE OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-3/SB3-3B J.E.D.E.C. TO-39 Millimetres

Min. Typ. Max.

A 9.10 - 9.40

B 8.2 - 8.5

C 6.15 - 6.60

D - 5.08 -

E 0.71 - 0.86

Fl - - 0.51

F2 12.7 - -

F3 12.7 - 15

Gl - - 1.01

G2 0.41 - 0.48

G3 - - 0.53 Collector connected to case H - 0.4 - Accessories available: J 0.74 - 1.01 56218, 56245, 56265

Milliard

APRIL 1970 BFW17A Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX 40 V - i ' CERM ' BE C = V maX - (I 10mA) 25 V CEO C

V maX - 2.0 V EBO I max. 150 mA

I max. (f >1.0MHz) 300 mA

P, ^ max. (T —<125°C) 1.5 W tot case

Temperature

T ^ min. -65 °C stg

T ^ max. 200 °C stg T. max. 200 °C J THERMAL CHARACTERISTICS

in free air 250 degC/W 'th(j-amb)

'th(j-case) 50 degC/W

H, when mounted with a top 'th(case-h) clamping washer of accessory 56218 and a boron nitride washer for electrical insulation 1.2 degC/W

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max.

CBO Collector cut-off current V = 2°V 0, T. = 150°C 20 [iA ' CB *E J

CEK Collector-emitter knee voltage I = 100mA, I =the value for C B

which I, = 110mA, atV =1.0V 0.75

Mullard BFW17A Page 2 . .

N-P-N SILICON PLANAR BFWI7A EPITAXIAL V.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (contd.) Min. Typ Max

Static forward current FE transfer ratio

I = 50mA, V = 5.0V 25 c CE I =150mA, V_ =5.0V 25 C Cr.

Transition frequency

I = 150mA, V_ =15V, C Cili f = 500MHz 1.1 GHz

Collector capacitance Tc V„=15V, I =1 =0, CB E e f=1.0MHz 4.0 pF

Feedback capacitance

I = 10mA, V = 15V, c CE f=1.0MHz, T = 25°C 1.7 pF amb

Power gain (not neutralised)

I = 70mA, V = 18V, c CE f = 200MHz, T = 25°C 16 dB amb

Intermodulation characteristics

Output power (see test circuit) 150 mW

I = 70mA, V_, =18V, f = 200MHz, C CE intermodulation factor = -30dB, amb

f =202MHz, f =205MHz, p q = (channel f „ , 208MHz 9) (2q-p)

Mullard BFW17A Page 3 .

POWER OUTPUT TEST CIRCUIT (f = 200MHz)

L = 3 turns of 1.4mm silver plated copper wire, winding pitch 2.7mm, int. dia. 8mm, taps 1.5 and 0.5 turns from earth.

L = 5.5 turns of 1.4mm silver plated copper wire, winding pitch 2.2mm, int. dia. 8mm.

L = 3 turns of 1.4mm silver plated copper wire, winding pitch 3.3mm, int. dia. 8mm.

L = 5.5 turns of 1.4mm silver plated copper wire, winding pitch 2.2mm, int. dia. 11mm.

ADJUSTMENT OF TEST CIRCUIT

Basis of adjustment

= in h.f output cur- Intermodulation distortion at dim -30dB is caused by clipping . rent and voltage The maximum undistorted output power is attained when

a) Clipping in Current and voltage is simultaneous; this occurs if

H = (V V /I l««l CE- oek> C

voltage Where V , is the high frequency knee eek b) The h.f. collector current is as low as possible; this occurs if

-C, , = +C load oe

transistor with short-circuited input. Where C oe is the output capacitance of the for output power at Experimentally obtained values of Rload and C load , maximum an intermodulation factor of -30dB, are:

R, = 220S2, C, = -5.6pF load load

mount- In this case 4pF are provided byC oe of the transistor itself and 1.6pF by the ing system, with the boron nitride washer between the transistor and the chassis.

Milliard 8FW17A Page 4 N-P-N SILICON PLANAR RFWI7A»#*» EPITAXIAL V.H.F. TRANSISTOR

ADJUSTMENT OF TEST CIRCUIT (contd.)

Procedure

1. Remove the transistor and connect a dummy, consisting of a 2200 resistor in parallel with a 5. 6pF capacitor, between the collector and the emitter connections of the output circuit.

2. Tune and match the output circuit for zero reflection at 205MHz (i.e. ,v.s.w.r. = l).

3. Replace the dummy by the transistor. Tune and match the input circuit for maxi- mum power gain and good bandpass curve. The v.s.w.r. of the output will then be <2 over most of the channel. Corrections can be made by tuning L„.

Milliard BFW17A Page 5 —

ptot (W) ~~ 1-5 .- "i-^—&

^ i l° ^* \*^ \5^n ^C -'* 1 q\ X*

i~-\ *k ^ _^ ^^k V ^v j 1-0 '. "k (ft _J _1_ I

V \*- washer ---^-. S V ^ ? ' 1 ) ' un a rieatsmK 1 j- ^Ocm <>^ | | 1 | ) | | j ( | ) n^^ | | | | | | | \| Mi ^^Pc^e© -4 S^? (eg. chassis) with a 0-5

* ^^w^ f~. ^ ^ i ^^Pp LA r l^^^fc ) 1 1

1 ^^^L V L

1 | __j_ ^1* _4_ | t j_ _J 3 " 1 - \ \ rn n rrrrrrr rrr 1 rn r ""^s^f^

1 1 1 1 1 1 1 ! 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 T*I 50 100 150 200 Tamb MAXIMUM PERMISSIBLE TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

(mA) - 300 L _,

1 __ % H ^v 1. c 200 L ™ ~f* *k ^ s

1 * ^^

^ 1 s 100 ^ ^ , s ^ **^ T 1— ^* \ ^ ** jL

. * | ^ ^ ^fc

i |_ Jii i V (V) I 10 20 30 40 CE AREAS OF SAFE OPERATION I. D.C. and A.C. operation Is allowed under all base-emitter conditions, provided no limiting values are exceeded.

II. Operation is allowed under all base-emitter conditions at f 2 1MHz, provided no limiting values are exceeded. III Operation is allowed under pulse conditions, provided the transistor is cut-off, R =500 and f^lMHz. BE

Milliard BFW17A Page 6 "

N-P-N SILICON PLANAR BFWI7A EPITAXIAL V.H.F. TRANSISTOR

2 ' C 1 | I I I RFW17A B8413 (mA) xl

J*> i i y 150 rr^tfP^,.' x y i 'v0i-f< X X.-*? /^

- ™ — , mMB** — ™ l^ MM' yprnA m 50 *—--H-- ""1 "

I =0-5mA-

( V 5 10 15 20 VCE > TYPICAL OUTPUT CHARACTERISTICS

38414 c 17/ (mA) VCE = 5V 25*C 'j =

tyt^ ma K(I ) B m2

-

-

: 10

-

;

10 10* 103 TRANSFER CHARACTERISTICS

Milliard BFW17A Page 7 Mill B8415 h lc V SV FF CE= . (mA) Tj = 25 C top) 150 vCE =sv Tj = 2S*C w

100 —

50

700 800 50 100 150 VBE(mV) Ic(mA)

Typical mutual characteristics Typical static forward current transfer ratio versus collector current

_ M 'T B8417 "To J i

! ; (GHz) (pF) [

i 1-5 .J

! ( = 1MHz T, = 2S*C ! | :i ! ' i E=V°

|

i

i yP - l

' k£ - \j ; |

'

1 : I

: 10 i | VCE = 15V |.-4- ...p. T: = 25*C \ r - | ^5 -H ' L+1

; I

j

|

r . i i j -

I , I [ _i_

t

| 0-5

| it ! .,_.

; •t- : ; , \ j j_

' ' ' i

' : : .. _j. - i-- • \ T 1 "] '. ! -4- ! 1 ; i \ j

; ; i ! i ; 1 10 20 50 100 150 (mA) VCB (V) I c

Typical collector capacitance versus Typical transition frequency collector-base voltage versus collector current

Milliard

BFW17A Page i N-P-N SILICON PLANAR BFW30 EPITAXIAL TRANSISTOR

N-p-N silicon planar epitaxial, multi-emitter transistor with extremely good intermodulation properties and a high power gain. The BFW30 is primarily intended for wideband vertical amplifiers in high speed oscil- loscopes, wideband aerial amplifiers (40-860MHz) and television distribution amplifiers. Encapsulated in a metal TO- 72 envelope with all electrodes insulated from the case. Shield lead connected to case. QUICK REFERENCE DATA

20 V VCBOM maX - 10 V V maX - CEO 100 mA ICM. max. (f>1.0MHz) P max. (T ^25°C) 250 mW tot amb T. max. 200 °C } f typ. (I = 50mA, V =5.0V, f=500MHz) 1.6 GHz

-C typ. (I =2. OmA, V =5.0V, f=1.0MHz) 0.8 pF re C CE 21 G typ. (I =30mA, V„ =5.0V) f=200MHz dB C Ut P f= 800MHz 7.5 dB

d. typ. (I = 30mA, V =6-0V, R =37.5fi, lm C CHi J-i f = 183MHz, V =100mV P o f =200MHz, V =100mV q o f,„ = 217MHz) -60 dB (2q-p) OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-12A/SB4-3 J.E.D.E.C. TO-72 Millimetres Min. Nom. Max. A 4.53 - 4.8 B 4.66 - 5.33 CI - - 0.51 -01 C2 12.7 - - -02 C3 12.7 - 15 C2 Dl - - 1.01 D2 0.41 - 0.48 D3 - - 0.53 E 0.84 - 1.17 F 0.92 - 1.16 G - 2. 54 - H 5.31 - 5.84 Connections 1. Emitter 2. Base Viewed from underside 3. Collector 4. Shield (connected to case)

lisirrl ' lieiru — MARCH 1968 BFW30 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX eak 20 V CBOM -

V maX (Peak R 50!2 10"1 20 V - ^ CERM ' BE^ ' V = 10 V maX - (I 10lnA) V CEO C 2.5 V maX " V EBO I max. 50 mA (f>1.0MHz) 100 mA I CM max.

P max. (T , =^25 C) 250 mW tot amb Temperature -65 T ^ min. °C stg T max. 200 °C stgx T max. operating 200 °C J THERMAL CHARACTERISTICS

R^, in free air 0.7 degC/mW th(j-amb),. u, 0.5 degC/mW th(j-case)

CHARACTERISTICS (T , =25 C unless otherwise stated) ELECTRICAL amb Min. Typ. Max.

I Collector cut-off current CBO - V =10V, I = 50 nA CB E

h Static forward current transfer ratio - - I =25mA, V =5.0V 25 C CE - - I =50mA, V =5.0V 25 C Oil.

f *Transition frequency

I = 50mA, V = 5.0V, c CE - - f = 500MHz 1.6 GHz

C ** Collector capacitance V = 10V, I =1 =0, CB E e f=1.0MHz - - 1.5 pF

-C * Feedback capacitance V = 5.0V, I = 2.0mA, CE c f=1.0MHz - 0.8 - pF

Fourth lead (case) grounded ** Fourth lead (case) not connected

Mullard BFW30 Page 2 N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BFW30

ELECTRICAL CHARACTERISTICS (cont'd)

Mln. Typ. Max.

*Power gain (not neutralised)

I = 30mA, V =5.0V, f=200MHz 19 21 dB f= 800MHz - 7.5 dB

N *Noise figure V = 5.0V, I = 2.0mA, CE c f= 500MHz, R =50£2 5.0 dB

d. *Intermodulation distortion (see fig. 1) mi = I =30mA, V =6.0V, RT 37. 5G,

f = 183MHz, V =100mV P o f = 200MHz, V =100mV q o f = 217MHz -60 dB (2q-p)

* Fourth lead (case) grounded

680pF

Fig.l

Mullard BFW30 Page 3 - , ;

._ - ' ' j ! - 1 QO-TCW

p ' .._... tot 1 BFW30 v ! -r-r 1 - _j . t -l ImW) X4, - - L i

1 i

! ? 1 *,\

_ 1 j v'Wnn ^X'/>_ i ,( I.. - =W/; v^ 1 -— ' .'^•/N/'V . ... : I-

.

i ^SS^r'Ov'o i — , ''4,>i.'' VxXO, r i"' ' -1-h : ' j , ... »/>l , o. ^/,V/A *^ -» -4 i ^^ X^ i\ j ! : ^

1 ,fc ! i ! 1 i VV ; " :

' ...._ ° i 1- ^» > 'r* i j_ -

•-.- .„-. t i t"

! | -1".

: 1 :

V 1 \ ] - h I , 1. +" -

1

1 i ; : i [ | i | T O 25 50 75 100 125 150 175 200 TQmb (C)

MAXIMUM PERMISSIBLE TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

: ! — ic ^ BFW30 -1 — B8421

I I .1 : - (mA) _ ._. | I : . 1 . -}

^ .. | 60 1 Ti = 25 C -p-j— — . . U- I. -i.i- : — I i ; i -t- l ^P l ! :

I i 1 1 h K \\\ j_ .. |- I ^_ 750 ma ; - ; \

S • < --T_-.. __n~ _!_!_!_ ; : 7_!:t

; . -- 4- — . i _ — 500 ma ' ' ; ! 1 1 -- +;-—[ f y ] -- ; " 1 -T i • • •!• 1 i •

* -\- — i -- •-H-- f -f-t- ! ill:

f- - l — r1 1 250 : — MA j ^ i ^^+ T- -T-- i — it j-

i * ' ! I - 1. ' i

' -; ; . . j | +4 : T

: 1 2-5 5-0 75 10 VCE CV)

TYPICAL OUTPUT CHARACTERISTICS

Mullard BFW30 Page 4 !: !. :

N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BFW30

100 BFW30 B84 I c (mA) VCE = 5-0V Tj =25°C

__—__ .._ TV 3 ~f~ Ma;

0-1

: 5 7 1-0 10 100 1000 I B ()JA) TRANSFER CHARACTERISTICS

: I/- ! ~| B.B423 . BFW30 hFE . . ; i 3FW3C> "TI : . . I ,.

(mA) '

i . : . !j:i : ; 60 60 • • h VCE = 5-0V Tj = 25°C - ;

7 . : —

! I i :;v< )V ; : i : 40 40 Tj = 25°C

: : i : i : I

; . i I

: ; , |

:

; ; 20 20

'

i '

!

.

. i

: . . .

' . : ] ...... , : .:vj 500 V BE (mV) 20 I c (mA)

Typical mutual characteristic -Typical static forward current transfer ratio versus collector current

Milliard BFW30 Page 5 C tc BFW30 IpH ' ' T" 1-5 IIIIM Tj =25°C

f =10 MHZ '

1

'

i i

__

' _[ 4- 1-0 : !

i

~ -

,

I •" + ~|- - 0-5 ~~

i

5-0 10 15 vCB < v >

TYPICAL COLLECTOR CAPACITANCE PLOTTED AGAINST COLLECTOR- BASE VOLTAGE

f T I 'T BFW3Q -- (GHZ) . 2-0

I i_

Tj =25°C Vce=50V f = 500 MHZ

! I

....

-- —

!

— i —

0-5 i 20 40 60 80 I r (mA) TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT

Mullard BFW30 Page 6 .

N-CHANNEL SILICON BFW6I FIELD EFFECT TRANSISTOR

The BFW61 is an n-channel silicon epitaxial planar junction field effect transistor for general purpose industrial applications QUICK REFERENCE DATA

V _„ max. ±25 V DSS V max. -25 V GSO

V maX - 8.0 V (P)GS min. 2.0 mA max. 20 mA

V , max. (T , ^25°C) 300 mW tot amb 1.6 mmho

-C max. 2.0 pF rs

OUTLINE AND DIMENSIONS

Conforms to J. E.D.E.C. TO-72

B.S. 3934 SO-12A/SB4-3

For details see page 4.

MuHard JUNE 1968 BFW61 Page 1 .

Limiting values of operation according to the absolute maximum system

Electrical

V max. Drain-source voltage ±25 V DSS

V m3X - Drain-gate voltage 25 V DGO

maX - Gate-source voltage -25 V VGSO

I max. Drain current 20 mA

I max. Gate current 10 mA

P^ ^ max. Total device dissipation tot (T . £25°C) .300 mW v amb Temperature

T Storage temperature range -65 to +200 °C stg*

T max. Max . junction temperature 200 °C J THERMAL CHARACTERISTIC 0.59 degC/mW R'th(j-amb)

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Max.

Gate cut-off current GSS -V =20V V = ° 1.0 nA GS ' DS - = = 15°° 1.0 jiA V 20V V °' C GS ' DS V * Drain current DSS V =15V V 2.0 20 mA DS ' GS=°

Gate-source voltage 'GS I V = 15V 0.5 7.5 D =200M, Dg

Gate-source cut-off voltage (P)GS I = 1.0nA, V = 15V 8.0 D DS

*Measured under pulse conditions.

Milliard BFW61 Page 2 N-CHANNEL SILICON RFWAI FIELD EFFECT TRANSISTOR DrTTO '

ELECTRICAL CHARACTERISTICS (cont'd)

Small signal y-parameters Min. Max.

Common source, V = 15V, V„ =0 DS GS

Forward transfer admittance 'fs f=1.0kHz 2.0 6.5 mmho

Output admittance yOS f=1.0kHz - 85 fimho

C. Input capacitance 1S f=1.0MHz - 6.0 pF

-C Reverse transfer capacitance rS f=1.0MHz - 2.0 pF

y Forward transfer admittance S f=10MHz 1.6 - mmho

SOLDERING AND WIRING RECOMMENDATIONS

1. Devices may be soldered directly into a circuit with a soldering iron at a maximum iron temperature of 245°C for a time of up to 10 seconds at

least 1 . 5mm from the seal . At an iron temperature of 245°C to 400°C the maximum soldering time is 5 seconds at least 5mm from the seal.

2. These devices may be dip-soldered at a solder temperature of 245 C for

a maximum soldering time of 5 seconds . The case temperature during dip-soldering must not at any time exceed the maximum storage tem-

perature . These recommendations apply to a device mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes.

3 . Care should be taken not to bend the leads nearer than 1 . 5mm from the seal.

4. If devices are stored at temperatures above 100 C before incorporation

into equipment , some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated flux.

Milliard BFW61 Page 3 OUTLINE, DIMENSIONS AND CONNECTIONS

Conforms to J. E.D.E.C. TO~72

, ... Millimetres -A — Mn. Nom. Max

t A - - 4.8 3 B - - 5.3

C 12.7 - -

"O D - 0.43 - ; g c E - 1.0 -

F - 1.05 -

JL~D G - 2.54 -

H 5.3 5.55 5.8 t / ) ' Hu G I*? >\T "fi=B75f

Pinning

1. Source

2. Drain

3. Gate

4. Shield lead comlected to case

Milliard BFW61 Page 4 — " —

P-N-P SILICON PLANAR BFX29 TRANSISTORS EPITAXIAL BFX87 BFX88

BFX29 is also available to BS9365—F010

P-N-P silicon planar epitaxial transistors for general purpose industrial applications. Encapsulated in TO-5 envelope with the collector connected to can.

QUICK REFERENCE DATA — " ' BFX29 BFX87 BFX88 - V maX - 60 50 40 CBO V - V maX - 60 50 40 CEO V -!„.,CM max. 600 mA P max. (T £25°C) 600 mW tot amb WV^'-W 11" min. 50 40 40 typ- 125 125 125

f rain. (-1 =50mA,-V„ =10V, T C CE { = 100 MHz) 100 MHz

Unless otherwise stated, data is applicable to all types OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-3/SB3-3A J.E.D.E.C. TO-5

Millimetres A Min. Nom. Max. B — r A 9.10 - 9.40

t B 8.20 8.50 H c L_ C 6.10 6 60 _ t '*«+ \l 1 D 5.08 G ; I F3 E 0.71 - 0.86 i Tl °+1_LJ Fl 0.51

- - 45*t3V\ .a^ ~^b. F2 12.7 /)C',Tn F3 38.1 41.3

I Gl - 1.01 E \KZ^ J — G2 0.41 0.48

G3 - - 0.53 The collector is electrically - - connected to the envelope H 0.4

J 0.74 - 1.0 Milliard JUNE 1968 BFX29 -Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical ?FX29 BFX87 BFX88

- maX - 60 50 40 V VCBO - maX - 60 50 40 VCEO V max. 5.0 4.0 4.0 V -VEBO -I max. 600 mA 600 mA 600 mA ° P maX - (T 5 C 600 mW tot amb^ ) Temperature

T range -65 to +200 stg T. max. +200 J THERMAL CHARACTERISTIC

R. 292 degC/W th(j-amb)

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

CBO Collector cut-off current - V = 60V BFX29 1.0 500 nA CB ' V - V =5°V BFX87 1.0 500 nA CB ' V - V = 40V BFX88 1.0 500 nA CB ' V - V = 5 ° V BFX29 0.5 50 nA CB ' V - V = 4 ° V BFX87 0.5 50 nA CB ' V - V =3 ° V BFX88 0.5 50 nA CB ' V - V = 50V CB ' V T. = 100°C BFX29 0.03 2.0 fxA J -V 4°V ' CB ' V T. = 100°C BFX87 0.03 2.0 tiA J -V 30V, I = CB ' E BFX88 0.03 2.0 nA 1

-I EBO Emitter eut-off current - V =5 -°V BFX29 30 500 nA EB ' V -V = 4.0V, I = BFX87.88 2.0 500 nA EB c - V =3 - 0V BFX29.87, EB ' V BFX88 1.0 100 nA

Milliard BFX29-Page 2 P-N-P SILICON PLANAR BFX29 EPITAXIAL TRANSISTORS BFX87 BFX88

ELECTRICAL CHARACTERISTICS (cont'd)

Mln. Typ. Max.

Static forward current FE transfer ratio -T = 0.1m A, -V_ =10V BFX29 20 90 C CE -I = 1.0mA, -V =10V BFX29.87, BFX88 40 105

-I = 10mA, "V = 10V BFX29 50 125 c CE BFX87.88 40 125

-I = 50mA, -V =10V BFX29 50 125

-!_ = 150mA, -V =10V BFX29 87, C CE BFX88 40 90

-I =500mA, -V_, =10V BFX87, 88 25 40 C CE

Collector-emitter saturation CE(sat) voltage -I = 150mA, -I =15mA - 0.15 0.40 V C B

Base-emitter saturation BE(sat) voltage -I = 30mA, -I = 1.0mA - 0.77 0.90 V C B -I = 150mA, -I = 15mA 1.05 1.30 V C B

Collector capacitance tc -V„ =10V, I =1 =0, f=1.0MHz 6.0 12 pF CB E e

Emitter capacitance te = -V I, T> 2.0V, I =1 =0, f=1.0MHz 18 30 pF EB C c

Transition frequency -I = 50mA, -V = 10V, c CE f=100MHz, T = 25°C 100 360 MHz ambU

Milliard BFX29-Page 3 .

ELECTRICAL CHARACTERISTICS (cont'd)

Saturated switching times (see test circuits)

Min. Typ. Max.

t Turn-on time 25 60 ns on

t „,. Turn-off time - 55 150 ns off

h-parameters

= Measured at -I = 10mA, -V = 10V, f 1.0kHz, T , =25°C amb Min. Typ. Max.

h Input impedance 600 - a le -4 h Voltage feedback ratio 1.50 - xio re h Forward current transfer ratio 155 - fe h Output admittance 104 - (jmho

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.

2. Transistors may be dip-soldered at a solder temperature of 245 C for a maximum soldering time of 5 seconds. The case temperature during soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes

3 . Care should be taken not to bend the leads nearer than 1 . 5mm from the seal.

4. If devices are stored at temperatures above 100 C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retmned using a suitable activated flux.

Milliard BFX29-Page 4 i

P-N-P SILICON PLANAR BFX29 EPITAXIAL TRANSISTORS BFX87 BFX88

TEST CIRCUITS

Saturated turn-on switching time

-30V

20011

— WW1k.fl -16V

50.fl

200ns

Fig.l

Saturated turn-off switching time t15V

— -30V

5011 200ns

Fig. 2

Milliard BFX29-Page 5 -

_ : I |

Htot |

(mW) ! BFX87 ~~' BFX88 600

~'

400 '

200 ' I

rmissible area of operation '

1 i 1

X ! I .

|

: • r 1" ^ JUL

) T 5 1C)C 150 200 3 m b<"C)

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

R BFX29 _ B 9442 th(t) BFX87 (degC/W) -| BFX88

E a — — --'-M

tr R th(s> d=vo I o T6* "IT -ij z~l 1 100 -—. 0-2 (_ ^rx^ ... £

I IT 0»

T i t i r— — ' r- ~~~" 10 i i i t TT" i— — a — w - — 4 iStabilisa ion tim«—* _rI J L_ ? 1 TIT ~T R = IR R ,d R i d=10 1 I o th«) thter th — _L ol L. | = Steady state thermal resistance with d=1 5^ h(s) 1 Transient thermal resistance with d = R t h(to)= 10' 1-0 J, 10 110' 10~ 4 10" 3 0"2 0"' 10° 10' 10 2

Pulse duration (s) TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS PLOTTED AGAINST PULSE DURATION

Milliard BFX29-Page 6 P-N-P SILICON PLANAR BFX29 TRANSISTORS EPITAXIAL BFX87 BFX88

TYPICAL VARIATION OF COLLECTOR CUT-OFF CURRENT WITH JUNCTION TEMPERATURE

Milliard BFX29-Page 7 -

_I C

(mA) , ! BFX8V

i i BFX88 600

I I I I f ":, 1

__^»** — ^ II pW—'^j I 1 400 ,, — »»* . — — ^ — "" «»» = B '*~5»*i lli3s"+n" "i 60 1 a

• "_u__... L.L LL-L ' ~ tt~

I 1- j | 1 | UU 1_| u 1-n H M ff" ^Tff TX

nWrn\\ I 1 - . oWr\ i I f- ! II i"T+-H— 0-5 V0 1-5 20 -Vnr(V)

1 1 1 1 $*445 ~lr I i I II _ CfnA) ' iipL " i ± Tj = 25C

n -^J- 500 1B"™> => 10 -+- 80 b-0

" ^ **C ^^ — ^ ^ ** j f **'' *^ -I— *£* rf' ^^ **** ** *^ *** j ? ** *" l * +"^ 9 * 1 * ^ t. £*

—*-'*'* ^ "" 1 t* * 1 tt"~ rf^* — *""* *** i*""* * p / 1 — "* «*•"* - ^ ' _, ,-** ^k-"'""" I t ~- 400 w^---^9" ; ,-cr_| ^..e'l! , ^* p.* - -f-^^^p,- ^^p,,- _ 20- _ "" -^" " ^ — r^ 3 '' ,--* „»*-;__ _ B V- - «-e' »* --- ," e! -s -is- - -- ; '-^»------a.---*" LL. 4t ' -- --£- o00 - >.= + - B - ^^----" '" -j --;a-*" ? ? „„.._:.=£

o---i "M+H---- =f^ft=— ^ffi= 10 20 30 40 50 -Vce(V)'^0

TYPICAL OUTPUT CHARACTERISTICS AT LOW AND HIGH COLLECTOR-EMITTER VOLTAGES

Milliard BFX29-Page 8 ' '

P-N-P SILICON PLANAR BFX29 EPITAXIAL TRANSISTORS BFX87 BFX88

-ic -ic B8448 (mA) BFX87 (mA) !

BFX88 ! 600 Mill 600 i -VCE =10V CE =10V

l T.-25-C l_ Tj = 25"C J

400 400

-

i 200 200 i

ti- ll

~4^~ i t r L 10 -I B(mA) 20 0-5 KHfeeCV)

TYPICAL TRANSFER AND MUTUAL CHARACTERISTICS

-'b r -IB B8449 (mA) 1BFX87 ^ (HA) -1 BFX88 15 150

1 1 II I 1 -VCE =10V Tj = 25°C - -I c =10mA

/ / ( 10 100

f- J I _i i ~ i / /

h- I 5 f 50 r

1i f / /' r,

0-5 -VBE (V) 1-0 -50 50

Typical input characteristic Typical base current versus junction temperature

Milliard BFX29-Page 9 — — Vc :__:._ --- - )FX29 B8446 b1FX87 — - .... JFX88 15<~> CE=10V - — "" - n TIT T = 25°C — -

... X -

-- so

— "^ —

u i I I _i.,i.i , , . , I, , , , . ,t; ; 5 7 3 5 » 3 5 7 D-1 1-0 10 100 - I^fmA)

n FE| BFX29 B8447 BFX87 BFX88 300

-IC = 10rnA

200

100

-50 50 100 150 TjCC) TYPICAL VATIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH COLLECTOR CURRENT AND JUNCTION TEMPERATURE

Milliard BFX29-Page 10 P-N-P SILICON PLANAR BFX29 EPITAXIAL TRANSISTORS BFX87 BFX88

(V) " BhX87'r" TJi. J_

Mill _ . .

~ X X 1-5 ~r + +

1 '° ° -- X ~^S-a0 \ '-^"p" "T"^

' ' M ' Mill WMllIlniVJzSffl .--_|..___-_ - — == ±— -j- __*-;_,, 0,,. - 0-5 - - ^*~ e*** ***** _-_L IA ± 1 _!_____,_?_;£__,.__?_-.-_- X__X.50._- B -_":: r ::±-:— _j_ —±x ;__ig::-E:_-i±_^-^_= ::::— —- ^zfUzZiiZzzZ"--''--'-'— • - i—— --- = — ™ 1J1 1 1 1 1 S-BS ? — —-" j"

( ) 1 1 ^^j i 100 200 300 400 500 -I c(mA)

~ " ~" (V) _±_ " "" — BFX87

v—' B "~ ^ \^{>

"" t _

^ -]* /^ -* / i ^^n

-4— i ! .^ - j^ __ ^^

, i ^ i __ ^^ ^ ^' ^ y

"*

' i-* y 'Cr y^ ^

- ^ L>^ HjW^ hH f

, •* > _r'^*'^i- ^l T I

' " -*^ *"vrd-^ *T__. 1

-*^ __—-<*Ct- £? "*^r- "* -d-^**

iBa™ " £~52-J " "* '

100 200 300 400 500 -I c(mA)

TYPICAL VARIATION OF COLLECTOR-EMITTER SATURATION VOLTAGE WITH COLLECTOR CURRENT

Milliard BFX29-Page 11 .

1

1 i ' ' -v, I !

' "" CE(sat) F3FX29 i

- 1 (U) | f- 3FX87 |

| |

1 1 ; 3FX88

1 ! 1- 1 ... L , [ n f | , ^ | T | , ,

; i

- =10 . i~' -ic /-I B .' ;

' ' I

i

i , t III

'

i I I

: ! ; i „„ L • = J -L . -I c(mA) 500 ^Tit: ""

r ' 1 f^'T ^^ *"^ — !

! ^ r^l*T^ f + ^~ "t"" " "*j '"

P "' ^1_rf**^ !

f ! | , j

; -. =1 ZL1:n.^T-;- -tJ- -rr

-i = 10 I---M-T-I 1 1 o4i» =««^=S=—_!_ -50 50 100 Tj CO

i i -v, _ ^_(_ iJ_LL ! .1 1 1 i 11. CE(sat) JZ BFX29 „ j Tin; B flCS-»ijo H i" ^^1 (V) — I. i . : i ~Tj -IC(mA) =500

! \-5~-\- BFX88 " :

1

! ! - ! . .... ; j-j F j-r:~ i | -jf T , 1 i "" -X-- ~!" 4_ t

;

|- 1 1 J_

i

t ' : **i ~T~ ! 4- } "^r /-i = 20 ^ r n : -ic b

! r ^

:

i 1 p i 1

! . I l *

: : i T

, 1~ — -1

' 1

', T --U 1

! -+- ill !

i

1 ! I 1 f M".-- = 10 -H -4- n * 1 -4 i ! i

i ofe ! ; 1 ^+i -50 50 100 Tj CO TYPICAL VARIATION OF COLLECTOR-EMITTER SATURATION VOLTAGE WITH JUNCTION TEMPERATURE

Milliard BFX29-Page 12 '

P-N-P SILICON PLANAR BFX29 EPITAXIAL TRANSISTORS BFX87 BFX88

! !

- - | R8454 vBE(sat) (V) BFX87 - Q FX88 1-5 1

. ; Tj(fc)

1 , 1 ; ' IT ! -U- + ! = -50 - _l = —!"~r""r_ = 25 .... 9' = 50 = 100

1 M 5 10 *

!

1 ,u j^ _ - -w

- +

- j 1 1 j

i • ! I 05 i 1 I 200 400 600 -Ic (mA)

1

1 JZ : B8455

1 Tj('C) 'BE(sat) 1 = -50 (V) 1 [ = i I = 25 p-4-£ : I ^ — - : t pj*"^ t

j ~~_j ! ^* 1 ,

! -L~/-ID = 2(1

1

1

0'5 1 / C) 2\)

i I I | B8456

! ,

'BE(sat) (V) =-50 = = 25 1-0 = 50 = 100

| ^ I = 30 -IC /-I B

! I

I J" j

-

: :

; u-b _! c ?cX. A c «>c)C) 1 (nn<\ c TYPICAL VARIATION OF BASE-EMITTER SATURATION VOLTAGE WITH COLLECTOR CURRENT

Milliard BFX29-Page 13 I

i

BE (sat) i T B8457

' (V) BFX87 i J BFX88 1-5 -i C '-Ib =1c

|

: i ;

H 1

! j .

1 j -Ir(mA) = 50C j_i

I

[

1-0

._[_ | -t- —(— -}~t- 150 !

;

,

- 10 i

'; ~j 1 i ~~ \ ^ i i ! 0-5 i i ! | m I : , I -50 50 100 Tj CO

1-5 ' ! > ! \ ' - ! -v, II I II M Mi j BE(sat) i MM _J i B8458

(V) = "_" 1 M-Iq/'Ib 2 ° i

! ! ! J J - uLi T

}_ ' ' .-l-JZ . .._!_ i h^ "^ ' - 1-0 "H^tz -ir (mA) = 500 I

i ^+ -t- - IM

I 150 —j— j -1- -t- - !

10 [ 0-5 -50 i 50 100 Tj CO

; ,

I l ! _[_ v I 44--u BE(sat) "t T : ! B8459

i = ; (V) ' ,3U ;~lc "'*b •i 1 '

i I

i (- I i-4-U-1 4-

1 ! r ! •t- cux? -i— --I- - -+ 1-0 -+- -I r (mA) = 500 P > -

; .1. - - 150 i ~r

, : - I ! 10 r

!

i

1 0-5 ! s I i : ! 1 j -50 50 100 Tj CO

TYPICAL VARIATION OF BASE-EMITTER SATURATION VOLTAGE WITH JUNCTION TEMPERATURE

Milliard BFX29-Page 14 P-N-P SILICON PLANAR BFX29 EPITAXIAL TRANSISTORS BFX87 BFX88

C,, i tc :.:£: :~\r ._._~r~"11. BFX2<3

CpF) 1 7 : " "

! 3 | It BFX8

! 1 .-.! ::ijz± +~

.: , t--i-4-L - i ( »vow H Z

: x ! ' J = ! "± Ip E e

! I ! i

I . j T = 25"C ; J

1 1 10- i

' \ 1

\ r \ 1

^*fc

: ^^"J — H " ""-L M. 1 ~^_. -J -_—

-A ' 1 1 j_ BFX88 BFX87I BFX "29 _ " X- : HI T" "«T __ 1 1 j 1 I . 1 i 20 40 60 -VCB (V) TYPICAL VARIATION OF COLLECTOR CAPACITANCE WITH COLLECTOR-BASE VOLTAGE

i 'T 1 1 (MHz) r ^4- BFX29 t- I BFX87 BFX88 - 400 ' —

i-i—

i M +^ I ! ; - - —t-L -

I • - 1 - j-l- , J*£ 300 l , -+- '4- "x

i ; ^ — j ".'.'- -H -1 i \ 1 -t-1 -;-„.+-

j[ I

' ' 1 , 1 X-'-j/ -r -vCE = 10V H- "i - X:. f =100MHZ - \i -t 200 tt"T j ' i i |TQmb =25'C

"~H' : i t

! -1— i r

1 1 4 "/ . I -k :

;' ' -^-i- 4. ... -* -f ; X -i~X -.-I 1 .._ X I | ^-i- i 1 1/ - J i 100 _J _, 10 20 30 40 -I c (mA) TYPICAL VARIATION OF TRANSITION FREQUENCY WITH COLLECTOR CURRENT

Mullard BFX29-Page 15 h ie BFX29 E 8462 (kn> BFX87 BFX88 h ra 4 k (xid ) ' -V = 10V >T CE f = 1-0 kHz ' Tomb = 25 c

h r<2

;

n i<2

; 0-1 '>' 0-1 10 10 100 -Ic (nnA) TYPICAL INPUT IMPEDANCE AND TYPICAL VOLTAGE FEEDBACK RATIO PLOTTED AGAINST COLLECTOR CURRENT

h o e8402 (nmho) BFX£ 7 BFX8 hfC h 0<2

hf ; 8

'-'- -V/~v c - =10V -'-'- I f > 10kHz --- 'an1b = 25-C -

;

1-0 ' " 0^1 1-0 10 100 -I c (mA) TYPICAL FORWARD CURRENT TRANSFER RATIO AND TYPICAL OUTPUT ADMITTANCE PLOTTED AGAINST COLLECTOR CURRENT

MuHard BFX29-Page 16 .

P-N-P SILICON PLANAR EPITAXIAL TRANSISTOR BFX30

Also available to BS9365— F011

Silicon p-n-p planar epitaxial transistor intended for switching applications Encapsulated in TO- 5 envelope with the collector connected to can. QUICK REFERENCE DATA

- V maX ' 65 V CBO - V maX ' 65 V CEO 600 mA -!„„„CM max.

P max. (T . ^25°C) 600 mW tott amb = = h 10mA '-V °- 4V) miD - 50 FE HC CE typ. 90

max. 200

t max. (-1 = 100mA,

-L. =I , =10mA 250 ns Bon BoffD

OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-3/SB3-3A J.E.D.E.C. TO-5 Millimetres

Min. Nom. Max.

A 9.10 - 9.40

B 8.20 - 8.50 C 6.10 - 6.60 D - 5.08 - E 0.71 - 0.86 Fl - - 0.51

F2 12.7 - - F3 38.1 - 41.3 Gl - - 1.01 G2 0.41 - 0.48 G3 - - 0.53 H - 0.4 -

Collector connected to can J 0.74 - 1.0

Milliard JULY 1972 BFX30 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

- V maX ' 65 V CBO - V maX ' 65 V CEO - V maX - 5.0 V EBO -I max. 600 mA -I CM max. 600 raA 600 mA -I„,EM max.

P max. (T , S25°C) 600 mW tot amb

Temperature

T min. -65 °C stg T max. 200 C stg T max. 200 C ] THERMAL CHARACTERISTIC

R 292 degC/W th(j-amb)

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) Min. Typ. Max.

-I Collector cut-oft current CB - -V =65V, I =0 1.0 500 nA CB ' E - -V =50V, I =0 0.5 50 nA CB E - = V 50V ' CB ' V T =100°C - 0.03 2.0 nA J

-I Emitter cut-off current EBO - -V =5.0V, I =0 30 500 nA EB C - -V = 3.0V, I =0 1.0 100 nA EB C -V Base-emitter saturation BE(sat) ,. ' voltage -I =30mA, -I = 1.0mA - 0.77 0.90 V C B -I = 150mA, -I = 15mA - 1.05 1.30 V C B

h Static forward current FE transfer ratio -I = 1.0mA, -V =0.4V 40 80 C CE -I =10mA, -V, =0.4V 50 90 200 C CE - = 92 -I 50mA, V - 4V 20 = CE -I = 150mA, -V =0.4V 10 50

Mullard BFX30 Page 2 . .

P-N-P SILICON PLANAR RFXIfl EPITAXIAL TRANSISTOR DrAJW

ELECTRICAL CHARACTERISTICS (cont'd) Mm. Typ. Max.

C Collector capacitance -V„=10V, I =1 =0, CB E e f=1.0MHz - 6.0 12 pF

C Emitter capacitance

f=1.0MHz 18 30 pF

Saturated switching times (see page 4)

= - = = 100mA, I I =10,nA V 10V, V 2 ' OV "V Bon Boft ' EE !off~

Delay time 9 15 ns 'd t Rise time 18 40 ns r

t Turn-on time (t+t ) 27 50 ns on d r

t Storage time 95 250 ns s

l Fall time 30 50 ns f

Turn-off time (t +t.) 125 290 ns 'off s f

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt

2 . Transistors may be dip-soldered at a solder temperature of 245 C for

a maximum soldering time of 5 seconds . The case temperature during soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes

3. Care should be taken not to bend the leads nearer than 1.5mm from the seal.

4. If devices are stored at temperatures above 100 C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated flux.

Milliard BFX30 Page 3 ELECTRICAL CHARACTERISTICS (cont'd)

Saturated switching times

Test circuit v =iov o EE D420

1kXL -VD «20V i- Hh -oC.R.O.

51X1 39011 200ns 97n X VBB= 16.5 V

-Ir _100mA,-I =1 , =10mA c_ B(on) B(off) V -2-OV BE (off) Waveforms

Input

l off -|

I

_L_I 90V. 1 90 ./.

Output

10'/. -]j-f ^ • 10V.

i -l^ri

J L t r

1 1

Milliard BFX30 Page 4 1

P-N-P SILICON PLANAR BFX30 EPITAXIAL TRANSISTOR

^tot BFX30 B8353

i

(mW) j i

600 *"

1 1

l~ ' 4-i

-"

400 !-\

: ,

_j TN|^

i 200 i

. . 5 I 1

1

1 i -1 H 1 t,i -

i 50 100 150 200 Tamb CC)

TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

Rth(t) BF K30 8835- (dsgC/W)

,_, E f 1000 a: d = l0 Rth(s) --

1 — 1 11 _ D

10 ° 1 i -0-2 - oi. a R thCto

E 1 1 1 1- T l-'-l 1

c 10

T Stabilisation time -* —

.!-"» — o ,)

Rth{«* = steady state thermal resistance with d = ll

»th< o>-stran i«nt t 1e mc 1 r«s ista ice w th d = D II 1-0 10' 10« 103 — -4 1~ . . . . 1 7 10"" 10"3 10'2 10"' 10° 101 102 Pulse duration (s) TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS PLOTTED AGAINST PULSE DURATION

Milliard BFX30 Page 5 - — ! I M |

);; J ^CBO B83 32 =^r^-W+- l^-LBFX30 pt: 7 rrrr-.^ftT^trf- \',/-

' ' . ! ; \ J -V = 50 i F \ ' ' : ! ' . : CB ; ' i ; i /

,

; 1

.

! vo i ma . i i i , M- . , , , . , . . if 1 ' — —— | — — t ' ' — -; | ^ nA moo ~~\^n hp- 1

i 1 i

i ! : /

i I

' y i

i , !

j i 3^ i ; /

I 1 i i

i

i

:

:

! 1

i

i JlyU, ! ioo-444 d^=- !

1 ; i r— — — : / -U— T I 7 r^-^F ' i ! ! j j

' ! : M J - 1 i ' i 1 i i

' / M

!

i

i f\ : 1 i iii 1 10-: 1-1 i i 1—f-H : -- -* 1 1 _L |_j_| j— 1 1 r— — / -. ' h~r — ; j ! 1 1 i i 1 j

- ' ' 1 !

1 I / 1 ill !

I 1 1

_i 1 1-0 i — —'—

I -

5

1

i

'

1 ' 1 j

!| o-i - i^ il Ju- — 1 h -—1—1 :

; -

j

-

- -

|

-

i : i i" 0-01 i i -50 50 100 150 TjCC)

TYPICAL VARIATION OF COLLECTOR CUT-OFF CURRENT WITH JUNCTION TEMPERATURE

Mullard BFX30 Page 6 £ — 1

P-N-P SILICON PLANAR BFX30 EPITAXIAL TRANSISTOR

: ' 1 -j -Ir i I ) m B8342 ^ ! Mi (mA) 4 Jr Ti — c trc~J -_:ttit:1 -IX— i -- -4-1 4- J .ittti-F± t r ' 80m

I I I *t L^ L^r :tt!£ -; ^J^T 1 h- Vr [ -Uti " -~-- : Will _ i ij^Ti'i ^ 60mA Ml f — -t-' ! xi fj^r' r4l ^"4*44 -J-T4

1 j 1 T L, 1 _M "1 tf r-'zt 1 A,*+fVa- t" y ^ 40mA -i i 'H* __l |_. | _LL"ilfi - 4,44 --f ±lif7 T4^ Jr\ ^^\\\\ r- """ — -i 1 ^T- h- i- 4 I — -T-/^ f- "!LJ- 30mA

1*^"^ l tfj( /^ ' f* '^tU- " 1 U- 2-0 m A 4- ~ - — r~ i"ffi/r~Jf zgrf~\ ""Tiif"*""] ~F "T r xt±t- 4+t ^hTtTF+h ± --i«tTt VOm *

i i ! - 1 _U. L - cJpS^" -^ -T - I- r 1 ! ^ff-lJP 1 1 i 1 i l 0™ I T 1 ' J_zt 0-5 10 1-5 20 -VCE (V) mi B8343 Tj = 25*C

V±- t -4-1 I t- LL 20 40 60 30 -VCE (V)

TYPICAL OUTPUT CHARACTERISTICS AT LOW AND HIGH COLLECTOR-EMITTER VOLTAGES

Milliard BFX30 Page 7 f I —

: -ic \4--\~\ BFX30 j-j- -ic BFX30 B8344 i- K;- ,

1 | 1 : (mA) ; ; | (mA) MINI ~rj T-Vce=°' 4v ^ — -Vce = °'4\1 -M r -f-r-4 600 [ \ -H j ... Tj = 25°C - Hi d Tj=25°C — 7:t'x

I l r : xx -r +t 'M-'M H q::1 .T _ -

Xj+f t i ]_± X|" i 1 I

I . - ' -*- : -1 "^ ' T ! t + t-

+4j 1 t_t i +-

- - -} i—4- .ft/ i X XXp-X 400 Af\r\ 1 .^ .-U

1 f" i 1-

| 1 r ! : "'-fe 1 j frt/ T

x !

| "~

! ; j

'/' : r\r\r\ 200 1 1 -L

" ,

M'ir . t- MM -j- .. _I_. i f-h-j- _,-. I I t -f-M tt t~ t ^/'- if it-- Mr , 4L- r- -

\

1 i T, K C 1 1 10 20 -lB(mA) 0-5 1-0-VBE (V)

TYPICAL TRANSFER AND MUTUAL CHARACTERISTICS

! _ I J L , DCY-in 1 "IB a 1QIn X-+- i B8345

I " (mA)" ! ()JA)

h-Vce=0-4V _ _ I" 30-~" T;-25°C -4- M-Vrr-0-4V j

_^ 1 i_ : i | ^ XXr 1M i J- . L-

_ _ _ o/-\ j | -

i 4 i -- — _

jff

i

i j ! i I ! • i °II 10 -VBE (V) -5 100 TjCC)

Typical input characteristics Typical base current versus junction temperature

Milliard BFX30 Page 8 ' 1

P-N-P SILICON PLANAR EPITAXIAL TRANSISTOR BFX30

FF '"~- BFX30 1 B8346 L r — ;_'-,- : :- ±Linr"":"^.i - — -

""- Tj-25°C -- - :- """ """--- -— "— - - 00

-^ -— r- -—___ j --' f — -- — _.. - — - : -- 50 — " :-:. -~ — — — J - -

'- ~- "" - - - :: -- :

ii , . 5 7 5 7 3 5 7 :i 5 7 0-1 1-0 10 100 -I r(mA)

i i i j ; r ^FE j I B8347 - -< T^HTr 1 -I = 10mA ^-- 150 c i -VCE =0-4V :

I I .

j ;-] - ] — : fr

1 100 "U

~^

', i

I 50

J

'

|

1 -

: ~[~

"1 '

, ! () -50 i 50 100

TYPICAL VARIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH COLLECTOR CURRENT AND JUNCTION TEMPERATURE

Mullard BFX30 Page 9 1-5 ! I B8348 Tjfa -i c /-Ib=<° -50 'BE (sat) v* (V) 25 50 100

1-0

0-5 - 2 DC) 400 60C I c(mA)

vBE(sat) II I I II I T en (V) -I C /-I B = 20 -50 25 10 50 100

0-5 200 400 600 -I c(mA)

vBE(sat) I I I II II Tj(°C) /-I = 30 (V) J-I C B -50 25 50 100

0-5 200 400 600 -Ic(mA)

TYPICAL VARIATION OF BASE-EMITTER SATURATION VOLTAGE WITH COLLECTOR CURRENT AND I /I RATIO C 13

Mullard BFX30 Page 10 P-N-P SILICON PLANAR EPITAXIAL TRANSISTOR BFX30

1-5 | B8349

, vBE(sat) \^ -i c Mb=io (V) ft -IC=500mA

1-0 ~"

; 150mA

10mA

0-5 -50 100

vBE(sat) ! I I I I I I (V) -IC/-IB=20

I I 10 -IC=500mA

150mA

j

[ 10mA

0-5 I I I -50 50 100

BE(sat) I I I I I I I (V) -IC/-lB = 30

1-0 -IC=500mA " 150mA

I I I 10mA

0-5 I I I _c (3 5 K)0 T rC)

TYPICAL VARIATION OF BASE-EMITTER SATURATION VOLTAGE WITH JUNCTION TEMPERATURE AND I /I RATIO C i5

Milliard BFX30Page 11 - 1 -

! ii' i i ; 44 Ctr H BFX30J4- -f TX-TXX . (pi-) I 4::"tJxt 1 ! :. 41 U44. 4 XXX' -I E -I e =

: _ -i f -1-OMHz ~ _ _ "

i tinr" !Tj = 25°C [I ' :-rH- - r f- j ~ -+, ' f4i ; ' 1 "i

! xxx4x^ix7=^ l ! I ' - -H t-f - 144-4 4= : . il i JL. "T ";T ^tl -i : ; 1 44,- % T X; \— -f- ^ 4 10 J ii: "~T~ h\ fHip 4 —-- l.f-l l--^. --f—f — -|—i—I- Jr. --H pi iT H- ' i -P\-— ... j_... »^.. 1411x44^ -^F-f i 1" X^XX4 x-lxf ! I^TtS --4" f-j-i [- 5 4 f44 T--I-+- --

I . -I ——U l— "Hit : 4tj j- 41 4x ft±t4tri tXl TTl q4x4.4±4- pp^

.; :i=t- ~Ji 1. :ifr : .4 14 .3 : i&Mli 20 40 60 80 -VCB(V)

TYPICAL VARIATION OF COLLECTOR CAPACITANCE WITH COLLECTOR-BASE VOLTAGE

t 1 L i^+4- s _i_ B " "=== 4 M41 (ns) "f " Ti-lrTHTT--H---Hf-^r- - -- 1 1 -7-1 -+ T -I c = 100mA 1 — 4lB[on) = 'B'««i =10n-iA . _,! ,i —I—- -— H xB!

i i— -4- -1— 1 4" : qlS.^txf^-:J-- -XIi— —4- *- --,-4-' 4- -

' 1-.-, ^ — 1- ?jf +— -4- — j-t t..,4. j-jfjit- r '""*' — 1 4 r ; p*4 ! ;

7 1 U/ __ " "H " ' V" -|-r"r-!-r-4t±-:nr

4 : 1 ~ ; -+- -4. -444- ; 4= T -i fjj^r : n- y 4-: 4' } i:ij^S| dljiff:4 ±]-t 4144^4i^ if^'X-lXIX ' t _T ! 90 1+1 4_ : ; 1 ! 1 i ! O 50 100 150 200 Tj('C)

TYPICAL VARIATION OF STORAGE TIME WITH JUNCTION TEMPERATURE

Mulfard BFX30 Page 12 N-P-N SILICON PLANAR BFX84 TRANSISTORS EPITAXIAL BFX85 BFX86

Silicon n-p-n planar epitaxial transistors for general purpose industrial applications. Encapsulated in TO-5 envelope with the collector connected to can. QUICK REFERENCE DATA BFX84 BFX85 BFX86

maX ' 100 100 40 VCBO V

V maX ' 60 60 35 V CEO 'cu^- 1.0 1.0 1.0 A

P, , max. T , 525 C 800 800 800 mW T =S100°C 2.86 2.86 2.86 W case = = h (I 150mA V 10V) min - 30 70 70 FE c > C E typ. 112 142 142

f min. (I = 50mA, V = 10V, T c CE o = f = 35MHz, T , 25 C) 50 50 50 MHz amb

Unless otherwise stated data is applicable to all types OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SOT 3/SB3-3A J.E.D.E.C. TO-5

Millimetres

Min. Nom. Max.

A 9.10 - 9.40

B 8.20 - 8.50

C 6.10 - 6.60 D - 5.08 -

E 0.71 - 0.86

Fl - - 0.51

F2 12.7 - -

F3 38.1 - 41.3

Gl - - 1.01

G2 0.41 - 0.48

G3 - - 0.53

The collector is electrically H - 0,4 - connected to the envelope J 0.74 1.0

ItarHal H " MAY 1970 BFX84-Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical BFX84 BFX85 BFX86

V maX - 100 100 40 CBO V V max. (cut-off, I *1mA) 100 100 40 V CE

V maX - ,60 60 35, V CEO V

V maX - 6.0 V EBO I max. 1.0 A I„„,CM max. 1.0 A -I max. 1.0 A E -I_,,EM max. 1.0 A I_ max. 100 mA B BM 100 mA

P , max. T ,_^25 C 800 mW totx amb T ^25°C 5.0 W case T >25, < 100°C 2.86 W case Temperature

-65 to +200 °C stg T max. 200 °C J

THERMAL CHARACTERISTICS

Ri, m free air 220 degC/W , , th(j-amb)t R 35 degC/W th(j-case)

Mullard BFX84-Page 2 N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

BFX84

ELECTRICAL CHARACTERISTICS (T. =25°C unless otherwise stated)

Mln. Typ. Max.

I„__ Collector cut-off current v =ioov = o 10 500 cb >Ie nA V„ =100V, T =0, T. = 100°C - 0.5 30 MA CB E j V =8 ° V 2.0 50 nA CB ' V V =80V, I =0, T. = 100°C 0.1 2.5 MA

I__^ Emitter cut-off current 10 500 nA

V =5 - 0V 2.0 50 nA EB ' V° V„ =5.0V, I =0, T. = 100°C - 0.1 2.5 juA EB C j

h Static forward current transfer ratio I = 10mA, V = 10V 20 80 c CE I = 150mA, V =10V 30 112

I = 500mA, V =10V 20 70 = = I 1 - 0A V 1 °V 15 35 C ' CE

V Collector-emitter saturation CE(sat) voltage

I = 10mA, I = 1.0mA - 0.06 0.15 V

I = 150mA, I = 15mA 0.15 0.35 V c a I = 500mA, I =50mA 0.35 1.00 V \-> D I =1.0A, I = 100mA 0.66 1.60 V u B

V„„, .. Base-emitter saturation BE (sat) voltage,.

I = 10mA, I =1. 0mA 0.69 1.2 V C B I = 150mA, I = 15mA 0.92 1.3 V U J3 1 = 500mA, I = 50mA 1.15 1.5 V C B I =1.0A, I = 100mA 1.40 2.0 V C B

C„ Collector capacitance V = 10V = =0. ^ T, . 1 CB ^E e

f = 1.0MHz - 7.0 12 pF

Milliard BFX84-Page 3 BFX85

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max.

Transition frequency

I = 50mA, V = 10V, c CE

f=35MHz, T , =25°C 50 185 MHz amb

Saturated switching times = x 150mA 1 15mA, c ' Vnf" B(off) - = V 10V - V = 2 OV EE ' BE(o£f)

Delay time - 15 ns 'd - t Rise time 40 ns r - t Turn-on time 55 ns on - t Storage time 300 ns s - f Fall time 60 ns f Turn-off time - 360 ns 'off

h-parameters

h I = 1.0mA, V = 5.0V, fe c CE f = 1.0kHz, T = 25°C 20 65 amb

250 750

I = 10mA, V = 5.0V, 0.85 5.0 X10 c CE U f = 1.0kHz, T = 25 C 25 80 fe amb 35 80 iumho

Mullard BFX84-Page 6 .

N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

BPX86

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min . Typ . Max

I Collector cut-off current

V = 40V, I = 10 500 nA CB E V =40V, I =0, T. = 100°C 0.5 30 /nA CB E j V =30V, I =0 2.0 50 nA CB E V„ =30V, I =0, T. = 100°C 0.1 2.5 pA CB E j

I Emitter cut-off current 10 500 nA = V 5 - 0V 2.0 50 nA EB ' V V„ =5.0V, I =0, T. = 100°C 0.1 2.5 MA EB C j

h Static forward current transfer ratio I = 10mA, V = 10V 50 90 c CE I = 150mA, V =10V 70 142

I = 500mA, V =10V 30 90 = = I 1 - 0A V 1 ° V 15 50 C ' CE

V Collector-emitter saturation CE(sat) voltage - I = 10mA, I = 1.0mA 0.06 0.15 V C B

I = 150mA, I = 15mA 0.15 0.35 V C B

I = 500mA, I = 50mA 0.35 1.00 V

I =1.0A, I =100mA 0.66 1.60 V C B

V„„, ., Base-emitter saturation BE (sat) ,. voltage

I = 10mA, I = 1.0mA 0.69 1.2 V O B I = 150mA, 1 =15mA 0.92 1.3 V C ' B

I = 500mA, I = 50mA 1.15 1.5 V C B

I =1.0A, I = 100mA 1.40 2.0 V C B

C Collector capacitance V = 1 ° V ' CB ' W f=1.0MHz - 7.0 12 pF

Mullard BFX84-Page 7 BFX86

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max.

Transition frequency I = 50mA, V =10V, c CE f = 35MHz, T = 25°C 50 185 MHz amb

Saturated switching times

I = 150mA, I_. , = -1.,, = 15mA, C B(on) B(off) -v = iov, -V = 2 -° V EE BE(oft)

Delay time 15

Rise time 40 ns

Turn-on time 55 ns

Storage time 300 ns

Fall time 60 ns

Turn-off time 360 ns off

h-parameters

h I =1.0mA, V = 5.0V, fe c CE

f = 1.0kHz, T , =25°C 20 65 amb

250 750 a -4 I = 10mA, V = 5.0V, 0.85 5.0 xlo c CE - f=1.0kHz, T , =25°C 25 80 fe amb 35 80 limho

Milliard BFX84-Page N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

MEASUREMENT OF SATURATED SWITCHING TIMES

Test circuit

_v =iov EE

670n. HHm: V -20V €> p -oCRO 1.0 us

5611 27011 66O.

-V -16.5V eB I -150mA, I , =-I =15mA C ' B(on) B(off) -VV = 2 UVV BE(off)

90V.

Output

10 "Vo

Mullard BFX84-Page 9 ,

OPERATING NOTES

1 . Dissipation and heatsink considerations

a) Steady-state conditions

The maximum steady-state dissipation Ps is given by the relation- ship: T. max. - T amb P max. s R. 'th(j-amb)

Where T: max. is the maximum permissible operating junction temperature, Tamb is the ambient temperature, Itth(i-amb) is the total thermal resistance between junction and ambient.

Page 13 gives the maximum allowable steady - state dissipation versus ambient temperature tor the device mounted in tree air and with infinite heatsink.

b) Pulse conditions (rectangular pulses)

The maximum pulse power P is given by the formula (T. max. (P R amb s" th(j-amb) ) t) + d R th(t) ' th(case-amb)

- Where Ps is the steady state dissipation excluding that in the pulses Rjn /« is effective transient thermal resistance of the device between junction and case, and is a function of the pulse

duration t, and duty cycle d,

d is the duty cycle, and is equal to the pulse duration t divided by the periodic time T, *%i(case-amb)* s the total thermal resistancebetweencase and ambient and is equal to the difference between Rthfi-amb) and the thermal resistance from junction to case Rth(j-case)-

Time Mullard BFX84-Page 10 N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

b) Pulse conditions (rectangular pulses) (cont'd) Example

The following example shows how to calculate the maximum permissible peak dissipation of a BFX84 mounted in free air at a

temperature not exceeding 65°C . The steady-state dissipation under the bottomed condition is 350mW, the pulse width is 1ms and the duty cycle is 0.2.

The transient thermal resistance R =15.5degC/W (page 13)

- (0.35X220) P max = (200-65) P 15.5+0.2(220-35) 135-77 15.5 + 37 = 1.1W

The peak pulse dissipation of 1 . 1W is therefore allowed provided that the voltage and current ratings of the device are not exceeded.

c) Pulse conditions (other than rectangular)

For sinusoidal and irregular shaped waveforms, the power pulse is converted to an equivalent rectangular pulse of the same average and peak values, and treated as in the previous section. Example

The following example illustrates how to find the maximum permis- sible peak dissipation of a BFX84 operating in a class 'B' circuit

at 1kHz . The device is mounted on a heatsink of thermal resistance equal to 50degC/W and at an ambient temperature not exceeding

100°C . Assuming that the waveform is sinusoidal for half period and zero for the other half.

Average of sinewave over half cycle = 2P /ir

Therefore equivalent rectangular pulse width of same amplitude and average value

2irx 10°

J =0. 318ms 2rr

IB3559I Duty cycle, d = -

Milliard BFX84-Page 11 . . . .

c) Pulse conditions (other than rectangular) (cont'd)

2 /27T 1 Duty cycle, d = -/— = - = 0.318

From page 13 = R 6 - 8deg°/w d==0 > th(t) < R = 35degC/W th (S ) = = X K, ,., at d 0.318 (35-6.8) 0.318 + 6.8 th(t) = 15.8degC/W

(200-100) - P max. "p 15.8+0.318X50

= 3^-3.™

A peak power of 3 . 15W is therefore permissible provided that the voltage and current ratings of the device are not exceeded

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt

2. Transistors may be dip-soldered at a solder temperature of 245 C for a maximum soldering time of 5 seconds. The case temperature during soldering must not at any time exceed the maximum storage temperature These recommendations apply to a transistor mounted flush on a board

having punched-through holes , or spaced at least 1 . 5mm above a board having plated-through holes

3. Care should be taken not to bend the leads nearer than 1.5mm from the seal.

4 . If devices are stored at temperatures above 100°C before incorporation into equipment, some deterioration of the external surface is likely to

occur which may make soldering into the circuit difficult . Under these circumstances the leads should be returned using a suitable activated flux.

Milliard BFX84-Page 12 N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

max BFX85

% ^^ ^ > , ^ ^ U I - y I- K^r i i SI^ c 1 , S ^Cj»

_L_ J _ [ V*d

^ vi vywr ui un. ^ c _^

jj ™ ^S —1— ^ 5 -..— __ijarr)5j a2 '»,-+- ... 2 0f1ff

I ^^^^^^^^n^>i ^

II i ! | 1 i 1 | | | IT ""fc 50 100 150 200 Tamb CC) MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

R th(t) (deg C/W)

10 10"

Pulse duration t(s) TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS PLOTTED AGAINST PULSE DURATION

Milliard BFX84-Page 13 . - —"

I/~ 3 nAAA>- c a

! : : , I (A) it ;

1 ! ' ' ! i ! I =1-0mA

' c '

. ,_ _|_u_ l_l LLL _i i_ 4 i I = 1-0n A ^*r r R /Rp«10 ~r~ B i 0-<5 ^ *~ ^ ^ m"* ro ! Lx LlLTCrlfc... ^t - 5 -

i m /a

n i . ! ; C

; 8-.g , ; i q c l.± g:_^~ ° i : [ C I ° -T- TfT i o x: 'I • 20 40 60 80 VCE (V)

'

._. [ ic ..fn

" i i- (A) » — , i— ^ -h 1-0 .1 [-

! - r- i~i- ; . T

-;- ; *—

! = I l I'UmA r t

' '

l c =i-omA Ml T .

, i i - 70 70 r Kg/ K|T* IVJ i CD C0_ I -t 0-5

' 70 T T m m j-^- ,v •CE 1 " ii H — ro 01 o | o I - - _o ... o 8 O o = - o_ -O r

-|-- ' -I- ^^ ! 1" | ^+t~ j 20 40 60 80 VC e(V)

. I i — J h -j — B9027 - — ':::t.:.; ' t j"

(A) 1 : , : . ..;.|

1 1-0 ^ , j !|| i

,.

• Ir =1-0mALu t;

' ! :' 1 1 1 1 ! | M "T I : F

! i i * ! Oil! r | . /R 4 _i I : k [ L p E \^~ i i i •^ ^r ^ii ^ ! ro : i 0-5 i -^a.Tr-^yj-i

1 —J— -— —

- L v (V/ -I ! T , " . _.. . i rF ; \ri | j

, o vM ^^ ' ' T 8 \, i

1-- . „.j_...| —I. -I-]—

' ^_ : 1 20 40 60 80 VCE (V) COLLECTOR CURRENT PLOTTED AGAINST MAXIMUM COLLECTOR-EMITTER VOLTAGE WITH RjR„ AS PARAMETER

Mullard BFX84-Page 14 ,

N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

'CER max (V) I c <1-0mA 100 ... — |

I - — I c > 1-0 m A

50 When the emitter is common, a value of m should be used in the calculation of R B /R E

j I i III

I | , | , | , | , | , , , o J , 3 5 7 3 5 7 5 7 J 5 7 1-0 10 100 1000 RB /Ri,r! E V CER max (V) 100

50 When the emitter is common, a value of 1X1 should be used in the calculation of R B /R E

5 7] 357 1-0 10 100 1000 R B ,R E

ii l/^^r.V CER " - -- _-

_I_LI . : -: "- — -+ill!l_>- (V) 17 . — is common, a value : -: " ;_ of m should be :::- - - 1' ::i c«i-omA - _ r- used in the calculation 40 --~ of R B /R E

z::::: "------

--' - ~ ~ "'- : :t=i: ~ ;:l :: - - — :- . 30 : , , 5 7 3 5 7 ' 3 5 7 3 5 7 1-0 R /RK 10 100 1000 B'D E MAXIMUM COLLECTOR-EMITTER VOLTAGE PLOTTED AGAINST R /R RATIO B E Mullard BFX84-Page 15 — '

1 — ' TT"

I 1 1 - — 1 •

--"-- X —

Ui i '< s? ?o +.: Sc ' »J_ gS>J>&. • I '<" SZK u <\ X .. C, 4-1 TV X-;- - — V — - -_-.- *w ^~ ^yJ i**?) 'y J-- ,- . rs ^te^S!jS ;;-; -7*.2< fr P£»+SU*^i. Tv^X^ v.-i

+O^^^J7 ^ - - f -

" % ;- J *^Kr o* .:: , *=* ^ : ^"> / "O^I-4- -- -

BFX84 BFX85 BFX86 iLy s-5\ _l . \J "V. 1 T -+f x u 4- FN-- tf T TF *F — *S 44- -j - s 1 i^i V TT —ll? V it_ 1 ^ Sx" ttf TTT —...... III J.I.JLIJ.I. JILL ^^.1111 H^ C O c ° 8 § § 8

T T f * * T "™ I S -

J. ------— ^ into ~"-r* OOOOODXXX U.U.U. ;"'- - CO CD CO "L^KS - -- -'-" > T> : -- :: S • o ;--;- ~: III o

- - 'J

-- "::- - —

8 8 8 *8 5 9 2 < < a. c

COLLECTOR AND EMITTER CUT-OFF CURRENTS PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BFX84-Page 16 1

N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

1 0*fl M 1 1 1 1 nrv

X ~ onro^ C T,=25C : z J '\n --r- (t\\ -p*rT"TTl

' *** i m I

m~ m * "* *C '^* — m *

1 n

A

I

= 2mA~

- = 1 mA "TT"

o ft 1 0-5 1-5 V 10 20 CE (V ^

T. ?«;V J (A)

i I B = 20mA =iomA 1-0 = 10mA

fs r =5mA -

0-5

= 2rr\A -

I r ! * =lmA - i ur TL. 20 40 60 VCE (V)

TYPICAL OUTPUT CHARACTERISTICS

Milliard BFX84-Page 17 — "

1 , ! -| L_ i i „ i JJ^T\ BB945 uO-R° n Ml _L_ " BFX85 l_ J- ,^f1 MINI . . r

Ic 1 = —ZuHX —31 IL "T>^ lQ 20mA | ww - IJI "M 'i i 1 Ti =2bC ^ i ^** " ~~t" J A* *&** ! ./ . — ^^ _!_ ? —1^^

1 0*6 — j* rf^ _i_

*'* m' m t0 k\ 1** ~f~ ~ ""ltf s*p ~H~ i zti3?#V lb" ^0^ * | »* WA 1 — 1 — ar' i — ^^ |

• . • r Jf! _i^ *L-i^ ^ i — — 3lTlA J J^ * — — ™ 3 - '' — fiLL I p. ^p.-^-"" JL—[ -^--^J^ -j- f *** __!_ ~1 0^ / £^ *~ j *w / ^ —1—

-""" // rf^*"" "TTTT ^ i ' jy ^ i i

j^^***"*"'' - jz^w^ Q.W\\ _ 0-5 10 1-5 2-0 VCE (V)

•j'"^- -- (A)

! I I I B =-20mA =lomA

^ _! (— = 5mA

I

j

,

J-' ! = 2mA -

I I =1mA -

j

20 40 60 VCE (V)

TYPICAL OUTPUT CHARACTERISTICS

Mullard BFX84-Page 18 N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

' ] ]]'][> 0-8 -1 1 I'M' ! 1 3I-X86 : ! Jn II I ic . ^^" i ! ; i i i i : i :20 ; mA , i V Ib (A) _. *e — i = <>5^\ jr "!

^ 1

!

\ g ^ i i

l

_ § j r 1

f ^"^ >i ^ i ^ ~

II

- I ---[- . | | — __—._...._..__.._- =imA

*\ i | j r 0-5 1-0 1-5 2-0 VCE (V)

o Tj *zo *- (A)

I B = 20 mA **!•«* =l5mA ^ ^ / | / ^ •"' 1 =1u IIH -^ ^" •

* 1 1> ^ l^ ^ W ' B- /' =b TIA Oft V tf f ^ M ^ f» ^-G / f «M ^ I I I X 1 mA , * P m -- ~ uf 10 20 30 VCE (V)

TYPICAL OUTPUT CHARACTERISTICS

Mullard BFX84-Page 19 awi 7 | I ic ' IB -v (A) I (A) (mA) V =10V 1-0 CE 20 Tj =25°C 1 1 1 1 1 1 1 1 - - - 0-5- f OS 10 -

!

I - /I ? / [ otJ* 10 20 30 10 20 05 10 1-5 I B (mA) VBE (V) VBE (V)

"

I [ I I I I I i_ I BFX85 J ic : *B c V =10V ~ BFX86 J CE (A) (mA) -i - 10- Ti =25 C I | I L I if 1 zt J _ 3 1 1 1 _ J 1 _ I 1 _ E _ _ 1 _I 1 _:t 1 -JZ 1 -Jn 1 -1^ 1 _t 1 ic jt ' ! "2 ? y 0* J o t -. 10 20 30 10 20 0-5 10 1-5 I B (mA) VBE (V) VBE (V)

TYPICAL TRANSFER, MUTUAL AND INPUT CHARACTERISTICS

Mullard BFX84-Page 20 ' ' *

N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

1

i 1 n -(- : I — (-t ~~r _i - ......

1 1 ._i_j. - , j BFX85 — ^t i 1 " ~M- t_!_1~ ] 1 ' r

1 150 '

A I 1

j *N^. 1 T !

-

i -\- -J 1 ! V =10V i i CE

'/ft ; j_ ___!_ C -1 T j =25

.... i - r* L . i 1 , | | !

irS ' ! * ' ; 1 sJ | 100 !

i "^^i ; ; - I -4-

. .... "j 1 ;

1 -T- — j .' "St r +-

1 1 1 ; T 1 ' "^fc. ! I

- - 1 - !Dr -[ •-"t iM^n. "ToX-^Qs

! !

1 " -H- 1 i- 1 4_... _ ^sS: I "Tt*- 1* 50 ; i 1 .

- -4 _-|- ' - - " ' - i 1 ! i ; t ; - Z-. .. 4 . .._! ' : 1 i ! | 1"

.. i , . i ; : i ! : ; r 1 1 f l-f

i i I -. i i -r- t "!" ; ) ; | - ![]._ it .._!-,. ,..j "i 4^i--

i 1 : i i 0-2 0-4 0-6 0-8 I r (A)

BB*M FE ±BFX84t~ „ — * 150- - - - ,.< J Ic«150mA

— ' I * ^ Vrp *10v " ~^s* j ^ Jj * . — .

3 ' * * *

* ' i ^ ' ^ P " 100 p" ^ * *

* " — J ^ *' ' * ^' — ^ * B gi* ^ ? *** * tf rf ' ri ' * S * ^ ^ P * *

« " " — * * * * P M * M * * ,^m rW**"

o - -50 50 100 150 Tj CO TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT AND JUNCTION TEMPERATURE

Mullard BFX84-Page 21 n FE BFX86

= iv ce 10V :

= [ r 150mA

=10mA

I.I I I I — = 500 mA 100 g I I I I I

I I I I I - 1000 mA

-50 50 100 150 Tj (°C)

TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST JUNCTION TEMPERATURE

1 I ! T "' -L-l i B9035 : T - 1 -f- - -r- (MHz) J BFX85 1 i L -1- -+—-- BFX86 t"

! 200 1 ! |

..!._. ._ _J._i i ™ i BFX85 j- - BFX86 -^H^

f] 150 ...(... t

. ~ _.i j.. -^ BFX84

; 1 i

1 i

! J 1 1 : - ! V =10V f CE f = 35MHz 100 Tamb = 25"C

: '

i /

i

>

i 1

; 50 I ! I 1 20 40 60 80 I c (mA)

TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT

Milliard BFX84-Page 22 N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

3FX84 vCE(sat) B6984 E)FX85 (V) F3FX86

*c 10 '--- *B Tt =1 50 *C 10 I

J. 11 = 100 'c ft ft J J'l =25*C j J

j | 0-5 ' - , » = 5C>"C

'L lLi > s.^^. ' -^A4^ !i 1! 10 10 100 1000 i c (mA)

v B8955 CE(sat) BFX85 (V)

"-- r : T =1 50 °C c 20 j """ J B i 1-0 'c

ok' ' = 25 c y = j 50 "c

0-5

TT, , J - !i 7 3 « 7 i s !i 7 1-0 10 100 1000 l c (mA) TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT

Mullard BFX84-Page 23 r

W i Boyoo v CE(sat) 4L RFXR4 BFX85 U (V)

it" 1 lr , . =^ = 10 *B „. -„ -.- . .,_ _. 1*0 - .»*-"' Ic= 1000 mA( — ^ ' _

^ — — *" ™" - ^ I I ^( I

_J ; _J

— ,T ^-i 1 1 1 IWlPMm r 1 r -50 50 100 150 Tj CO v B8957 CE(sat) BFX8^ |_ {M) bfxs; BFX8<5

IB

I C =1000 mA 10

= 500 mA 0-5

=150 mA Mill =10mA — "Tf-~- TTTTT -50 50 100 150 Tj CO

TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BFX84-Page 24 N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

1 B69S BE(sat) 34 BFX 4h "TTTn (V) BFX »K L. Tj = -50* 1-5 = 25*C ic = 100°C = 10 -i«*.n"r *B

10

Ml* "

| - ^^iW 0-5

,J , . ... 1 "^ ' " !i !i 1 i i 1 10 10 100 1000 I c (mA)

e 8959 vBE(sat) BFa B4 BFX f-i _llil (V) BFX 86 1-5 Tj »-50*C » 25*C - a 100 C © t iz^r t^.20 m 1 *isy^ I f B ^^ 1 ^^ L/ .< f ,>V 10 * >^r ^ / ^^^ ^ /* .-' V ' -^1> •^ .'^-X -J-* y^- *+ 3 *>* — 0-5 ,,,'' *f .2

...... 1 ,, ill ii f i " !i ' r ii i ; " I S 7 1-0 10 100 1000 I c (mA)

TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT

Milliard BFX84-Page 25 ,

BECsat) (V) BFX85 1-5 I c = 1000 mA

m i

=500 mA 1-0

> = 150mA

0-5 i£ .10 I B MOmA

-50 50 100 150 Tj (°C)

. ., v BE(sat) " (V) BFX85 1'5 J«

-— -- 1 C" OOOmA

vo^^s;-----::!-: 3~™"*»«»» - 300 mA — s^ ^*"a^i^ **^ *-«! -- L. ^ ; * - 50 mA —

o-5 MINI, a*, s -- *C on * *_. I B

-50 50 100 150 . Tj (°C)

TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BFX84-Page 26 -

N-P-N SILICON PLANAR BFX84 EPITAXIAL TRANSISTORS BFX85 BFX86

! cT -j- -+- Tc xx ; (pF) ^BFX85_„

rr_L~ .___

*e =° 1 f = 1- 1 tt1 j_ 1 10 \ |

"\~T

nL

! i

! — U—_ —H- , L-H

: : J

: i i ! -- . | _ Jttiefab4 -—-1 — - rr - iBFX85L _ . .... __. — -- — - ! """it FFF--- IE ^ffl f++- 20 40 60 80 VCB (V) TYPICAL COLLECTOR CAPACITANCE PLOTTED AGAINST COLLECTOR-BASE VOLTAGE

t. I BFX84 .1 - __. BFX85 - ts at 25°C - BFX86 1.5

1.0

I l3 "1H Ic =150mA, i B(onf -J-nfoff}'

,

0.5

-

I

i 1

-50 O 50 100 150 Tj ( C)

TYPICAL STORAGE TIME NORMALISED AT 25 C

Milliard BFX84-Page 27 I

BFX84 D1232

10 --*r* _ . ^^ = _ VCE 5.0V ^ _ f = 1.0 kHz 5 _ 25 ° c - Tomb"

:

hre 10 - 7 h ir -

-

:

3 5 7 :i 5 7 3 5 7 I 0.1 1.0 10 I c (mA) 3 BFX84 hoe D1233

BFX85 . y BFX8« /. hf, 1.0

7 fe

5 -

3

-

'-

0.1 : - V = 5.0V t 7 n CE oe^» " f =1.0kHz 5 - T 25 ° C amb= - - 3 -

'-_

0.01 ' ' 3 7 3 5 7 1 3 5 7 5

1.0 10 I ! mA) 0.1 c

TYPICAL h-PARAMETERS NORMALISED AT I = 10mA

Milliard BFX84-Page 28 P-N-P SILICON PLANAR RFX87 EPITAXIAL TRANSISTORS BFX88

For ratings, characteristics and mechanical details see BFX29 data sheet

Milliard

JULY 1968 BFX87-Page 1 N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BFX89

N-P-N silicon planar epitaxial transistor designed for u.h.f. and v.h.f.

applications. It has extremely good noise and intermodulation properties

and a very high power gain and transition frequency. It is therefore par- ticularly suitable for wideband aerial and distribution amplifiers. QUICK REFERENCE DATA

V maX (P° ak) no V CBOM -

maX - 15 VCEO V I,,,,CM max. (f> 1.0MHz) 50 mA

l\ ^ max. (T , ^25°C) 200 mW tot amb T max. 200 °C i

f typ. (I = 25mA, V -5V. f- 500 MHz 1.2 GHz T c CE

= = =- -C typ. (l, 2mA, v , 5V. f 1MHz) 0.0 pF re C C E " Ntyp. (I -2mA, v 10v z " <>Pt-) i- 200 Mil/. :',.:> dB rF > s f- 800 MHz 7.0 dB

G typ. (I = 8mA, V^-lOV) f- 200MHz 22 dB c = f 800MHz 7.0 dB

P typ. (I =8mA, V -=10V, o C Ch d. --30dB, v.s.w.r. at output 2) f = 200MHz G.O mW iro C- 800MHz G.O mW

OUTLINE AND DIMENSIONS

Conforms to J. E.D.E.C. TO- 72 B.S. 3934 SO-12A/SB4-3

For details sec page 6

Milliard MAY 1968 BFX89 Page 1 RATINGS

Limiting values of operation according lu the absolute nuiD svstem.

Electrical 30 V maX - (Peak) VCBOM = 30 V V maX 6ak R £5°n I 10n,A> CERM - ' BE ' C = 15 V V m8X -

I max. (d.c.) 25 mA

I max. (peak, f> 1MHz) 50 mA ^25°C) 200 mW P. . max. (T tot Temperature T range -65 to +200 °C stg T max. 200 °C ] THERMAL CHARACTERISTICS

. " 88 degC/mW R , .. in free air th(j-amb)

. 58 degC/mW Ru th(j-case)

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) Min. Typ. Max.

Collector cut-off current CBO V =15V 10 nA V ' CB knee voltage CEK Collector-emitter I =20mA, I = the value for

I =22mAat V_ =1V 0.75

V v (v) CEK ! CE Static forward current FE transfer ratio = - 150 I = 2mA 1V 25 ' V C CE - 125 l = 25mA, V = 1V 20 c CE

Mullard BFX89 Page 2 N-P-N SILICON BFX89 PLANAR EPITAXIAL TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd) Min. Typ. Max.

Transition frequency

I =2mA, V=5V, f = 500MHz 1.0 GHz C CE

I = 25mA, V=5V,'f= 500MHz 1.1 GHz C CE "Collector capacitance tc = 1.7 r I = 0, V_ =10V, f=lMHz pF E , CB Feedback capacitance I, = 2mA, V, =5V, f=lMHz 0.6 pF C CE

* Noise figure

f»200MHz, Z =opt. - 4.0 dB

f' 500MHz, R =50ft - 0.5 dB

- i> 800 MHz, Z =opt. 7.0 dB

Power gain (not neutralised)

I =8mA, V =10V, f = 200MHz 19 22 dB C f= 800MHz 7.0 - dB

Fourth lead (case) grounded. Fourth lead (case) not connected.

Intermodulatlon characteristics

P Output power (see test circuits 1 and 2)

I =8mA, V - 10V, v.s.w.r. atoutput<2, C CE d = -30dB lm

f = 200MHz, f = 202MHz. f =205MHz, p q 208MHz (channel 9) 6.0 mW (2q-p>

f = 800MHz, f = 798MHz, f =802MHz, P 1 - f = 806MHz (channel 62) 6.0 mW (2q-p)

Intermodulation distortion (see test circuit 3)

8mA V : 6V, R = 37.50, V ' CE V = lOOmV at £ = 183MHz V =100mVatf =200MHz o q

f = 217MHz -40 dB (2q-p)

Milliard BFX89 Page 3 . . . .

ELECTRICAL CHARACTERISTICS (cont'd)

TEST CIRCUIT 1 - OUTPUT POWER TEST CIRCUIT (f = 200MHz)

LI = 3 turns of 1.4mm silver plated copper wire, winding pitch 2.7mm, int. dia. 8mm, taps 1.5 and 0.5 turns from earth. L2 = 5.5 turns of 1.4mm silver plated copper wire, winding pitch 2.2mm, int. dia. 8mm. L3 = 3 turns of 1.4mm silver plated copper wire, winding pitch 3.3mm, int. dia. 8mm. L4 = 5.5 turns of 1.4mm silver plated copper wire, winding pitch 2.2mm, int. dia. 11mm. ADJUSTMENT OF TEST CIRCUIT

Technical considerations

Intermodulation distortion is caused by clipping in h.f. output current and voltage The maximum undistorted output power is attained when

a) Clipping in current and voltage is simultaneous; this occurs if ^oad^CE^cek^C

Where V , is the high frequency knee voltage

b) The h.f. collector current is as low as possible; this occurs if

load oe Where Coe is the output capacitance of the transistor with short-cir- cuited input.

Experimentally obtained values of Rjoad an^ ^-load- f° r maximum output power at an intermodulation factor of -30dB, are:

lkSI, C -1.8pF load load Procedure

1. Remove the transistor and connect a dummy, consisting of a 220S2 resistor in parallel with a5.6pF capacitor, between the collector and the emitter connections of the output circuit 2. Tune and match the output circuit for zero reflection at 205MHz (i.e. v.s.w.r. = 1). After this adjustment no further change should be made in the output circuit 3. Replace the dummy by the transistor. Tune and match the input circuit for maximum power gain and good bandpass curve. The v.s.w.r. of the output will then be ^2 over most of the channel. Corrections can be made by tuning L2

Milliard BFX89 Page 4 . . 1

N-P-N SILICON BFX89 PLANAR EPITAXIAL TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd)

TEST CIRCUIT 2 - OUTPUT POWER TEST CIRCUIT (f=800MHz)

470pF coupling link BFX89 Jh*— ////. 22 F I .. 0P

LI = 24x 6x0. 5mm silver plated copperstrip, inputtapat 5mm from earth. L2 = 15X6xo. 5mm silver plated copper strip. L3 - 20x8xo. 5mm silver plated copper strip. L4 = 4 turns of 0.5mm enamelled copper wire, winding pitch 1.5mm, int. dia. 4mm. Coupling link = 42mm of 1mm silver plated copper wire. ADJUSTMENT OF TEST CIRCUIT

At 800MHz a dummy cannot be used to adjust for optimum collector load, because at these frequencies the impedance transformations of the dummy are too high A small signal with a frequency of the midchannel 802MHz is fed to the

input . The signal is increased until clipping occurs , that is until the output power no longer increases linearly with increasing input signal. Care should be taken not to allow the voltage swing to exceed the V^gj^ value as this may result in the destruction of the transistor by second breakdown. The output circuit is then tuned to eliminate clipping.

The output power P is given by = P = I V V /2 35raW I c' CE- cek>

Where V is the high frequency knee voltage

circuit is adjusted for minimum intermodulation. The input circuit is then adjusted for maximum gain and good bandpass curve. The v.s.w.r. is found to lie ^2 over the whole channel

Milliard BFX89 Page 5 .

ELECTRICAL CHARACTERISTICS (cont'd) TEST CIRCUIT 3 - INTERMODULATION DISTORTION TEST CIRCUIT

/47kH

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt. 2. Transistors may be dip-soldered at a solder temperature of 245°C for a maximum soldering time of 5 seconds. The case temperature during soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes

leads nearer than 1 . 5mm from the 3 . Care should be taken not to bend the seal.

4. If devices are stored at temperatures above 100°C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be returned using a suitable activated flux. OUTLINE, DIMENSIONS AND CONNECTIONS Conforms to J.E.D.E.C. TO- 72 Millimetres

Min. Nom. Max. A - 4.8 B - 5.3 C 12.7 - - D 0.43 - E 1.0 - F 1.05 - G 2.54 - H 5.3 5.55 5.8

Connections

1 . Emitter 3 Collector

2. Base 4 Shield connected to envelope

Viewed from underside

Milliard BFX89 Page 6 N-P-N SILICON RFYftO PLANAR EPITAXIAL TRANSISTOR DrA°7

(mA)

01 02 0.3 0.4- 0.5 0.6 0.7 VCE (V)

12 % VCE !V)

TYPICAL OUTPUT CHARACTERISTICS AT LOW AND HIGH COLLECTOR-EMITTER VOLTAGES

Milliard BFX89 Page 7 (mA)

10'' TO 10 X)-' 7 JO IB (mA) TRANSFER CHARACTERISTICS

bUri r-^VrF-5V T: = 25°C^ 1^ izrt 1 C ' _JHU- (mA) 3 ..

— ^+-

. _u tv

-t- t

XaX 4 i -+-Hx - 4 l h- J—t-L-L . t. TT ,—j-,-J-i ^Z XX n -.-.—-. ZL^rrr "0 0.5 VB e(V) I

TYPICAL MUTUAL CHARACTERISTICS

Milliard BFX89 Page 8 J

N-P-N SILICON RFX89" Z PLANAR EPITAXIAL TRANSISTOR

1 1 1 1 1 T-T l 1 1 1 1 1 1 | 1 l . T T 1 200 i TT I T~

BFX89 1 1 1

Tj =25°C

- " 150 i

/Jl

"^ .- -

100

50 :_£>!o ^f^ **~ min =-i-J — - _^ •=»- »~

. . I , . i i i i i * . i i I I 1 J, 1 1 1 -j. , j. J- 1 1 1 _L_ J. 1 I t. 07 02 rc fm,4,i ;oo STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT

20 V (V)30 20 I c (mA)30 CB Typical transition frequency versus Typical collector capacitance versus collector current collector-base voltage

Milliard BFX89 Page 9 15 Vrc -R\ - BFX89 N f =50DM Hz R s =50 S), (dB)

10 _ _

w

10 I c (mA) 20

TYPICAL NOISE FIGURE PLOTTED AGAINST COLLECTOR CURRENT

IC =2mA VCE = 5V Zg =optimum

0.001 Q01 01 1 10 100 f (MHz) 1000

TYPICAL NOISE FIGURE PLOTTED AGAINST FREQUENCY

Milliard BFX89 Page 10 N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

Also available to BS9365—F012 Silicon n-p-n planar epitaxial transistors tor general purpose industrial applications. Encapsulated in,TO-5 envelope with the collector connected to can. QUICK REFERENCE DATA BFY50 BFY51 BFY52

V maX - 80 60 40 V CBO

V maX " 35 30 20 V CEO 1.0 1.0 1.0 A ICM max. max. _^25°C 800 800 800 mW P, ,. T tot amb1 T ^100°C 2.86 2.86 2.86 W case = = h (I 150mA V 1°V) m™' 30 40 60 FE c > CE typ. 112 123 142

f min. (I = 50mA, V = 10V, T c CE

f= 35MHz, T . = 25°C) 50 50 50 MHz amb

Unless otherwise stated data is applicable to all types OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-3/SB3-3A J.E.D.E.C. TO-5

Millimetres

A Min. Nom. Max.

1

' r. B A 9.10 - 9.40 B 8.20 8.50 t c H C 6.10 6.60

J D 5.08 D £ F3 E 0.71 0.86 «4=T lJ Fl 0.51 F2 12.7 - 45°i3?\ j, _h. F3 38.1 41.3 r^ Gl - 1.01 E \>CJ^ G2 0.41 0.48 G3 - - 0.53

The collector is electrically H 0.4 connected to the envelope 0.74 1.0

Milliard JULY 1972 BFY50-Page 1 BFY50

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max. Transition frequency I = 50mA, V = 10V, c CE

f=35MHz, T , =25°C amb 60 140 MHz

Saturated switching times

I = 150mA, L,, =-I_. = 15mA, C B(on) B(off) -VV =10V1UN -VV =2A 0VV EE ' BE(off)

Delay time - 15 - ns *d t Rise time - 40 - ns r t Turn-on time - 55 - on ns t Storage time - 300 - ns s \ Fall time - 60 - ns Turn-off time - 360 - ns 'off

h-parameters

h I = 1.0mA, V = 5.0V, fe c CE - f=1.0kHz, T , =25°C 10 amb 65

h "> _ 250 750 a le -4 h I = 10mA, V = 5.0V, - 0.85 xlO re c CE 5.0 h f=1.0kHz, T = 25°C 15 80 - fe amb h - 35 80 oe lUmho

Milliard BFY50-Page 4 N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

BFY51

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated) J Mln. Typ. Max.

Collector cut-off current ^BO = = 10 500 nA V 60V ° CB ' h V =60V, I =0, T. = 100°C 0.5 30 IJ.A CB E ] V =40V, I = 2.0 50 nA CB E V„ =40V, I =0, T. = 100°C 0.1 2.5 tiA CB E j

Emitter cut-off current J EBO V = 6 -°V 10 500 nA EB > V 2.0 50 nA

V,=5.0V, I =0, T. = 100°C - 0.1 2.5 MA EB C j

h Static forward current transfer ratio = = 30 85 I 10mA, V^ E, 10V

I = 150mA, V„ =10V 40 123 C Cb

I = 500mA, V„ =10V 25 79

I =1.0A, V„ =10V 15 40 C CE V Collector-emitter saturation CE(sat) voltage,. = 10mA, I = 1.0mA 0.06 0.15 V I C B

I = 150mA, I_ = 15mA 0.15 0.35 V C B = 500mA, I = 50mA 0.35 1.00 V IC B =1.0A, I = 100mA 0.66 1.60 V IC B

V „, „ Base-emitter saturation BE (sat) voltage,.

I =10mA, I = 1.0mA 0.69 1.2 V C B

I = 150mA, I = 15mA 0.92 1.3 V C B

I = 500mA, I = 50mA 1.15 1.5 V C B

I =1.0A, I =100mA 1.40 2.0 V C B

C Collector capacitance Tc V„ =10V, I =1 =0, CB E e - f = 1.0MHz 7.0 12 pF

Milliard BFY50-Page 5 BFY51

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max. Transition frequency I = 50mA50mA, V = 10V, c CE f= 35MHz, T 25 amb "C 50 160 MHz

Saturated switching times

I = 150mA, I„. =-L. = 15mA, C B(on) B(off) -V =10V. -V =2 0V EE ' BE (off)

Delay time 15 ns *d t Rise time 40 ns r t Turn-on time 55 on ns t Storage time 300 ns s l Fall time 60 ns f Turn-off time 360 'off ns

h-parameters

I 55 = 1.0mA, V - Kfe -C - "' -CE ^

f=1.0kHz, T , amb =25°C 20 65

250 750 a -4 I = 10mA, V = X10 c CE 5.0V, 0.85 5.0 - f=1.0kHz, T , =25°C 25 80 fe amb 35 80 /imho

Mullard BFY50-Page 6 N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

BFY52

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Mln. Typ. Max.

I Collector cut-off current

V = 40V, I = 10 500 nA CB E V„ =40V, 1=0, T. = 100°C 0.5 30 IJ.A C B E j V = 3 ° V 2.0 50 nA CB ' V = = 2.5 V r,„ 30V, I =0, T. 100°C 0.1 f/A CB E ]

I Emitter cut-off current 10 500 nA

V = 5 -°V 2.0 50 nA EB ' V V^ -5.0V, I =0, T.-100°C 0.1 2.5 HA EB U J

h Static forward current transfer ratio - I = 10mA, V = 10V 30 90 c CE - I = 150mA, V_ =10V 60 142 C CE - I = 500mA, V =10V 30 90 = =1 - I 1 - 0A V ° V 15 50 C ' CE V Collector-emitter saturation CE(sat) voltage - I = 10mA, I = 1.0mA 0.06 0.15 V C B - I = 150mA, I = 15mA 0.15 0.35 V

- I = 500mA, I = 50mA 0.35 1.00 V

- I =1.0 A, I = 100mA 0.66 1.60 V C B

Base-emitter saturation BE (sat) voltage - I = 10mA, 1=1. 0mA 0.69 1.2 V

- I = 150mA, I = 15mA 0.92 1.3 V

- I = 500mA, I = 50mA 1.15 1.5 V

- T =1.0A, I = 100mA 1.40 2.0 V C B

C Collector capacitance TC = V 10V ' CB > W f=1.0MHz - 7.0 12 pF

Milliard BFY50-Page 7 BFY52

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max. Transition frequency I = 50mA, V = 10V, c CE f = 35MHz, T =25°C amb 50 185 MHz

Saturated switching times

I = 150mA, I =-I -15mA, C B(on) B(ott) -v =iov, V = 2 -°V EE BE(off)

Delay time 15 ns

Rise time 40 ns

Turn-on time 55 ns

t Storage time 300 ns s Fall time 60 ns

Turn-off time 360 'off ns

h-parameters

h I = 1.0mA, V = 5.0V, fe c CE

f=1.0kHz, T , =25°C amb 20 65

250 750

I = 10mA, V = 5.0V, c CE 0.85 5.0 X10 f = 1.0kHz, T = 25°C 25 80 fe amb 35 80 (nmho oe _

Mullard BFY50-Page 8 N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

MEASUREMENT OF SATURATED SWITCHING TIMES

Test circuit

ov _vEE=1

V -20V p -oCRO 1.0 US

270A 66X1

-ie.5v -vBB I = -I =15mA I -150mA, , „ C ' B(on) B(off) -VV = 2.0 V BE(off)

Switching waveforms

20V

Input

10°/, 90»/o

Output

10°/. 90 "A

Mullard BFY50-Page 9 OPERATING NOTES

1 . Dissipation and heatsink considerations

a) Steady-state conditions

The steady-state dissipation maximum Ps is given by the relation-

ship : T. max. - T_amb P max. R 'th(j-amb)

Where Tj max. is the maximum permissible operating junction temperature, T is the ambient temperature, amjj ^th(i-amb) is the total thermal resistance between junction and ambient.

Page 13 gives the maximum allowable steady-state dissipation versus ambient temperature for the device mounted in free air and with infinite heatsink.

b) Pulse conditions (rectangular pulses)

The maximum pulse power P is given by the formula

(T. max. amb s* th(j-amb) .1

th(t) ' th(case-amb)

Where Ps is the steady - state dissipation excluding that in the pulses,

Rth(t) is effective transient thermal resistance of the device between junction and case, and is a function of the pulse duration t, and duty cycle d,

d is the duty cycle, and is equal to the pulse duration t divided by the periodic time T, ^th (case- amb) * s the total thermal resistance between case and ambient and is equal to the difference between Rth(i-amb) and the thermal resistance from junction to case Rtn (i-caseV

Milliard BFY50-Page 10 .

N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

b) Pulse conditions (rectangular pulses) (cont'd) Example

The following example shows how to calculate the maximum permissible peak dissipation of a BFY50 mounted in free air at a

temperature not exceeding 65°C . The steady-state dissipation under the bottomed condition is 350mW, the pulse width is 1ms and the duty cycle is 0.2.

The transient thermal resistance B = 15 . 5degC/W (page 13) tn(t) (200-65) - (0.35X220) P max. = P 15.5+0.2(220-35) 135-77 15.5+37 = 1.1W

The peak pulse dissipation of 1.1W is therefore allowed provided that the voltage and current ratings of the device are not exceeded

c) Pulse conditions (other than rectangular)

For sinusoidal and irregular shaped waveforms , the power pulse is converted to an equivalent rectangular pulseof the same average and peak values, and treated as in the previous section. Example

The following example illustrates how to find the maximum permis- sible peak dissipation of a BFY52 operating in a class 'B' circuit atlkHz. The device is mounted on a heatsink of thermal resistance equal to 50degC/W and at an ambient temperature not exceeding

100°C . Assuming that the waveform is sinusoidal for half period and zero for the other half.

Average of sinewave over half cycle = 2P /ir

Therefore equivalent rectangular pulse width of same amplitude and average value

to

27TX 10° J = 0.318ms 2H

IB35B9I

Duty cycle, d = —

Milliard BFY50-Page 11 . . . .

c) Pulse conditions (other than rectangular) (cont'd)

2 /27T 1 Duty cycle, d = - / — = - = 0.318

From page 13 = = R 6 - 8desc/w (d °) th(t) R = 35de^C/W th(S ) = = x 0.318+6.8 Rit ,« atd 0.318 (35-6.8)' th(t) = 15.8degC/W

- 100) - -*(200 L P max . = p 15.8+0.318X50

= = 3. 15W 3-f7

A peak power of 3 . 15W is therefore permissible provided that the voltage and current ratings of the device are not exceeded

SOLDERING AND WIRING RECOMMENDATIONS

1 . When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt

2. Transistors may be dip-soldered at a solder temperature of 245 C for a maximum soldering time of 5 seconds. The case temperature during soldering must not at any time exceed the maximum storage temperature These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes

3. Care should be taken not to bend the leads nearer than 1.5mm from the seal.

4. If devices are stored at temperatures above 100 C before incorporation

into equipment , some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be returned using a suitable activated flux.

Milliard BFY50-Page 12 . . —

N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

max " ~ &FY51

s

L_ k | ,_

| ~ W s - AOA . n _Zs, 4.. -It- ± SJV - - ^^"*o ^> (/«,

I l^ w ^ J %. I ^^ ^ ^^«so Pormlssiblo area r %J*o

T^ s ^ l_ __]_ ^ w D %fc. oml>1 * 8Jn TTwL '(»rirn< *>. ^ t I ) | | | ^^

I I I I I J^I 1 I I I I 1. l ! Ill I F irr'""*iik 50 100 160 200 Tamb CC)

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE R th(t) — 1 3FY50 ::= BS932

(deg C/W) 1 3FY51 f 3FY52

^100 « K -d.1C ) th(s) -C =o£__. R h(to )l °£-l" £ 8 10 '% c rff *£>3::: r-2-~ in « u = "5 s f vo -*

R th(t) -(Rthfe)-Rth(to))

% R* h(to r tr an si( nt t >ermal r esist ance \vit h d =

1 - 7 ^ i I * J 1 s s I it 7

KT K> 10 10 10 10' 10'

Pulse duration t (s) TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS PLOTTED AGAINST PULSE DURATION

Milliard BFY50-Page 13 !

- ! U-| BFY50 f I^JB8933 (A) -4 -

j zppr 4-4- -I- " "~^ ^- I = , "I 10mA 1-0 c *~r 7 | _ 4 ;" rf i" RB/RE S 10 —4 P l!f -\\- ^ Tf' 1. .._ "TT ~Tl-L* SLI ; X. ix:jt f-^ 4_L ! ZJ -r -H ->fcl I =VumA ^.IxliH JI 1 j>»Ll._ ' C

i | 0-5 ' i 1 H—j- 3) : 70 VrF V) 80 - it- . H ) ; : . . f it 33 . . . . 1 XT" 1TTT- - -\- II "1" II - j- ^ ^ fO Si ii 'A - : _ .4 K • - '. 8 O O '. x X- r - o : ft °F _!__ 20 40 60 80 VCE (V)

(A)

1-0

0-5

-- ' > 50 r V (V) 60 ifxtJ: CE |4- E :--f.j4-j---i XI 'T 'ii P"' ctx± tti

20 40 60 80 VCE (V)

„--_(. BFY52 ooy j (_ 44-

A) I tfc. l_ 1-0 Ir =1'0mA

i "I I i"l IT"

RB/RES10 - ' Z) —w I r = 10mA -f- m - - " - 0-5 II ii /A ULi JX ** 8? o o

"" - - u [ 20 40 60 80 VCE (V) COLLECTOR CURRENT PLOTTED AGAINST MAXIMUM COLLECTOR-EMITTER VOLTAGE WITH R_/R„ AS PARAMETER B E

Mullard BFY50-Page 14 " -

N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

100 } I h - T "H L \lVCER — When the emitter is max I III common, a value of (V) I > 1-OmA - in should be used in c -- — the calculation of 50 Ra/Rt7 *^«v^ - -

___ —

------

" .... - — —

. S 7 3 5 7 3 5 7 3 5 7 1-0 10 100 1000 R Bn /R/r, E

—r- V - - r— - E CER T "— | max - - - (V) X C - When the emitter is :::- common, a value of 10. should be used in 50 the calculation of - I > 1-omA n - c - "— "" Ro/Rp -4 -— -^ 40 ._

-

_. - 30 - "

. _ 20 , 3 S 7 1 5 7 3 5 7 3 5 7 1-0 10 100 1000 Rb /Re

VCER BF"Y52 B B936 : - max - 5fl -111! I < 1-OmA (V) c When the emitter is '~~- »«. common, a value of ~- 1Q should be used in : - : : "S^ the calculation of 30 R B /R E I > 1-OmA "*^ c — - : 1- - — — -- — 20 ._. '"-- '— - -- ... z- - :: 7- 7 - _. - - :- 10

3 5 7 5 7 i 5 7 3 7 1-0 10 100 1000 Rb /r e MAXIMUM COLLECTOR-EMITTER VOLTAGE PLOTTED AGAINST n/R„ RATIO

Mullard BFY50-Page 15 — — , ; " — .

" ^~ ' , T r r .1^7" __.. .7 0) i__::: ai " -7 "" - v. — — ££(7 — \- ta — " i— ..:: r " - f 7- 7-7 tij- -i - :z -- :- £ — 7 T-_- r o

- - __:- T». -- ;-_. ;— -_ ~~~-~-Z- *N £ ^"T- S -- _- ;-~£ _. - ";- •\~~--Z £ £ J I — ..' — ~— ^ 3 I - --v ^">& J s», - Is£- — jjf r- [" _ 7! S - -; - ir" A —tf| ^ <* i% - vS £~ -- £_ ]'"-' s 1. V<^5k-i *^ o % SJ 1 s ^ o sjh£<« -j» — cSl £ — j » ,— _-'-'_ : ** - : _- -*n ^^ T" ^xllti - pL ^ j~- —L- ~"TT 3&N ' r- - i\ VX IT - : ££ +7 r 7- mv N, 1_ k¥^ - O :_ ^s — ffF v 1" — ^^It LU :l£ "ff TS, — ffi"" --^ — "I./"1 — H - — ~_7 —7 .— ~_~— it 7— "— ¥- ;7 -~4 o o O O o c o c o c o

— ------JhT ii V i —

: - '" — ;-;.- - " :[- — ..---.

_Z 7 t - ~- -_ - y - £- r- - — -- 1 " - -- I O r- « [- — -*4 - - >>> £s u. u. li- £7 '-- -" - -'- ar ajdJ jy; — - — - > .. ~*v"^. - O { __ £ ;-- -£ "..._ — '•> — 7- "J o - - sr LU (. 7 — ^> — -_ "-- -; '"£'- S s — -- ~ i" ; - — - - - — " - - — - £ - - - — _----- — O O o o o o o •- mo 2 "" ^ < < a. c COLLECTOR AND EMITTER CUT-OFF CURRENTS PLOTTED AGAINST JUNCTION TEMPERATURE

Mullard BFY50-Page 16 .

N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

.. 1 1 0-H -Mil! Drvr,n | i 11 RS941

Tj = c C 25 ^B llX-rTf *^"* — m ^* ' c * — ^^ *trf\A ,-* liirrT 0-6 --,< Sb«-"" = T

3 ^P . ^* — 1^^iii«- ? — ™ — j j** " -. ^»* _j ? ** — ' m B * t_A^ * M* ^ ^ fi * K * g, P . ^^ ^ ' r - *

j| ^ A ? = «£[lp«M r •» — ^™*" — a ^**-** - ^l Jl __ B- _l_ " - * 1 * p ** L i

, ^ ' _ _ J *^ ^ r ^ j i,' =2mA

f -li 1 1 1 ,»•""" [ TT 1 Jl 0*£ 4 | |_-=1 mA

* , ^L I I I) ii ^ I n I II 0'5 10 1-5 2-0 VCE (V)

ic

_ T-, -orV 'J „ 20 m* 1-0 ltJ— -1 =>m*^

=1 im'k j

0-5 _

'

n i = 2m/k

M =1m/s,-

i I j

I I 10 20 30 VCE (V) TYPICAL OUTPUT CHARACTERISTICS

Milliard BFY50-Page 17 1 B8943 " I' ' ~rr> IT . 20 n> C If T (A) — i=25C - =15mA

»»- «""** ^p* XJ? -+ m*

B = 5mA

a =2mA

I I I I

] ! I i =1mA mj^ „ 0-5 1-0 1-5 2-0 VCE (V)

ic I I I I Tj = 25°C

I I B = 25mA = 20mA 1-0 =15mA

"" l_ = 10mA

0-5 = 5mA

= 2mA -

I I I I =lmA — I A * — -j- j <

v | 10 20 30 VCE (V) TYPICAL OUTPUT CHARACTERISTICS

Milliard BFY50-Page 18 N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

un.n I 1 jW III n «A.«K ° ~l BFY52 J£ c l l I [ I l y* Ip^umA J < A > T ORVr ^' -r= T-, =25C A r

_

1 1 1 1 p«------»_----..--»..- »imA 1 ?&>* o, fTT 0-5 1-0 1-5 20 VCE (V)

Tr Al±l (A) Tj = 25°C ------

-- --~"" - fci

i - - - - - :

- -

i j 05 _ — - - - 3- 1 f-

.J L_i__ -

= -| 2mA

I ,. J 1_U. - :

, - . JJ = 1mA [- ™^™ _ — r _p..i_ ~T \ of ¥r'\ r tItt i 10 20 V CE (V) TYPICAL OUTPUT CHARACTERISTICS

Milliard BFY50-Page 19 B8947 BFY50 - ic *c " IB (A) ITT (A) - CmA) V =10V 1-0 CE 1-0 - 20 Tj = 25°C f 1 1 1 1

J i 1 I 1 / I 0-5 05- 1 1 10 1 I 1 / 1 1 1 J f / / r f _J / i at..* L o 10 20 30 10 2-0 0-5 10 1-5 I B (mA) VBE(V) VBE(V)

ic '-1 X -+- B 1:11

' (A) TiJ L _. ' (A) (mA) 1 VCF = 10V . 10 20 1

/ . _i 1 J.J w 7 ~f f IT, 1 ]" +"41"" " 2 r " it ' J i J '"'" A 14"" " f_ T T X r : "L ~"T± 0-5

1 1 7 t T I IT"" j Pit "TT i -P " X I t , 1 x i i t ~r i # -/ t > 1

' ' l ll^«^m 'J ' UJ ' LU ' ii o^^K 10 20 30 1-0 2-0 o— 0-5 1-0 1-5 I B (mA) vBE (v)

J I (A) JVCE^O ' (A) T 25 C 1. P J= x ppe j^ tX x xr 1 x 1 x ~ r i j t i t I T _j F t 0-5 J- t m iPt t - X b t " f P t 1 I h f 3 t / ^ ^f 7x 7 ./ I III ' ' - *r o'J - o — r _ o. -S ~ 10 20 30 O TO 20 0-5 1-0 1-5 I B (mA) VBE (V) V BE (V) TYPICAL TRANSFER, MUTUAL AND INPUT CHARACTERISTICS

Mullard BFY50-Page 20 1 . - —

N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5f BFY52

! i I ! I | ' BF j i J— JT BFY51 X X ; ; BFY52 -i_ _|_ - -H— - - 150 I + -+U -+ -r-J-J- r?t" tttZ:vCE =iov it' u , fi -I- - -j_ li-r- |Tj= ! V

_'"__." ^"~ ".' ~r kM- "TiT ;_l_i... _. .

! I i- ndz^^iT" ' Uf -i-SXt i IT

' i " I »T; iK, j I i TTTi rn i i li i. >4J_ TT T -t ; ^ -1-4 ^"LL-AiJ i L - j_ ftp: -; IT" ' ^*^fc_ -!T+^*a5W., -+ -i- sJjJ_ o^xIS* _|_ " -T^- i-h-L-'-l— X^^pg^*^ r H-t- i zCT^ " i t3- ->-- |Z ~^J__ OsJ |]^^^ ^S^ M4 ' - i_r ""*•>»_ ! ip: tiFv2>

; [ "*>-« tTT l ^SrT"-«^^f"»^ L - it'T H- t-d ^ ti'-Tb LQ. r 4-" """^p*" MM-i- T-j- ~T" T r t; t t H~ I T i I - -\ - -I— |.i|±t.: t-t- —f I— -h r " - i Mf ...t ± i . i - tr ±: r J r|- - M i M- -T 1 i i t I r r -7i r r ^ ^ 0-2 0-4 0-6 0-8 I C (A) 10

!

! 1 t i i 1 1 — 9 fe _ "t: _t jz± jbfysou it it

__r ~~i i \ i *"* ^*r — 1 i ^ 150 -h- 1 ^* H Ic=1 50rnA

, ' ' i __[ I ^ [_ ; ^^ _i . ~I_ ^^ r r~ *^

"""

i * -4 * I urf^ —J

I I ^^ ^^ J^r I I

-1f)f) I ^^^

i ^»^^*^ j^ ^r*** *" ^^ >^^* _l ~" "" ^ ^^ - *^"* f*^ r

^ ^^ ^^"* I j Jji^ rf^ -^W^ *«^ "" ^ — ^ "M ^* ^

— '

i

1 j^f^^"" - -a^^ _L ^^*"-— ^**^i _| _,

i

! o itr j_ ±~ -50 50 100 150 Tj (°C)

TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT AND JUNCTION TEMPERATURE

Mullard BFY50-Page 21 _, 'FE BFY51 oo?g£

.

" VC•E =10V

~m I c = 150 mA _

>> =10rriA -

I I I I I I 100 -- -a* -

I I i I I I

| | | J I |

V

o_ __ ~ -50 5G 100 150 Ti (°C)

n - FE E FY52

H VCE =10 /

= 150rr>A 9 l r

=l0mA TTTTT -500 mA 100 111 =100 omA

-50 50 100 150 Ti CO

TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST JUNCTION TEMPERATURE

Mullard BFY50-Page 22 ' j

N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

't B8962 (MHz) BFY51 BFY52 200 IBFY52

1 BFY51 m'»- «• M 150 * II * -i m BFY50 p>- 1 m* i y * 1 1 , * / /f y V =10V 1 > CE '/ = 100 ri f 35MHz Ifi T =25C - - I 1 amb u V B1 If 50 f\ 20 40 60 80 I c (mA) TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT BFY50 ts -..-, j - — ' I" T- -1 Y51 BFY51 | BF ts at 25 "C L ~~ -- T BFY52 15 1.5 : i i - -- - " J 4- -f --H-

" I

I ,j_ +1- It i CpF) |

!

! I E =I<2 =

f =1-0MHZ .... — 10 1.0 _J

:

; =

_.- ... j 5-0 0.5 1 I =150mA, 515 IDA — c iBto^-lBfoffi

! -R- I T!-1 BFY52 BFY51 BFY50 -- • _,

1 20 40 60 80 -50 100 200 Tj (°C)

Typical collector capacitance versus Typical storage time collector-base voltage normalised at 25°C

Milliard BFY50-Page 23 — v CE(sat) E»FY50 B8954 hJFY51 (V) 3FY52 J c. 10 -'- 1 B Ti =1 50*C 10 1 II

fir 10C °C / , = 25OK*c I I

j I A | 0-5 ' - , ' = 5C>"c

!i : A±H -i4^ 1-0 10 100 1000 I c (mA)

vCE(sat) SFY50 B8955 fciFY51 (V) E)FY52

l 1 Tj =150 °C Q - - __. 20 lT^' — & [j ... F 1*0 "c — — ------^K J Ri oc* t = 25 c ' I I

. N "i

' =-50 j "c

0-5

( S 7 3 !i :> S ' 5 7 10 10 100 1000 I c (mA) TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT

Milliard BFY50-Page 24 N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

^p r B8956 CE(sat) '-~-\ 1 - - 1 1 BFY51 _... (V) — BFY52

i i

-- i ._. '!.

. - -

, _ __ L l\ = 10

^ i ; - - • i ! t ^\ n j I -[* " ~i ] ^ = 1000mA --, i .:.— | J

) ) I h**

I !

~i --r !

I

-- f 0-5 : " 500 mA ft" " —

I ; _ [ [ | r t i ! i_ ; I ] iL f

- I 10 mA ,4. _— =[ -h-H-i \v\ "If" # "rrrrf -50 50 100 150 TjCO

CE(sat) l - BFY5' (V) 1~ 4- -- BFY52

1

-• -- - ";' T' j Ir -*-- : \ — = 20 .4 : : t

Ib i

1 ^ '{ 4

( - z ii 4 -— Ic =1000 iT\A t 4" - - —,-^- T. i T -r t -+ 4- ^ -r- ! T j£i [ "• - -- -L--

- — -• _c "J 1 4 >C)0mA "T ~ ~j (" ~ I ^ -- -j- — •- fT -jr :...... 1 J

< I 4- ! -r ]\+* ^ 1 —|—i—| MVr III- =1 50 rnA 1 t

"T I M-\"- ~\--i I I Tj] =10 mA

' 1- I- K +Hr 4 1 1 -rrn -Tftr "TTTI T" -50 50 100 150 Tj (°C)

TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BF,Y50-Page 25 BE(sat) B8958 (V) RFY 51 I I I II BF Y.52 1-5 Tj = -50 *C — = 25*C «100°C S • 1<) X B «150*C

1-0

0-5

. III/ , ' ' ' ' !i ; ! ll 10 10 100 1000 Ic (mA)

vBE(sot) BFY50 - B8959 (V) BFY51 rrrrr BFY52 1-5 Tj = -50"C

= 25*C 1 c = 100*C 7^ = 20 150*C

|

1'0

0-5

. ' ' ' 1 , (Ill ii 1 1 i_i

; s ; ii .if : i 10 10 100 1000 I c (mA)

TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT

Mullard BFY50-Page 26 —- 1 ' —

N-P-N SILICON PLANAR BFY50 EPITAXIAL TRANSISTORS BFY5I BFY52

w -+- BE (sat) "'" ~ ' ' y' (V) -\-- _ BFY51 " -~r~ t-| 1-5 _^ ' , { -[- I _L - I -r T = 1 4 i|j»... j lc 1000 mA

-j-t-t ! ! : I ' ! ~"™™"T" ! ! ''ill! * ' - 4- ' —u i xt t L xt r "^fb- 4±i l~ l~ H" " - " — 1-0 *ttl j— n** "+"+" = 500 mA .-j.-L.j-1-" - | -4 |-|-4-| -j-j

*i*fcl '

7 -: B h- 'T'' ) 4.- -ipH I |-Lj'rT — | ! I I = I : miA 4id '"t" 150

0-5

- ! ----- I ' I ; -\\ =10mA ; | J | T*"fT" f-4- .[' IT \ it I

i 1

! - l ! -rt7 "'"" I--' I- f t! -ill txi "ix "~l" — ~-r- mi - -4.) "~- I : - z z 1 1 -ttil IlLl^ - ^ -±Jt ±_ -50 50 100 150 Tj(°C) w v BE(sat) " - ..- . " (V) -— — .J . J.T"--! BFY51 " - 1-5 «.. i - 1 i , "^"^Hta, i- i I I j. I P^T""ri^t-

' , i | 1 ^^***^l»— _ i ='|li(lllmA TTh+U-.. l r

1 "™ 1 1 *•» M » — **" * *P --L., 14 . . .._ _T "™^- qi ' \ - 1 I *H "T ^^^i "*""*>«« """^f-^ 1 1 ) | m m lk "'""*^— - ' i, 1 i - 1*0 **Li *^ j

I *ifc_ I I ••^^ 1 1 1 ^^ "*T^ 'i^ _J T"* s*i n^*^"»*-« _l

^ , """"'"I -«ii_ _l I i r^ ijt^-t

, , ) "r 1 J || i_ _|_ j _[_ _l ^^"4^^ " i **^»« 0-5 I [T

i ' """*'** _L.I til ic _ 9n _,_ , Zl ... ._ __t __ -T**-a^_ J_L ta i b' X -, - . T__t . , . r

, o : _|_ i -±-±li:U_l T 1 lit -50 50 100 150 Tj (°C)

TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE

Mullard BFY50-Page 27 —

D1232 h BFY50 V ie >_r BFY51 BFY52

- 10 --sJVe— ::: V = 5.0V - 7 "^^ CE \ ^ f = 1.0 kHz - ) Tamb =25 ° c

3

h re 1.0 -

7 h te ::: 5

- 3

:

J,,,, "' ' 0.1 ' 3 :i 7 3 5 7 3 ,5 /

0.01

NORMALISED AT I = 10mA TYPICAL h-PARAMETERS c

Mullard BFY50-Page 28 .

N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BFY53

Silicon n-p-n planar epitaxial transistor for general purpose industrial applications Encapsulated in TO-5 envelope with the collector connected to can. QUICK REFERENCE DATA

V maX ' CBO 40 V

V maX - CEO 20 V J CM maX - 1.0 A ° P max T 25 C) 800 - mW tot < amb^ (T <25°C) case— 5.0 W h (I = 150mA, V 10V) min. 30 FE c C]r typ. 75

f min. (I =50mA, V = 10V, T c CE = f= 35MHz, T , 25 °C) amb 50 MHz OUTLINE AND DIMENSIONS

Conforms to BS3934 SO-3/SB3-3A J.E.D.E.C. TO-5

Ivlillimetres

Min. Norn. Max.

A 9.1 - 9.4

B 8.2 - 8.5

C 6.1 - 6.6

D - 5.08 -

E 0.71 - 0.86

Fl - - 0.51

F2 12.7 - -

F3 38.1 - 41.3

Gl - - 1.01

G2 0.41 - 0.48

G3 - - 0.53

H 0.3 - 0.8

Collector connected to can J 0.74 - 1.0

Mullard

APRIL 1970 BFY53 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX - 40 V CBO V „ max. (cut-off, I

V maX - 20 V CEO

V maX - 6.0 V EBO I max. 1.0 A

1.0 A ICM max. -I„ max. 1.0 A E %"• 1.0 A L, max. 100 mA

max - 100 mA ±*bm Ptot^-^amb^250 ^ 800 mW (T < 25 °C) 5.0 W 1 case- Temperature

T range -65 to +200 °C stg T. max. 200 °C 3 THERMAL CHARACTERISTICS 220 degC/W th(j-amb) 35 degC/W th(j-case)

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

CBO Collector cut-off current V == 40V, l ° 10 500 nA CB E = J V == 40V, I °' T. = 100 c 0.5 30 /nA E = CB .1 V = 30V, 2.0 50 nA CB V D == 30V, I T.== 100 c 0.1 2.5 /xA. V = ' CB E 3

EBO Emitter cut -off current V == 6.0V 10 500 nA EB V V == 5.0V 2.0 50 nA EB V V„ =5.0V, I =0, T. = 100 C 0.1 2.5 MA EB C J

Milliard BFY53 Page 2 N-P-N SILICON PLANAR BFY53 EPITAXIAL TRANSISTOR

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max

FE Static forward current transfer ratio

I =10mA, V =10V - c CE 20 55 I = 150mA, V„ =10V 30 75 -

I = 500mA, V =10V 18 50 - Chi = I 1 - 0A V =10V 10 35 - C ' CE

Collector-emitter saturation CE(sat) voltage

I = 10mA, 1= 1.0mA - C H 0.06 0.150.] V I = 150mA, I = 15mA 0.15 0.35 V

I = 500mA, I = 50mA 0.35 1.00 V

I =1.0A, I = 100mA 0.66 2.00 V C D

V Base-emitter saturation voltage BE (sat) I = 10mA, L = 1.0mA 0.69 1.2 V L 13 I = 150mA, I = 15mA 0.92 1.3 V

I = 500mA, I = 50mA 1.15 C B 1.5 V I =1.0A, 1= 100mA 1.40 2.0 V

Collector capacitance Tc V =10V ' CB ' W f=1.0MHz 7.0 12 pF

Transition frequency I = 50mA, V =10V, c CE = f 35MHz, T , =25°C 50 amb 140 MHz

Small signal forward current fe transfer ratio I = 1.0mA, V = 5.0V, c CE

f=1.0kHz, T , =25°C 10 70 amb

Milliard BFY53 Page 3 . .

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors maybe soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.

2 . Transistors may be dip-soldered at a solder temperature of 245°C for a maxi-

mum soldering time of 5 seconds . The case temperature during soldering must

not at any time exceed the maximum storage temperature . These recommendations

apply to a transistor mounted flush on a board having punched-through holes , or

spaced at least 1 . 5mm above a board having plated-through holes

3 . Care should be taken not to bend the leads nearer than 1 . 5mm from the seal

4. If devices are stored at temperatures above 100°C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated flux.

Milliard BFY53 Page 4 N-P-N SILICON PLANAR BFY53 EPITAXIAL TRANSISTOR

rp* I - tot BFY53 L» ic-hj max

*> f/,

IS p <<<. - Permissible area v "'/ _ of operation. IS •«V> -

*• fv

.

"thfi- — . umoj =220 h„- _/ -*«i oyw

o : -t 50 100 150 200 TQrnb ('C)

" B8932 R BFY53 \z- 1 th(t) | - tH (deg C/W) --

— - - --

"5? 100 -^ ...... __ L D ~_,. R :>: th(s) , _:d=K : f-

JI -~io 5__. R th Itn) - 2 .. 0. r 8 10 : r- O ^ - -- - i \t: 4 -!- u -g W i

I/) , tn * — ~t-) L. ' = D jj

to i ! i-o T ** — -£ Rth(t) =< R th(s)-Rth(to)) d'Rth(to) w R th(s) =steady state thermal resistance with d = 10 D Rth(to) 1 transient thermal resistance with d =

10 10 10 10' 10" 10 10

Pulse duration t (s)

Mullard BFY53 Page 5 ;

I i_ I BFY53 u v -[ ; t—' -- -^ | (A) "" I i ] "TT T --U 1 ; ""* V^c =10V

. i --*- ^T 25"C . , j= ; - .__..

I m t 1 '- t

: I- I , 'c

; - i j (A)

1

1-0 ; 1-0 J. - Typ ' 4- J Ij-H- -f t *T - !

|

! i | 1 1 "I J-l/i L -4- r T +i- -* f :|. 0-5 0-5 T i ; 1 -~- * ' 1 : i : j — ! 1 ; _ - r ! iX- ~r |

... i... i - 1 1 -1-j/ :_u "T- -

' tr t "JT r- L-l- t- :H ; 1: -

1 2 (V) 10 20 30 I B (mA) VBE

4^J 'b -| 3FV53

mAI 1 \ 1

30 !

:: VCE =10V :- Tj = 2 5°C - -' 4- i

1

20 . - --i r "- - J--I-

' _ !

! - - z -i • -

,

10 '- f j 1 '-

"4" -*-

, *-

— 1- - - ' -- -'-I- " ^ i : r (1 2 VBE (V)

Mullard BFY53 Page 6 N-P-N SILICON PLANAR BFY53 EPITAXIAL TRANSISTOR

1-0 BFY53 D1243

1 1 [j = 25'C

ic (A) I B=25mA

1 1 20mA Typical curves

0-5 15mA

10 mA

5-0mA

I I 2-0mA 1-0mA

1-0 1-5 2-0 VCE (V)

1-0 BFY53 I B=25mA D12U

I | Tj = 25*C 20mA

'c (A) 15mA

Ty pical curves

10mA

7 ' j , ' _j 2-0 m A

I I l'/ 1-0 mA 5> of | | 5-0 10 20 VCE (V)

Milliard BFY53 Page 7 * - : n ~ "

, 1 1 ' ' V "--"- ""--- ; IP -737 lt-"!:^ --~]If :r!L --- :__ ,: : ;.; - o — — "" 1 """- _;- — 11 T : r r ~ : _ _; :" _- -^ — ;-"- :..::- jti— Hf -- ~-ZZT || 1+ - — — — - ~ ' »,^- : "- - ^St - 1Z -~~j|f 7 Z : ~*i --- - l" , J-- s ;_r _ r^ — — 444 _ -!«; s. -- "- S — s — - — Hi II . > y% ' ~ - r --^ -->.-^ . »>LU -— 7:~Z iy"~f ' 5*^*f 7 — '?> •«,> 1 — :< - i+i^.^ttiT |:r::- F- ST-,-~ ' z Tj ^V^h * ;*tth jL...- ^ — - :: Z j-% Z^_ : ; Z Z 'Oi ^«, **,«. V - — ~ %z IE . +-- r *3x^ <"> - -< 4- o — — -i ,\ — « — i j.'* • ^*5_ £ z s "r" U. - UJ ---:-: N_ 1_ 5 m - ~ zrr_::; ;:\r ^.r. \ : fj^ w — }«- ^\ — f- 1 _~~__ ; ™i:--: z " .: _ i_ : t i. O o o o o o o o CD o »- ~ o O «- A < < a. c

-~ . __ ___._:; : '_ : - -;- : . — - ;r ;- - ; - :- - Zr- 5 - ; : — ; -~ _ ~- :: : ~ : : - Z_ I :: ;- -ZZ 7 ..; F ^^7 ~ — jN^ :- - ~ : - : ;- _ '— ;-" - : - -- Z:* Ii- ;; : ; 'Wv: I ; T>. "V - --

7-~ I— "'_ — - j 1 — — Z- -~" j^ — - -::1 " " j- -; — -^— :- ~_ - ..; - : — -V^ t l— ~-lZJ — -3 — ;-- * I- izrlz — _ --_/ 7- — r "—I

> " l- r J irzz n in ;- 1^;; >- o J- a 7 - II u 3-7 _ ;~ _— ^ -—''.

_t_ ,1,1 O o o o o o o o CO o — o o *- ^- UJ — D < < 3. C

Milliard BFY53 Page 8 —

N-P-N SILICON PLANAR BFY53 EPITAXIAL TRANSISTOR

" 'I FE — ^_jl IpZ IT f . BFY53 T ! 4 " J_ ""' IT . 4T ' ' ^t~~^--4- -tt-H-f-

_ _ Typical curves _^_ _^_ ^ \q = 150mA i_

V>c = 10 V ' _** ^

i . " K " 1 + ^""i-— iPr i

r ! . ^f* 100 ,>.«- 10mA "T . ^M *"^ <•*

I I

i ; I "^"n^ ^ ^"* J.-TT

i

t

— i i- I —

[ . .. It.- -4 ,-

!

_ - ?^ , , — -""" 1000mA ^ _(_ Hi— — '^rn | -J-- - ,,»-e"" "~ 1 - \-\— -- ±t"" —h t — ;

I

i j _( - --£ -e-j- i o 1 -50 50 100 150 Tj (°C)

FE

IUU 10V VCE = Tj =25°C

^\ 50 0/

/ •** "''»/ ->^p(jth

, .

, i , , i n ! j- a. i 3 5 7 3 5 7 3 5 7 10 100 I c 1mA) 1000

Milliard BFY53 Page 9 -

I I I I !l| CE(sat) B=Y5: (V) Typical curves 'c

1-0 Tj (°C) = 150 100 25 -50

0-5

"

.„ ™ ffi_™fl L^ ^ t » I 5 7 S 7 5 7 7

10 100 1000 I c [mA)

BE(sat) B=Y53 D1250 (V)

1 1 1

1 1 1

- Typi cal curves

I C -10 2 "" 'B Tj CC) = -50 - 25 -- - 100 X ~ - ^ .._ 150 -

.

;;5*?"" : -- — ... ii- — —

- -- -

- -- -

,

3 S 7 5 7 :i 5 7 5 7

10 100 1000 I c (mA)

Mullard BFY53 Page 10 — _

N-P-N SILICON PLANAR BFY53 EPITAXIAL TRANSISTOR

V — BFY53 P ITit (sat) ^T Z ~t T -T-r-r-T- CE i T | ...... -4--+ - I (V)

! I i j

-j-- ~- - —+ *C -r -H - -

- "^J_ I B Itl It

II . , 1 Ip (mA) = 1000 1-0 _^ EEJEE J :

1 — : i_ ^m* , _j_ _^._._ .^ m ----- f I T+- -rH^ — —*" Hi i*"*""' 1 —

. . j | j_ w0t m*"* —J_- — ~^~~ —p^ ^^^- -j—tt^fc*^* -1- ! ^ j - ' ! : jL*r -- . __. ._ _ „^tf^ . j-. - -j~j—L^ j t r+ - '• -\ . -^0f^^-- i ;_ t^pn 0-5 — ^ ^J^^ i j«^— i- — — ~~ "' -j*- ^^ ' 1 ! — J_ i _ — »* [^^jpjg^^ =:::iffi=i=-=±=-=iir=!ii=S=EEEEEEE -50 50 100 x BE(satr BFY53 -rrrr (VI - -J-

, c

— >g. ._.

•^ . ** **»^

------****

1 0-5 -" H T epical cur I i-,0 — 1 B

TT 1

j i 1 _.. _^.it 1 t \ :± > ±rt -50 50 100 150 Tj (°C)

Mullard BFY53 Page 11 ' 1

1 i f " i +- - - t 1- T 1 T D1253 4 1 BFY53 -~.. IH (....- (MHz)

: 1 ' ! 1 I i rj t - t : 1 200 i i i

t \ , \ 4_ 4 L CE ='0\/ - -*- . = 35MH2 T--\

=25( ' -j amb I r _i -- ~[

~!~

! —

' i I ' ' I l - : "

— ^ 1

:

|

: "I"

I ; ~T.

! i

_, 50 ! j _t_ It. i Ml 20 40 60 80 I r (mA)

r~ ! ~ 4 1 i BFY53 ~ - — - i- i : Hi ! - - - ! — : i i I =I =0 E e — - "... ~1:\ ! T. '. 4 j ] t f =1-0MHz LI ..... c T c Vl -

i - — (PF) 4J — ~"\~t ! t -I-; ! j i

! ; — -H_--;.- —- ! ; ! t ^4

I ill! L - -4~..- •

J I ; . - 1 I

f

i ; ^^ i i

! -^^» S T .... 4 I —- f .[_;. _.i : : *» "j~"" _"t". tot" i ^ ;" ! 5*0 ^ I 4 t f * ^~ ^ "-" ; "? Typ. 1-4 4 ~~t !

.... ! ~]T -4-_lf ! t4 i 1 i :

T~ ! ...... ^ j_

" -i : J " i

: r : i -4--4i 'I ! I I i 10 20 30 40 VCB (V)

Mullard BFY53 Page 12 SILICON PLANAR EPITAXIAL BFY90 N-P-N TRANSISTOR

inter- N-P-N silicon planar epitaxial transistor featuring low noise, low modulation distortion and a high transition frequency. Intended for military and industrial applications.

QUICK REFERENCE DATA 30 V V ,, max. CBO max. 15 V VCEO„„ 50 mA I CM max. P. max. (T =25 C) 200 mW tot amb T. max. 200 C ] Gc/s f min. I = 2.0mA, V = 5.0V 1. T c CE

I =25mA, V„ =5.0V 1. 3 Gc/s C CE 0. 8 pF -c max. I =2. OmA, f = 1.0Mc/s re C == dB Max. noise figure, I =2. OmA, f 500Mc/s 5

OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-12A/SB4-3 J.E.D.E.C. TO-72 Millimetres

Min. Norn. Max. A - 4.8 B - 5.33 C 12.7 - D - 0.48 E - 1.17 F - 1.16 G 2.54 - H - 5.83

Viewed from underside

Connections: 1. Emitter 3. Collector

2. Base 4. Shield connected to envelope

Milliard OCTOBER 1966 BFY90 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical = V maX - (I 0) 30 V CBO E

! = V maX ' (I 0, I = 10mA) 15 V CEO B c 2.5 V

I 50 mA CM max. I max. (averaged over any 100ns period) 25 mA C(AV)

= P. . max. (T 25 C) 200 mW

tot amb; Temperature

T . max. 200 °C stg

T ^ min. -65 °C stg T. max. 200 °C J THERMAL CHARACTERISTICS

O. , (in free air) 0.88 degC/mW j-amb e. 0.58 degC/mW j-case

ELECTRICAL CHARACTERISTICS (T.=25°C unless otherwise specified) Min. Typ. Max. Collector cut-off current

V = 15V = 10* nA CBO CB 'V

= = V 15V ' V 10 nA ^ES CE BE Base current

-I = 2.0mA = 13.2* 77* nA E >VcB -I = 25mA, V = 200* 1200* HA E CB Static forward current FE transfer ratio

- I = 2.0mA, V = 1.0V 25 130 c CE I = 25mA, V =1.0V 20 - 125 c CE Transition frequencyt

I = 2.0mA, V = 5.0V 1.0 - Gc/s c CE I = 25mA, V =5.0V 1.3 - Gc/s c CE Collector capacitance** tc = = - - =1VV =l - t 1 OMc/s 1.5 pF VcB -h e Emitter capacitance te V,, =0.5V,I =1 =0, EB ' C c f = 1.0Mc/s - - 2.0 pF

Mullard BFY90 Page 2 SILICON PLANAR EPITAXIAL RFY90zv N-P-N TRANSISTOR "' '

Min. Typ. Max.

V„„„, .. Collector-emitter sustaining CEO(sust) voltage,.

I =10mA, 1=0 15 - V C B

- e Feedback capacitance

I =2. 0mA, V =5.0V, O CE f = 1.0Mc/s - - 0.8 pF

r,..t. Feedback time constant f bb' b'c

-I =2.0mA, V = 5.0V, E CB f = 10.7Mc/s 2.0 - 12 ps

NF Noise figuret, I =2. 0mA, V = CE 5.0V £ = 100kc/s, optimum R 4.0 dB s f=200Mc/s, optimum Z 3.5 dB

f = 500Mc/s, R =50fl 5.0 dB s d. Intermodulation distortion im (See fig. 1)

I = 14mA, V =6.0V, c CE f = 217Mc/s

V =100mV, RT = 37.5fi o L f =183Mc/s, f =200Mc/s - -53 - dB

Output power! (See fig. 2)

I =22. 5mA, V= 13.5V,

P. = 25mW l f = 500Mc/s, T =25°C 175 - - mW case

These are the characteristics which are recommended for acceptance testing purposes.

tShield lead grounded.

**Shield lead not connected

tCare must be taken to reduce steady state current when no h. f . signal is applied.

Milliard BFY90 Page 3 Small signal y-parameters

2 OmA, V., =5.0V, f = 500Mc/s V CE Min. Typ. Max.

Input conductance 16 - mmho

Input capacitance 3.75 - pF

Feedback admittance 1.55 - mmho

Phase angle of y 258 - deg re re Forward transfer admittance 45 - mmho fe Phase angle of y 285 - deg fe Output conductance 0.19 - mmho

Output capacitance 1.9 - PF

DM Max. unilateralised power Saln 2 >yy I fe 10 log 4g. g le oe

I = 2.0mA,V = 5.0V, c CE f = 500Mc/s 22 dB

INTERMODULATION DISTORTION TEST CIRCUIT

50n O

9in V„

0.24V

Fig. 1.

Mullard BFY90 Page 4 —

SILICON PLANAR EPITAXIAL BFY90 N-P-N TRANSISTOR

CIRCUIT FOR MEASUREMENT OF THE OUTPUT POWER

JJJJJLMJL' O 50A -II T r.-.zzi-T & -rf^C HI

100r\ 330/\

P57iU

Fig. 2.

C =16pF air-gap trimmer L = copper strip 20x4x1. 5mm

= 10 turns of 0.7mm C , C , C. 6pF ceramic trimmer L,L= "'2' 3' 4 2' 6 en. copper wire, dia = 4mm

L =1 turn of 1mm copper wire, dia = 8mm wire L , L =1 turn of 1mm copper dia = 7mm

IB5745I 4-0 ' mm

1-5mm

60mm

y/M^vz/A

Mullard BFY90 Page 5 SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors maybe soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.

2. Transistors may be dip-soldered at a solder temperature of 245 C for a maximum soldering time of 5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum storage tem- perature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes.

3. Care should be taken not to bend the leads nearer than 1. 5mm from the seal.

4. If devices are stored above 100 C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be returned using a suitable activated flux.

Mullard BFY90 Page 6 : 1 ' t

SILICON PLANAR EPITAXIAL BFY90 N-P-N TRANSISTOR

I i l_ r!r < (O o £ a. in *~ CM o II II t- -~ - .(-. j - < ' — E H CM < o - E 1

' o ; 6 V0) < Li- - < E en i to E i - 1 ( oo 1

j - 4r „ ri --i E h I 1 '

* - - --*- - - "H

; - j --f-l \ r - j! -t- £ o •~ o o If) I) < * M E T~ < < < < '" a. :l 3_ :x < - - O -- | r o o % m m CM " II + — CD -> i- -- - (— :: — | _ 1 ]

;

i - • It -f f t~ — - I "o 1 1- 01 - - >- - \ u. 1 CO i-

! • :--- v- \\ () i •Ns r \K

: : • CM III:

; ; V: ' ^4» II ij'ii KVi - |^-- iT^* :

• • ^ 1 • ; : ; : | ! i

I . - . ;h: . < i 1 i

- E

TYPICAL OUTPUT CHARACTERISTICS

Mullard BFY90 Page 7 " 100 BFY9 3 -H B5723

: — -- v .k n Typ I- < c J CE (mA) Tj-25'

;

10 -

J \

-

;

__ 10 f ~?

7 f

If /

; 3 5 7 3 5 7 • ? 10 I

E ;FY90 B6066 *C ~TT~ v - (mA) f E =5V T = 25°C 40 j

30

20

1

I

^mimmmm _^^_ Q6 0.8 V (V) 1.0 0.4 BE

TRANSFER CHARACTERISTICS TYPICAL INPUT CHARACTERISTIC

Milliard BFY90 Page 8 — i i |

SILICON PLANAR EPITAXIAL BFY90 N-P-N TRANSISTOR

i CBO B5724 ±— BFY90 =}= 1 (nA) V j^ - II ~T-y CB

J__ _l_ i/ ' 15V r i_ J\ . i ,

^ > -j-j- '=)= ~ -H- : 100 ; | — -=j= | | | | y^—H l ?q=1 ' : ' 7*~ , ! j — | y 5-ov ' J i* J i_ _l__ y -*— -+- — i / y h ' \'/ ' _L _i_!_ y £ Jr< / 1/ _l

: io h 1 i y : 1 ,.€. /^tVJ v: f. 1 7

- ___i ' F\ \ Jr J A W a' "" J [/ r - i jf] 1 1 J f\ , |

/ / / j —4- 4-

: -o 1 \//\ 1 t- -4— . : ^_^|L._-^ ^'m 2X : dzZtZ Sirr 4l _i' I jf _uf J- — —I—

£ r i _|_ _L j | / / / If ff 1 1 HIT : ZL-j' -j* 1 : .-j | 7 ~ j 2l E

r^ ' , i i 5 " t _r — i

£ , 3 j

, " / / „L^_L | _j _^_

|-i : ~ 1 ^-L- m— n.m -)- 3 lu —U — —

: I i ' >— : |J ,— I • -f-\ 1 1 , —A 7

l' i m - § ' I f

/ ' *!

'

i I I " ;

I

i i I I -Li- ' . I. L nnm 111 I I i I i— J_ 50 100 150 200 Tj CO

TYPICAL VARIATION OF COLLECTOR CUT-OFF CURRENT WITH JUNCTION TEMPERATURE

Milliard BFY90 Page 9 -

1 - CM - is m - CD - - -

- - CO

- -

: - — . - . X Q. -- rs C - - o > - - 1 I- s - in 1 - / i / - ' / / CO o "" in 0) r/ >- II CO

ll_ Id ii CO f

_ -

-

- ,1 -

- CO

-

:

- - I - 1 rs - I ' -

.

- \ - \ 1 CO -

\i \n

;

\ i V i o o o u. in o m

STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT

Milliard BFY90 Page 10 1 . ' — - 1

SILICON PLANAR EPITAXIAL BFY90 N-P-N TRANSISTOR

: f 1 1. 1 | ; " T BFY90 , ; jh :- 7 f 4 r f (Gels) ._^_L " r | 1 VCE = 5.0V T | x j 1 T, = 25°C — i J_

- 1

-•- -i- i "TTT^T 5i —1- ]-rr- _) --z " i | - : 1 "J 4 "f ! 1 , --

: ! [

1

;

"*"

'

; j

(

\ ; ! i

! < . i_ - i i ...... ' :."_ — i

I . , _j_ i ' ~1~ ' i ! ' ! ! ; ; r (mA) 5-0 10 15 20 Ic

20 1 < BFY90 - i "" — j I I i . ...j j i [ " ~ V I ; TT": CE 1 1 J - 1 II Tj = 25°C (V) \\ -- - — |

! '}]'_ " ,

-t : r; : 1 t'~ II T" — ) (Gc/s) = 2-2 ! T 15 1 ---' * : —l t4 4- - "I i

i : . i , <— |

! i 1 I I A 1 I

"". u ~UUU- ' : | :^t ! i

! 10 ' 1 - T-+ ' f -I — T . ]\ ' 1 1 T T ; [j j \m - ' -L -1 • j -i- -t- ,/i.U.

' ' \ \ j i ^T "i 1/1-8 1 = : - i !• rr[V A A t - >* "T H 1 -H-~ 44- II

' 50 F ' t\ -H-/ 1-6 ' * I 1 r- -jjf — -| n 1:1 15- + ^-p 1-4 1 [ I |\ jit *** — r ^ * 1 ' 2 "T \ t \ i**H^ H^*! J ^ —\ 1

i *r - -4t+ -i-^H" '^ErF \-

m i ' - . i-o ! ! ! : H ! (mA) 5-0 10 15 20 Ic

TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT

CONTOURS OF CONSTANT TRANSITION FREQUENCY

Mullard BFY90 Page 1 c tc BFY90 (pF) Mill!

f = 10Mc/s

- n'lax ^ 1 n ^*. *"*»»-.-

iryp

i K) 20 30 40 vcb (V)

c tc X BFY90 (pF) Mill!

f = 1-0Mc/s

in

2.0 "==-—«.,,

Tvd ^0

n ItlE " 0-5 1-0 1-5 20 VEB (V)

COLLECTOR CAPACITANCE PLOTTED AGAINST COLLECTOR-BASE VOLTAGE

EMITTER CAPACITANCE PLOTTED AGAINST EMITTER-BASE VOLTAGE

Mullard BFY90 Page 12 SILICON PLANAR EPITAXIAL BFY90 N-P-N TRANSISTOR

-1- - u ~ oo CM 10 V m j i s 1 \

' \ i

"

"

;

.

-

< E o > e p 01 o o £ if) CM £ n n

: CO W ii JJ H in - > 1 N

.

.

; ;

— -

~".

-

;

-

-

- o o CM If)

TYPICAL NOISE FIGURE PLOTTED AGAINST FREQUENCY

Milliard BFY90 Page 13 "

NF i BFY9C ! B5729 + ' ' i (dB) ! . . i-i- +. ' '

; : i i -t+i— — i — ! — I- f-U- 1+1 -4-1

: ;..-j..-4_. ! | V =5.0V , _..| "- i : . ! CB | _4. - » ~j !- ..- t~H -4. i U- — i: f =500Mc/s 1... ,1, : 1 Jr R = 50A s - -^1-

-:: )-+- ~ 1 "i- i

.._... - - j ...i H 1 r- j r ^ ... ;..! | ] .._!_.

; ' 44.::. i i- :

j

!

1

i il 1 1- ~j _. _ ! ]

| i j

i

;

- ~~* -- ~~t

40 1 ^ > 1-

i

|

.

! !

|

— *-.

20 -I (mA) 50 10 15 E

TYPICAL NOISE FIGURE PLOTTED AGAINST EMITTER CURRENT

Milliard BFY90 Page 14 1

SILICON PLANAR EPITAXIAL BFY90 N-P-N TRANSISTOR

o ro

in OQ

> o cvi '

=| > > o 10 o u OJ > oj jfi o N CO O o *> ^ co > j > ^ /* f 1/1 > g > 1 o 9 U > o > >- o o o " oa * li. s o CD IT) < VI E < u E o I o o 00 \ 1 \ \ < E o

< E o oj

II HO

1— o in 3 E E

TYPICAL INPUT ADMITTANCE PLOTTED AGAINST COLLECTOR CURRENT AND FREQUENCY

Milliard BFY90Page 15 IB5722I

270"

2 -.0mA 10Va T „„ A A - / I_»20mA 5-C'"'_ 180 20V S

TYPICAL FEEDBACK ADMITTANCE PLOTTED AGAINST COLLECTOR CURRENT AND FREQUENCY

Milliard BFY90Page 16 SILICON PLANAR EPITAXIAL BFY90 N-P-N TRANSISTOR

360° |B5721|

150

(mmtio)

100

270*

255"

100

150

TYPICAL FORWARD TRANSFER ADMITTANCE PLOTTED AGAINST COLLECTOR CURRENT AND FREQUENCY

Milliard BFY90 Page 17 ~ ' r_ 1 1 1 1 1 wcoe ' (mmho)

I I I II I VCE = 5.0V 15 Tj = 25°C

f = 800Mc/sj^ 10

, 2-0V t -<-'° 500Mc/i \ • v ^~A

50

30MC/S

- 1 1 I = 20mA 10mA -J 15 mA

. .

1 , , , , , i i i

3 5 7 3 5 7 3 5 ; 0-01 0-1 1-0 g02 (mmho)

TYPICAL OUTPUT ADMITTANCE PLOTTED AGAINST COLLECTOR CURRENT AND FREQUENCY

Mullard BFY90 Page 18 U.H.F. POWER BGY22 AMPLIFIER MODULES BGY22A

TENTATIVE DATA

Broadband u.h.f. amplifier modules primarily designed for mobile applications operating directly from 12V vehicle electrical systems. The modules will produce 2.5W output into a 50J2 load over the bands 380-512MHZ (BGY22), and 420-480MHz (BGY22A).

QUICK REFERENCE DATA

Type Mode Freq. v P P Matched input cc D L V range and output Z

(MHz) (V) (mW) (W) (%) (R)

BGY22 f.m. 380-512 13.5 50 2.5 min. 40 min. 50

BGY22 f. m. 380-512 13.5 50 2.9 typ. 50 typ. 50

BGY22A f.m. 420-480 12.5 50 2.5 min. •40 min. 50

Mechanical details on page 10.

+ ve DC. supply

(-vesupply terminal)

Mullard MAY 1973 BGY22-Page 1 RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

v max D.C. voltage - supply terminal to flange 18 V cc V. max D.C. voltage - input terminal to flange ±25 V in - ±25 V V „ max D.C. voltage output terminal to flange out

I. max D.C. supply terminal current 800 mA in P max V„„ = 13.5V, Z. =50fi 150 mW D CjLj i-i

P for fault condition - P nom. (W) P for normal operation (W)

4.0 4.0

Vs U/'r, =b0 1 T S s UciJ.J t?7ov- 3.0 S 3.0 M- So •' - n W*

2.0 2.0

1.0 1.0

50 100 1.0 P V u nom. V nom. PD cc

Where P = P, at V „ = 13. 5V, Z. = 50J2 (BGY22), LT nom L CC L and P, = P at = 12. 5V, Z = 50S2 (BGY22A). nom T V

Milliard BGY22-Page 2 U.H.F. POWER BGY22 AMPLIFIER MODULES BGY22A

OPERATING CHARACTERISTICS (At T = 25 C unless otherwise stated)

Reference planes at RF input and output terminals are 1mm from the plastic encap- sulation.

Frequency range 380 - 512MHz, V = 13.5V (BGY22)

Frequency range 420 - 480MHz, V = 12.5V (BGY22A)

Min. Typ. Max. Quiescent current V 4.0 12 mA Load power

P = 50mW D 2.5 3.5 W

Efficiency V 50mW 40 Module current

P = 50mW D 475 mA

Harmonic conte

P = 50mW harmonic is at D Any least 20dB down relative to carrier

Input V. S. W. R. with respect to 50S2

P = SOmW 2:1

Temperature coefficient of P^

P„ = 50mW, T. = 25 to 70°C -10 mW/°C U h

Stability

V = 10.5 to 15V, P = cc D lOmW to lOOmW = -40 Th to +90°C

Output load V.S. W. R. ^3: 1, all phases No instabilities

Output load V.S.W.R. =H0: 1, all phases No appreciable instabilities THERMAL CHARACTERISTICS

T ran e -40 to +100 stg ^ T range -40 to +90 h

Mullard BGY22-Page 3 Typical curves Typical curves P V = 13.5 V P = 50 L, cc D mW (W) (W) T, =25°C h T = h 25"C

4.0 4.0

J - , n OOmW

k\, = 3.0 3.0 cc 15V I I

1 50mW 13.5 V 1 12.5V 2.0 2.0

20mW

1.0 1.0

400 450 500 f(MHz) 4 DO 450 5 00T ( vHM)

380 420 480 512 380 420 480 512

. : ., , ' ' : ! !

; ' i ....

| i | "7 Typical curve s ' I TtTT ~t = 13.5V 4- c H - 2R°r. 'h 1"tL — "'1

1 60 pt_:txi i '"'tt _;T4- ' Ml -t i "^i I l %

1 . 1 50 i~i— i i I i^^ ! ^*^»

! ^5?*. 50 mW

40 t t x : -t tt— 30 —

20 400 450 500 If (MHz)

380 420 480 512

Mullard BGY22 -Page 4 U.H.F. POWER BGY22 AMPLIFIER MODULES BGY22A

APPLICATION INFORMATION

R. F. performance in c. w. operation, T 25°C.

Drive source and Load Impedance = 50S2.

Freq. v P P Type cc D L V range

(MHz) (V) (mW) (W) (%>

BGY22 380-512 15 50 3.5 typ. 47 typ.

BGY22 380-512 13.5 50 2. 5 min. 40 min.

BGY22 380-512 13.5 50 2.9 typ. 47 typ.

BGY22 380-512 12.5 50 2.5 typ. 47 typ.

BGY22A 420-480 12.5 50 2. 5 min. 40 min.

The modules are designed to withstand full load mismatch under the following con- ditions.

P = P nom + 20%, T = 70°C, h = v cc l6 ' 5v (BGY22) V = 15.0V (BGY22A) cc V.S.W.R. = 50: 1 at any phase

where P nom = P for 2.5W module output under nominal conditions.

Milliard BGY22-Page5 APPLICATION INFORMATION (Cont'd)

TYPICAL VARIATION OF INPUT IMPEDANCE WITH FREQUENCY"

Milliard BGY22-Page 6 U.H.F. POWER BGY22 AMPLIFIER MODULES BGY22A

APPLICATION INFORMATION (Cont'd)

MO it D5240

TYPICAL VARIATION OF POWER DISSIPATION WITH LOAD IMPEDANCE

f = 470MHz

V = cc 13.5V

Milliard BGY22-Page 7 APPLICATION INFORMATION (Cont' d)

241

TYPICAL VARIATION OF LOAD POWER WITH LOAD IMPEDANCE p = 50mW n f = 470MHz

= v^CC 13.5V

Milliard BGY22 -Page 8 U.H.F. POWER BGY22 AMPLIFIER MODULES BGY22A

APPLICATION INFORMATION (Cont'd)

D5242 co ito

TYPICAL VARIATION OF EFFICIENCY WITH LOAD IMPEDANCE

P = 50mW D f = 470MHz

V = cc 13.5V

Milliard BGY22-Page 9 OUTLINE AND DIMENSIONS

/..o

Input lead Output lead Ik 32 a 16 ]±2.0 Supply lead (+) Oil 3.5 max

U- Flange is earth connection (-) 7.0 D5185

All dimensions in millimetres

MOUNTING

To ensure good thermal contact between mountingbase and heatsink, burrs or thick- ening at the edges of the heatsink holes should be removed and the package bolted down onto a flat surface.

Devices may be soldered directly into a circuit with a soldering iron at a maximum iron temperature of 245°C for 10 seconds at least 1mm from the plastic.

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular,

it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are dam- aged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR

Mullard BGY22-Page 10 U.H.F. POWER BGY23 AMPLIFIER MODULES BGY23A

TENTATIVE DATA

Broadband u. h.f. amplifier modules primarily designed for mobile applications operating directly from 12V vehicle systems. The modules are suitable for driving directly from the BGY22 and BGY22A respectively, and when so driven will produce 7W output into a 5CK2 load over the band 380-480MHz (BGY23), and 7W over the band 420-480MHZ (BGY23A).

QUICK REFERENCE DATA

Freq. v P P Matched input Type Mode cc D L V range and output Z

(MHz) (V) (W) (W) (%) (8)

BGY23 f.m. 380-480 13.5 2.5 7. min. 60 min. 50

BGY23 f.m. 380-480 13.5 2.5 8. 3 typ. 71 typ. 50

BGY23 f.m. 480-512 13.5 2.5 7.5typ. 69 typ. 50

BGY23A f.m. 420-480 12.5 2.5 7.0 min. 60 min. 50

Mechanical details on page 10

ve D.C. supply o

o R.F. output

R.F. input

o Flange (-ve supply terminal) D5528

Milliard MAY 1973 BGY23 - Page 1 RATINGS system Limiting values of operation according to the absolute maximum

Electrical 18 V v max. D.C. voltage - supply terminal to flange cc

: 0.5 V *v. max. D.C. voltage - input terminal to flange in 25 V V max. D.C. voltage - output terminal to flange out„ current 1.7 A I. max. D.C. supply terminal in

y = 13.5V, Z, =50fi 3.5 W PD max.

Q55Q1 nom. PL p. .MINI (W)

^ ""-s~ VSty* s ^«i^>J, j s ** *>>!»ff*/5o7pT^***^»^ s. **+~*Ljt^9n*{* ^"fc, ""T"** ^"* fc

t.o 1.1 Pd

P nom Vcc nom 50 T„CC) 100

nom. = P at V = 13.5V, Z^ = 50n (BGY23) Where PL L cc

= P at V _ = 12.5V, Z = 50J2 (BGY23A) andP, nom. T

* No external D. C. connection should be made to this terminal.

Milliard BGY23 - Page 2 )

U.H.F. POWER BGY23 AMPLIFIER MODULES BGY23A

OPERATING CHARACTERISTICS (At T = 25 unless otherwise stated.

Reference planes at RF input and output terminals are 1mm from the plastic encap- sulation.

range 380 - 512 MHz, V = 13.5V (BGY23) Frequency cc range 420 - 480 MHz, V = 12.5V (BGY23A) Frequency cc Min. Typ. Max.

5.0 mA Q p =o d

P Load Power L P = 2. 5W, f = 380-480MHZ BGY 23 7.0 9.5 W

- - P =2.5W, f = 480-512MHZ BGY 23 7.5 W

P = 2. 5W, f = 420-480MHZ BGY 23A 7.0 9.5 W

Efficiency V 60 P = 2. 5W

I. Module Current m 900 - mA P =2.5W

Harmonic Content Any harmonic is at P = 2. 5W least 20dB down relative to carrier.

Input V.S.W. R. with respect to 50S2 P = 2. 5W 2: 1

Temperature coefficient of P, 2.5W, T =25°C to 70°C -20 mW/ C D nu

Stability

V 10. 5 to 15V, P = 1.0 to 3.5W

= -40 to +90°C

Output load V.S.W. R. £ 3: 1, all phases No instabilities

Output load V.S.W. R. £ 10: 1, all phases No appreciable instabilities THERMAL CHARACTERISTICS T range -40 to +100 stg 5 T range -40 to +90

Milliard BGY23 - Page 3 J

(W) (W) PD = 2.5W Vcc = 13.5V T = T = h 25'C h 25°C

"

N A \ \ « 1 p = s Vcc= 3.0W 15V * 1 s S ]

\ I V | I V 13.5V V 2.5W \ | v s 1 j s 12.5V ~~ r 2.0V/

I | III 35 4 DO 4 50 5C HMh z) 350 400 450 500 I f(MHz) 380 380

Vcc = 13.5V

Th =25"C

80

2.5W 3.0W 3.0W 70 2.0W .2.5W •2,QW

60

50

40 35 4 00 4 50 5 30 f( VI h\z)

380 470 512

Milliard BGY23 - Page 4 U.H.F. POWER BGY23 AMPLIFIER MODULES BGY23A

APPLICATION INFORMATION

R. F. performance in c. w. operation, T = 25 C

Drive Source and Load Impedance = 5CKJ

freq. v P P cc D L V Type range (MHz) (V) (W) (W) (%)

BGY23 380-512 15.0 2.5 9.0 typ. 65 typ.

BGY23 380-480 13.5 2.5 7.0 min. 60 min.

BGY23 380-480 13.5 2.5 8. 3 typ. 71 typ.

BGY23 480-512 13.5 2.5 7. 5 typ. 69 typ.

BGY23 380-512 12.5 2.5 7. 4 typ. 70 typ.

BGY23A 420-480 12.5 2.5 7.0 min. 60 min.

Connection to the BGY22/BGY22A respectively can be either by 50S2 transmission line or directly with a total lead length not greater than 2mm.

The module is designed to withstand full load mis -match under the following conditions:

P = P nom + 20%, T = 70°C D h

V = 16.5V (BGY23)

V = 15.0V (BGY23A)

V. S. W. R. = 50: 1 at any phase.

where P nom = P for 7. 0W module output under nominal conditions.

Milliard BGY23 - Page 5 APPLICATION INFORMATION (Cont'd)

D5239 tfO iE'O

TYPICAL VARIATION OF INPUT IMPEDANCE WITH FREQUENCY

Mullard BGY23 - Page 6 U.H.F. POWER BGY23 AMPLIFIER MODULES BGY23A

APPLICATION INFORMATION (Cont'd)

D5506 ltd it'O

BGY22/23 or BGY22A/23A CASCADED AMPLIFIER AT 470 MHz TYPICAL VARIATION OF OVERALL POWER DISSIPATION WITH LOAD IMPEDANCE V = 13.5V cc

Milliard BGY23 - Page 7 APPLICATION INFORMATION (Cont' d)

•co wo

BGY22/23 or BGY22A/23A CASCADED AMPLIFIER AT 470 MHz TYPICAL VARIATION OF LOAD POWER WITH LOAD IMPEDANCE

V = 13.5V cc

Milliard BGY23 - Page 8 U.H.F. POWER BGY23 AMPLIFIER MODULES BGY23A

APPLICATION INFORMATION (Cont' d)

BGY22/23 or BGY22A/23A CASCADED AMPLIFIER AT 470 MHz TYPICAL VARIATION OF OVERALL EFFICIENCY WITH LOAD IMPEDANCE V = cc 13.5V

Mullard BGY23 - Page 9 OUTLINE AND DIMENSIONS

Mi..O 0-

Input lead Output lead 24 32 -10- "^2.5 JX2.0 Supply lead (+) LU1 3.5 max} 3^- u Flange is earth connection (-) 7.0 D5185

All dimensions in millimetres

MOUNTING To ensure good thermal contact between mountingbase and heatsink, burrs or thick- ening at the edges of the heatsink holes should be removed and the package bolted down onto a flat surface.

Devices may be soldered directly into a circuit with a soldering iron at a maximum iron temperature of 245°C for 10 seconds at least 1mm from the plastic.

CAUTION

This device incorporated Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of itsnatureand of thenecessary safety precautions. In particular,

it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If anyare dam- aged or broken they MUST NOT be sent through the post. In this case, advice is available from: THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM- SURREY, CR4 4SR

Mullard BGY23 - Page 10 N-P-N SILICON PLANAR BLX13 EPITAXIAL V.H.F. TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for s.s.b. in class A and AB and f. m. transmitting applications in class B with a supply voltage up to 28V. The transistor is designed to withstand severe load mismatch conditions. It has a capstan envelope with a moulded cap and all leads isolated from the stud.

QUICK REFERENCE DATA

Operation Class v f f P G d J dt cc l 2 L p 3 c (V) (MHz) (MHz) (W) (dB) (dB) (A) (%)

s. s.b. A 26 28.000 28.001 0-8(P.E.P.) >18 <-40 1.2 -

typ- typ- typ. s. s.b. AB 28 28.000 28.001 25(P.E.P.) >18 -35 1.28 35

Operation Class v f p P G ! V z. cc s L P c l L (V) (MHz) (W) (W) (dB) (A) (%) (S2) (mA/V)

typ- typ. typ- typ. c. w. B 28 70 25 42.5-J54 0.5 17 1.49 60 0.53-J1.4

OUTLINE AND DIMENSIONS

5.1 _ 0.142 CZH _4.9 0.112

t + - 9.5 -ft- 10-32 UNF -f- # I 9.5 1.6max-

3.00_ 2.85

11.6 _*. 5.75 10.6 5.25

All dimensions in mm

Torque on nut: min. 15kg cm (1. 5N m) max. 17kg cm (1.7N m)

Diameter of clearance hole in heatsink: max. 5mm

Note: - Do not chamfer the edges of the mounting holes when removing burrs

Milliard JULY 1971 BLX13 Page 1 Limiting values of operation according to the absolute maximum system

Electrical V maX 65 V CBOM ' 3G V VCEO max. max. 4.0 V V EBO

I maX 3 -° A C(AV) '

max. (f > 1MHz) 6.0 A ICM v C P max. (T, = 25 C, f > 1MHz) 62.5 W tot n Temperature u T -30 to +200 c stg T max. 200 °C 1 THERMAL CHARACTERISTIC

R, 2.5 degC/W th(j-mb) R 0.3 degC/W 'th(mb-h)

VCE «28V Ic 100 (A) f > 1MHz

Ptot (W) t

Short time U 75 k operation it '<$

v.s.w.r. > * \ rT <' v--*. W'>-

v.s.w.r. < 3 25 \

n 1 10 20 30 i.0 5 1 TO T h< >C) 15t Vr F (V)

SAFE OPERATING AREAS

Milliard BLX13 Page 2 N-P-N SILICON PLANAR BLX13 EPITAXIAL V.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max. Collector-base breakdown (BR)CBO voltage I = 50mA, open emitter 65

Colleotor-emitter breakdown (BR)CEO voltage I = 50mA, open base 36

Emitter-base breakdown voltage (BR)EBO I = 10mA, open collector 4.0

Transient energy L = 25mH, f = 50Hz open base 8.0 mWs 1.5V, R = 33S2 8.0 BE BE mWs

FE Static forward current transfer ratio =1 = I -° A ' V SV 10 50 100 C CE

Transition frequency

=3 - - 1 0A - v 500 MHz c ce =

Collector capacitance Tc 1=1I =I =0,= V _ = 30V, f = 1MHz 50 65 pF E e °' CB

Feedback capacitance I- = 100mA, V „ = 28Y 31 pF C CE

Collector-stud capacitance 2.0 pF

The issue of ihe information contained in this publication does not imply any authof icy qc licence lor the utilisation of any patented feature.

Milliard BLX13 Page 3 600

iOO k > T \ ' ^ "7 ^ 5 ^ *"

200

r b ± j= 8 I C (A)

D2857

I I I JC E- = = EEE-EEEr- = EEEE = EE = -z:EEEEEE lE=I e =0 (A) -_:: :::::z zzi f =1MHz 100

CTc typ (pF) 10

75

in ^ie...... jB 50

' . ,1 VrF = 28V / Th =25°C

o.i /. , , , , , , , | 25 |

J_ j

r

0.01 ...J. 10 20 VCB (V)30 0.6 0.7 0.8 0.9 1.0 1.1 VgelV)

Mullard BLX13 Page 4 .

N-P-N SILICON PLANAR BLX13 EPITAXIAL V.H.F. TRANSISTOR APPLICATION INFORMATION

R. F. performance in S.S. B. operation (linear power amplifier)

f = 28. 000MHz, f = 28.001MHz

v P G * d T cc L P 3 h Class (V) (W) (dB) (dB) (A) (°C)

26 0-8(P. E.P.) >18 <-40 1.2 < 25 A

*The figure given is the maximum encountered at any driving level between the speci- fied values of P. E.P. and is referred to the according level of either of the equal amplified tones. Relative to the according peak envelopepower this figure should be increased by 6dB.

35 - 1 HUM:1 1 1 1 1 1 1 CE a

IMF II

T n L J in J

-I 7 J i -/ / t J t 1 7 t

/ 7. r y j ' '

-usu.-> t -, s f- ^ r j < y 7 / j 'f f y?

/ // Wl It-,t REP. IWI 10

Test circuit: Class A

10 to 50ft 780pF

"%B +VCC

LI = 3 turns of enamelled copper wire (1.5mm); windingpitch2.5mm;int.dia.7mm, leads 50mm (total). = L2 7 turns of enamelled copper wire (0 . 7mm) ; 60^H L3 = 4 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 10mm. L4 = 7 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 12mm.

Milliard BLX13 Page 5 . )

APPLICATION INFORMATION (contd .

R.F. performance in S.S.B. operation (linear power amplifier)

f = 28.000MHz, I = 28.001MHz, Tu < 25°C 1 ^ h-

v P G * d dt cc L 3 'czs *c P Class (V) (W) (dB) (dB) (%) (mA) (A)

28 25(P.E.P.) >18 typ. -35 typ. 35 25 typ. 1.28 AB

*Intermodulation distortion figure quoted is related to the according level of either of the equal amplified tones. Relative to the according peak envelope power, this figure should be increased by 6dB

Vcc - 26V Iczs =25mA T„ = 25°C

d 3 ds

25 RE.P (Wl 30 Test circuit:- Class AB

160 to 260pF son

10 to 50A 780pF

+vcc

LI = 3 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm;int.dia.7mm,leads 50mm (total) L2 = 7 turns of enamelled copper wire (0.7mm); 60(iH. L3 = 4 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 10mm. L4 = 7 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 12mm.

Milliard BLX13 Page 6 N-P-N SILICON PLANAR BLX13 EPITAXIAL V.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.)

Typical large signal input impedance and transistor power gain in a class AB amplifier = 12.5S2, = = at V = 28V, PT = 25W(P.E.P.), Z T I_„_ 25mA, T, 25°C. CC Li J-i UZ«o ii

Z o -10fl.

35 G P . (dB)

30

25

20 5 f (MHz) 100

Milliard BLX13 Page 7 )

APPLICATION INFORMATION (contd.

R. F. performance in C.W. operation (Class B) V = 28V, T 25°C CC h ,

f p P G V z. Y s L *c P l L (MHz) (W) (W) (A) (dB) (S2) (mmho)

70 typ. 0.5 25 typ. 1.49 17 60 0.53-J1.4 42.5-J54

30 typ P L (W)

25 f = 70MHz

VCC =28V T h =25°C

20

15

10 0.5 1.0 PS (W)1.5

Mullard BLX13 Page 8 . . .

N-P-N SILICON PLANAR BLX13 EPITAXIAL V.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.)

Test circuit:- 70MHz (class B)

4to100pF l_2

50tl 4to40pF T.U.T. L1

0+V =28V B cc

LI - 3 turns of enamelled copper wire (1.5mm) 93nH; int. dia. 10mm, length 8mm, leads 2 x 5mm. L2 = 5 turns of enamelled copper wire (1.5mm) 147nH; int. dia. 9mm, lengthl4mm, leads 2 x 5mm. L3 = 4 turns of enamelled copper wire (1.5mm) 118nH; int. dia. 9mm, length 10.5mm, leads 2 x 5mm L4 = Ferroxcube choke

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal maybe returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged

or broken they MUST NOT be sent through the post . In this case, advice is available from: The Service Department Mullard Limited 2 New Road Mitcham Junction

Surrey . CR4 4XY

Mullard BLX13 Page 9 N-P-N SILICON PLANAR BLX14 EPITAXIAL V.H.F. TRANSISTOR

Silicon n-p-n planar epitaxial transmitting transistor in aplastic stripline package, for useins.s.b. and c.w. equipment with a 28V supply, operating in the v. h. f. band. The BLX14 is rated at 50W P. E. P. in the frequency range 1. 6 to 28MHz (intermod- ulation better than 30dB down, full load mismatch permissible at stud temperatures up to 70°C) and at 50W for frequencies up to 70MHz in the c.w. operation.

QUICK REFERENCE DATA

Operation Class v f P G d x cc L P 3 czs (V) (MHz) (W) (dB) (dB) (A)

s.s.b. A 28 1.6 to 28 15(P.E.P.) >13 typ.-40 2.0

s.s.b. AB 28 1.6 to 28 7.5 to 50 >13 < -30 0.1 (P.E.P.)

c.w. B 28 70 50 >7.5

c.w. B 28 30 50 typ.16

OUTLINE AND DIMENSIONS

0.27...... " 0.23

5.5 ^ >— **±. 1/fc"x28UNF

_13.5 __. 12.5" a2 ?:H- 1 -».| All dimensions in mm A."x28 UNF

Torque on nut: 23kg cm (2. 3N m) min. 27kg cm (2.7N m) max.

Diameter of clearance hole in heatsink: 6. 5mm max.

Note: Do not chamfer the edges of the mounting holes when removing burrs.

Milliard APRIL 1971 BLX14 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

- 85 V VCBOM maX

= - 10B) 85 V VCERM maX <*!» V„__ max. 36 V CEO

V maX " 4.0 V EBO 4.0 A Vv) max - I max. (f > 1MHz) 12 A

88 P, , max. (Tu < 25°C, f > 1MHz) W tot n- Temperature

T 65 to +200 °C stg4. T. max. 200 °C 3 THERMAL CHARACTERISTICS 1.8 degC/W " th(j-mb) R, 0.2 degC/W th(mb-h)

I I I I I I I I I I I I I I I I I I I I I ^X> short time VCE «28V 1 Si 1a (. p rr li ;s bl ! d. :. x»Td tic n operation Kv f>1MHz Tc 100 V.S.W.R>3 '#. < (A) ptot -4 ^V h DC \. --'2. (W) £- Xfr ^ 75 I?"V 4 \

£ O 1 k - % S* \

n°r i ?>i°r 50 ft \ n srmai operat on \ V.S.W.R.<3 \ 2 V V . ^ 25

n 50 100 Th <°CI 150 20 Vcc (V) 40

Milliard BLX14 Page 2 N-P-N SILICON PLANAR BLX14 EPITAXIAL V.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated) Min. Typ. Max.

Collector-base breakdown voltage (BR)CBO open emitter, I = 25mA 85

Collector-emitter breakdown voltage (BR)CER R =10fl, I = 25mA 85 BED C

Collector-emitter breakdown voltage (BR) CEO open base, I = 50mA 36

Emitter-base breakdown voltage (BR)EBO open collector, I = 10mA 4.0 E

Collector-emitter saturation voltage CE(sat) = 1.0 I =0.7A, IB 0.14A

Transient energy L = 25mH, f = 50Hz open base 8.0 mWs - = = V 1 - 5V R 33fl 8.0 mWs BE ' BE

Static forward current transfer ratio FE = I =1 - 4A V 6V C ' CE 15 100

Transition frequency = = I 3 -° A V 1 °V C ' CE 250 MHz

Collector capacitance Tc V f = =30V ' 1MHz W ' CB 115 125 pF Feedback capacitance = pF I = 100mA, V„V_, , =28V28V, f=lMHz 90 C CET

Collector-stud capacitance 3.5 pF

Milliard BLX14 Page 3 I I

V =20V f = 1MHz 400 CE 400 T h =25°C Th = 25°C

f T t-Tc (MHz) (pF)

300 300

lyp

200 200

„typ

100 100

10 IC (AI 15 10 20 VCB (V) 30

10*

I .. Art., Ic T h = 25°C (mA) typ <-'""" I pZ.

' A*

£ f

J

~ — tzz _ _ _, ;::;;::::: : _ _ 3 _ _ _ _ t : ...j.

10 1 600 800 1000 VBE (mV) 1200

Milliard BLX14 Page 4 — . . N-P-N SILICON PLANAR BLX14 EPITAXIAL V.H.F. TRANSISTOR

APPLICATION INFORMATION

R.F. performance In S.S.B. operation (linear power amplifier)

V = 28V; T up to 25°C

£ = 28.000MHz; f = 28.001MHz 1 2i

Output G J J "dt czs c power P V Class (W) (dB) (%) (dB) (dB) (A) (A)

7.5 to 50 (P.E.P.) >13 >35 <-30 <-30 0.1 <2.55 AB

At temperatures up to 90°C the output power relative to that at 25°C is diminished by a factor of -40mW/degC.

The transistor is designed to withstand a full load mismatch operating under 50W P.E.P. atV =28V andT, =70°C. CC h Test circuit: - Class A-B

,, 160to260pF 50 n r^ T T T —^"— c t.u.t. i t— F«-rt Q 50X1 10to780pF li 3 xc P a rX \<£S =P V3 15to575pFj! j£l0to780pF- L2 33H X T 2.2 pF WZ |39nF 3.9 nF | T AYY10-120 5n © 100A 68 n. 0.1 pF 2fl (5W) (3WJ,

-o+vC(

LI = 3 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 7mm, leads 50mm (total).

L2 = 7 turns of enamelled copper wire (0 . 7mm) ; 60ftH

L3 = 4 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 10mm.

L4 = 7 turns of enamelled copper wire (1 . 5mm) ; winding pitch 2 . 5mm ; int . dia 12mm.

t Maximum values encountered at any level of drive refer to the amplitude of either of the two equal tones at that level.

Milliard BLX14 Page 5 .

D 618

. typical curves Vcc=i.ov VCC =28V fl = 28.000MHz -20 fl = 28.000MHz 40 f2 = 28.001 MHz f2 = 28.001 MHz I =0.1A CZS typ. = d Th 25°C T h = 25°C 3 d 3 n I CZS=0.1A rtt d 5 (%) MR)

-40 d- 20

-fin 25 50 P.E.P.(W) 75 25 50 P.E.P.(W) 75

60 L2S2C

typical curves P.E.R fl = 28.000 MHz (W) f2 =28.001MHz I CZS = 0.1A VCC -28 V 50 -20

d 3 (dB)

40 r)n -30

•?n -40 25 75 T h (°C) 125

Mullard BLX14 Page 6 N-P-N SILICON PLANAR BLX14 EPITAXIAL V.H.F. TRANSISTOR

30

ypical curves

(dBI ^o^C"*~l\^v >> 20 O^

2

10

10 f (MHz) 100

S. S.B. class AB operation P = 50WP.E.P. T, v = 28V cc J = 100mA c Z = 6.25J2 T, T = 25°C h

Curves

1. This curve applies to a push-pull amplifier with cross neutralisation. Collector-base neutralising capacitor = 82pF.

2. This curve applies to an un -neutralised amplifier.-

Milliard BLX14 Page 7 S.S.B. class AB operation

P = 50WP.E.P. 6.258 L v = 28V 25°C cc I = 100mA

The upper curve applies to a push-pull amplifier with cross neutralisation. Collector -base neutralising capacitor = 82pF

The lower curve applies to an un-neutralised amplifier.

Milliard BLX14 Page 8 . . ) "

N-P-N SILICON PLANAR BLX14 EPITAXIAL V.H.F. TRANSISTOR

APPLICATION INFORMATION (eontd.

R. F. performance in S.S.B. operation (linear power amplifier)

V =28V, T,upto25°C, f =28.000MHz, f = 28.001MHz CC hi ^

Output G d t J P "dt 5 c power V Class (W) (dB) (%) (dB) (dB) (A) 15 P.E.P. >13 - typ.-40 typ. -45 2.0 A

t See note on page 5

Test circuit: - Class A 160to260pF IU # 5011 5011 10to780pF ^ 3 ~™ o_ jr r 15to575pF5^

'— T T 1 I ^=2.2(jf ste I

0.1 mF

LI = 3 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 7mm,leads 50mm (total) L2 = 7 turns of enamelled copper wire (0. 7mm); 60fiH. L3 = 4 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 10mm. L4 = 7 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 12mm.

T h =70°C f = 28.000MHz -20 20 1 typical curves f2=2a001MHz T h =70°C d 3 =-40dB fl = 25000 MHz f2 - 28.001 MHz VC c=26 V IdB) VCC =2SV (W) 2 V

1 1 1

1 1 1 Ic-1-5A 2A ' ^ 10

10 15 P.EP.W) 20 1.5 2 ICZS W> 2 5

Milliard BLX14 Page 9 APPLICATION INFORMATION (contd.)

B. F. performance in e.w. operation (class B)

v = 28V, T. up to 25°C cc n

f P P T G 1} z. Y DR L c P l L (MHz) (W) (W) (A) (dB) (%)

70 <8.9 50 <3.25 >7.5 >55 1.0 +J0.2 115-J77

50 typ. 4 50 typ. 3.25 typ. 11 typ. 55 0.9 -jO.5 104-J85

30 typ. 1.2 50 typ. 3.25 typ. 16 typ. 55 0.75-J1.6 89-jlOl

At temperatures up to 90°C the output power relative to that at 25°C Is diminished by a factor of -40mW/degC.

Test circuit: - f = 70MHz

4to104pF L4 son m—nrYW # &< 50 A 14to39pF |_1 r>r ? if : ™ L3 51to151pF^^

1nF

10 n 0:| mf

D ,628 O +VCC

LI = 60mm of straight enamelled copper wire (1.5mm); 9mm above chassis L2 = FXC choke coil L3 = 2 turns of enamelled copper wire (1.5mm); winding pitch 2mm; int. dia. 10mm, leads 55mm (total) L4 = 3 turns of enamelled copper wire (1.5mm); winding pitch 2.5mm; int. dia. 10mm, leads 50mm (total)

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

Milliard BLX14 Page 10 N-P-N SILICON PLANAR BLX14 EPITAXIAL V.H.F. TRANSISTOR

02B27 75 60 I typical curves I I I I I I I f=70MHz -_2flv typical curves Th =25°C p. f=70MHz PL Th= 25°C f (W) W (W) ,24V Sr-'-~

/f 50 40

5«/-

13.5 V 25 20 ^

20 Vcc (V) 40

60

\lr-r = 28V Pi (W)

hAP -4fnn W/°C ^ATh 50 tvn

40

an 50 Th (°C) 100

Mullard BLX14 Page 11 APPLICATION INFORMATION (contd.)

Test circuit: - f=50MHz

Uo104pF L2 50n lux r 50A 10to35pF , . ^-~L

LI = 1 turn of enamelled copper wire (1.5mm); int.dia. 10mm; leads 40mm (total)

L2 = 4 turns of enamelled copper wire (1 . 5mm) ; int . dia . 12mm ; leads 40mm (total) L3 = FXC choke coil L4 = 3 turns of enamelled copper wire (1.5mm); int.dia. 10mm; leads 40mm (total), winding pitch 2mm

75 1 r 70 typical, curves I I VC c = 28V f = 50MHz f =50MHz OF,=6W- PL = 25°C Th Pl T h = 25°C (W) 24V (W)

U-W 50 50

13.S V 25 30 .2W

10 c 5 (V) PDR (W) 10 20 Vcc 40

Mullard BLX14 Page 12 ;

N-P-N SILICON PLANAR BLX14 EPITAXIAL V.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.)

Test circuit:- f=30MHz 43toU3pF ^5on 50X1 4to104pF L1 . r^r, 3 Q tf

0.1 pF

o+vcc

LI = 2 turns of enamelled copper wire (1.5mm); winding pitch 2mm; int. dia. 10mm leads 60mm (total) 60(xH L2 = 7 turns of enamelled copper wire (0 . 7mm) ; L3 = 4 turns of enamelled copper wire (1.5mm); winding pitch 2mm; int. dia. 10mm; leads 50mm (total) L4 = 6 turns of enamelled copperwire (1.5mm); winding pitch 2mm; int. dia. 12mm; leads 50mm (total)

70 60

1 I 1 1 1 1 1 1 1 1 ' 'V,-,. = 28V f- 30MHz 1 1 1 Br = 1.1 T = 25°C Pl h

(W) (W) N~ 4\

50 40

typical curves 5\ f =30MHz T h =25°C

1^ 30 20

, / n i i/ / / / / / / ! / ' , /

20 V (V) 40 2 PDR (W) 4 cc

Mullard BLX14 Page 13 . .

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED 2 NEW ROAD, MITCHAM JUNCTION SURREY, CR4 4 XY.

Mullard BLX14 Page 14 N-P-N SILICON PLANAR BLX65 V.H.F./U.H.F. TRANSISTOR

Silicon n-p-n transistor, mounted in a TO -39 envelope, for v.h.f. /u.h. f. mobile applications. With a supply voltage of 13. 8V and a signal frequency of 470MHz, the BLX65 will produce typically 2. OW output into a 50". load.

QUICK REFERENCE DATA

v f P P into 50S2 T cc DR Circuit (V) (MHz) (W) (W) (%) (°C)

12.5 470 0.5 2. min. 65 min. 25 Un -neutralised 13.8 470 0.4 2. typ. 66 typ. 25 common -emitter class B 12.5 175 0. 12 2. typ. 75 typ. 25

OUTLINE AND DIMENSIONS

Conforms to BS 3934 SO-3/SB3-3B

J. E.D. E.C. TO-39

0.86

048 max

' 1 .A 1 8.5 t max

\

6.6 m max - min"

All dimensions in mm

Collector connected to case

The maximum lead diameter is guaranteed only for 12. 7mm

Milliard DECEMBER 1971 BLX65 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical 36 V maX - VCBOM 36 V maX " (R VCESM BE= >

18 V maX - VCEO 4.0 V V maX - EBO 0.7 A I max.

I (f > 2.0 A CM, max. — 10MHz)

P max. (f > 10MHz, T < 90°C) 3.0 W tot — c —

See also graph on page 3

Temperature T -65 to +150 stg,

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) Min. Typ. Max.

Collector -base breakdown voltage (BR)CBO I = 10mA 36

V, „ Collector -emitter breakdown voltage (BR)CES ^ = 10mA ^ = o 36

Collector -emitter breakdown voltage (BR)CEO I = 25mA 18

Emitter -base breakdown voltage (BR)EBO I„ = 1.0mA 4.0

V Collector emitter saturation voltage CE(sat) T = 100mA, L, = 20mA 0.1 C D

Static forward current transfer ratio FE I = 100mA, V„ =5.0V 10 40 C Cb frequency T Transition I„ = 200mA, V^ = 5. 0V, f = 500MHz 1400 MHz C Lbc

C, Collector capacitance Tc 9.0 = 1 = 0, f = 1.0MHz 6.5 pF ^^E e

Milliard BLX65 Page 2 N-P-N SILICON PLANAR BLX65 V.H.F./U.H.F. TRANSISTOR

IW)

5.0 fSMOMHz Short duration ptot = IPDC + PDR) PL overload condition

4.0

3.0

Continuous operation

2.0

t.O

50 100 150 TC ("C)

i Irjmax. 1 (A)

--

.

0.1 — "tp j TC =25°C

j T =125°C C i

|

Safe o peratin 9 o ea

l

0.01 1

1.0 VceIV)

Mullard BLX65 Page 3 1500

h (MHz)

Typ. 1000

500

VrF = 5.0 V Note :- Graph derived from the S f = 500 MHz parameters measured

at 500 MHz

|

0.2 0.4 0.6 Ir (A)

03412 #

l-Tc I - I. - E (pF) f -1.0 MHz

10

9.0

8.0

7.0

6.0

50 5.0

Milliard BLX65 Page 4 1

N-P-N SILICON PLANAR BLX65 V.H.F./U.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F. Performance in c. w. operation (T = 25°C)

v £ P P into 50Q V z. Y cc DR l L

(V) (MHz) (W) (W) (%) (£2) (mmho)

12.5 470 0.5 2. min. 65 min. - -

13.8 470 0.4 2.0typ. 66 typ. 5 + jlO 16 - j50

12.5 175 0.12 2. typ. 75 typ. - -

At P = 2. 0W and Vcc = 12. 5V, the output power at case temperatures between 25 and 90°C relative to that at 25°C is diminished typically by 5mW/°C.

The transistor is designed to withstand full load mismatch in the test circuit under the following conditions: -

V = 16.5V f = 470MHz T = 70°C cc c

V. S. W. R. = 50: at any phase

P =P n°m - +20% - DR DR

Where P nom. = P for 1. 4W transistor output into 50S2 DR DR

load at V = 13. 8V. cc

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

Milliard BLX65 Page 5 )

APPLICATION INFORMATION (contd.

470MHz Amplifier circuit

C8 O

L4 C5

: • ~^~ r 3_o Jr

Component values for 470MHz amplifier circuit

CI = C2 = C4 = C5 = 1. 8 to 18pF film dielectric trimmer capacitors C3 = 22pF disc ceramic capacitor C6 = lOnF ceramic capacitor C7 = 0. 1/jF disc ceramic capacitor C8 = 4nF feed -through capacitor LI = 1 turn of 1mm copper wire, int. dia. 5mm, lead length

Component layout on 1.5mm single copper clad fibre -glass board

Dimensions of the board: - 80 x 40mm

Shaded area copper

To obtain the specified gain performance, the emitter lead length should not exceed 1. 6mm.

Milliard BLX65 Page 6 )

N-P-N SILICON PLANAR BLX65 V.H.F./U.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.

3.0 "T~ " t: j

j

1 _L_ 'ypical curves . ,- _ • = 12.5V = 470MHz |WJ T = 25'C c

'

= 6.9V -

n 0.2 0.4 0.6 0.8 Pdr(W)

D3415 :l±i±:Tlt -- Ti

f =470 MHz 'I !

17.1 h fin -

" c 70 6 9V

60 -12.5V

-13.8V 50

TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRIVE POWER

Mullard 7 BLX6SPage 7 )

APPLICATION INFORMATION (contd.

03416

Vqc ngm." 13.0 V f- 470MHz

P = DR nom.= PDR at Vcc 13.8V and V.S.W.R.-1 PL nom PL nom.-PL at VCC -13.8V and V.S.WR.=1 and TC =25"C (W)

Short duration 3.0 overload V.S.W.R.

upto T =70°C S v C , V.S.W.R. « 3 ""**»»

2.0 = 10

= 50

1.0

1.0 1.1 1.2 P,DR/ P DR nom

v CC/ Vcc nom

INDICATED LOAD POWER AS A FUNCTION OF OVERLOAD

The transistor is suitable foruse withunstabilised supply voltages. The above graph has been derived from an evaluation of the performance of transistors matched up to 2. 5 watts load power in the circuit on page 6, and subsequently subjected to various

voltage overloads and mismatch conditions with v. s.w. r. up to 50: 1 at a heatsink temperature of 70°C. This indicates a restriction to the load power matched under nominal conditions with varying supply voltages and v. s. w. r. in the recommended circuit.

Milliard BLX65 Page 8 N-P-N SILICON PLANAR BLX65 V.H.F./U.H.F. TRANSISTOR

APPLICATION INFORMATION

175MHz Amplifier circuit

C6

l X >QHf

ipsei

Component values for 175MHz amplifier circuit

CI =C4 = Oto 60pF L concentric trimmer capacitors C2 = C3 = to 30pF C5 = 0. 25nF disc ceramic capacitor C6 = 4nF feed -through capacitor LI = 25mm straight 1. 2mm copper wire. Height above board = 3mm L2 = 3 turns of 0. 5mm copper wire on Ferrite FX1115 L3 = 5 turns of 1.2mm copper wire, int. dia. 10mm, close wound, lead length 5mm L4 = 3 turns of 1.2mm copper wire, int. dia. 10mm, close wound, lead length 5mm R = 10S2 - carbon

Component layout on 1.5mm single copper clad fibre -glass board Dimensions of the board 80 x 40mm

Input

Shaded area copper To obtain the specified gain performance, the emitter lead length should not exceed 1. 6mm.

Milliard BLX65 Page ' )

APPLICATION INFORMATION (contd.

3.0 1

[ Typical curves

f =175 MHz

(Wl TC =25°C

Vcc -12-5V

2.0

f> 9V -

-

1 1 1 1

0.2 0.4 0.6 0.8 PDR IW)

1

Typical curves

1 f -175 MHz

- Tc 25'C

80 Vrr = 12 b l^

6.9V

60

50

0.2 0.4 0J6 0.8 PDR (W)

TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRIVE POWER

Milliard BLX65 Page 10 N-P-N SILICON PLANAR BLX66 V.H.F./U.H.F. TRANSISTOR

Silicon n-p-n transistor for v. h. f./u.h.f. mobile applications. The device is mounted in a plastic, studless, capstan strip -line encapsulation. With a supply voltage of 13.8V and a signal frequency of 470MHz, the BLX66 will produce typically 2. 5W output into a 50B load.

QUICK REFERENCE DATA

into 50S2 T f P P V mbK DR Circuit (V) (MHz) (W) (W) <°C)

12.5 470 0.35 2. 5 min. 65 min. 25

13.8 470 0.28 2. 5 typ. 75 typ. 25 Un -neutralised common -emitter 13.8 470 0. 15 1.5 typ. 65 typ. 25 class B 12.5 175 0.03 3.0 typ. 84 typ. 25

OUTLINE AND DIMENSIONS

All dimensions in mm

Milliard JUNE 1973 BLX66 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

maX - 36 V V CBOM

V maX (R 0) 36 V CESM " BE

V m3X - 18 V CEO

V m3X - 4.0 V EBO

I max. 0.7 A

I max. (f > 10MHz) 2.0 A

P max. (f > 10MHz , T ,_ < 90°C) 4.0 W tot — mb — '

See also graph on page 3

Temperature

T -65 to +150 stg.

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max.

V .„_ .__,_. Collector -base breakdown voltage (bK)CbU ~ . I„T = 10mA, 36

¥.„_.„„„ Collector -emitter breakdown voltage (BR)CES I = 10mA, R =0 36 c BE

v Collector -emitter breakdown voltage (BR)CEO/on\^-.^^-> Ic=25mA 18

V . Emitter -base breakdown voltage (BR)EBO T QmA 4.0 hi

Collector -emitter saturation voltage CE(sat) I = 100mA, Ig = 20mA 0. 1 c

FE Static forward current transfer ratio I., = 100mA, V_„ = 5.0V 10 40 C CL

'tj. Transition frequency I„ = 200mA, V„„ = 5.0V, f = 500MHz 1400 MHz C Chi

Tc Collector capacitance V 10V, L =1 = 0, f = 1.0MHz 6.5 9.0 pF CB E e

*Derived from the 'S' parameters measured at f = 500MHz, T , = 25°C

Mullard BLX66 Page 2 N-P-N SILICON PLANAR BLX66 V.H.F./U.H.F. TRANSISTOR

P tot max IW)

10.0 f >10MHz

p l p + p p tot = DC DR'- L

8.0

Short duration overload condition 6.0

4.0 Continuous operation y

2.0

50 100 150 T mDmh ("C1

D3420 L (A) DC. 0.7

0.1 Tmb = " *-

' T u = '2519^°- ' mb

Safe opera ing are as

0.01 3 S 7 3 5 7 1.0 10 ,8 100 VceW)

Mullard BLX66 Page 3 D3 21 1500

(MHz) CE =5.0V

! = 500MHz omb- 25 C 1000

typ

500

Note :- Graph derived from the

'S' parameters measured at 500MHz

1 |

0.2 0.4 0.6 0.8 I C (A)

15

Ctc (pF) = I E :I e

f = 1.0MHz

10

typ

5.0

5.0 10 15 20 VCB |V)

Milliard BLX66 Page 4 5

N-P-N SILICON PLANAR BLX66 V.H.F./U.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F. performance in c. w. operation (T ,=25 C)

V f P P into 50S2 V z. Y cc DR l L (V) (MHz) (W) (W) (%) ($2) (mmho)

- - 12.5 470 0.35 2. 5 min. 65 min.

13.8 470 0.28 2.5 typ. 75 typ. 2. 5+j4. 23-J35

- - 13.8 470 0. 15 1. 5 typ. 65 typ.

12.5 175 0.03 3. typ. 84 typ. 2. 4-J3.8 35-J40

= at mounting -base temperatures At Pl = 2. 5W and VCC 12. 5V , the output power between 25 and 90°C relative to that at 25°C is diminished typically by 5mW/°C.

The transistor is designed to withstand full load mismatch in the test circuit under the following conditions: -

= V = 16.5V, f = 470MHz, T ,_ 70°C cc mb

V.S.W. R. = 50: 1 at any phase

P P n°m - +20% DR = DR

Where P nom. = P for 2. 5W transistor output into a 50^ DR dr load at V = 13.8V.

Milliard BLX66 Page 5 )

APPLICATION INFORMATION (contd.

470MHz Amplifier circuit

Input -s r\ 50n J \J-

Component values for 470MHz amplifier circuit

CI = C2 = C6 =C7 = 1. 8 to 18pF film dielectric trimmers C3 = C4 = 18pF disc ceramic capacitors C5 = 4nF feed -through capacitor C8 = 0. 1/nF disc ceramic capacitor

LI = 1 turn of 1.2mm copper wire, int. dia. 6mm, lead length < 1mm L2 = \\A\ choke L3 = 30mm of straight 2mm copper wire. Height above board = 2mm L4 = 2 turns of 0.5mm copper wire, int. dia. 3mm, close wound, lead length 8mm R = 105! - carbon

Component layout on 1.5mm double copper clad fibre-glass board

Dimensions of the board: - 110 x 50mm

Input ,0) son u

Shaded area copper Underside area completely copper clad

Milliard BLX66 Page 6 N-P-N SILICON PLANAR BLX66 V.H.F./U.H.F. TRANSISTOR

4.0

PL (W)

3.0 V Cc= 13.8V 12.5V

2.0

Typical curves

f = 470MHz T mb = 25"C

1.0

0.1 0.2 0.3 0.4 0.5 P DR (W) 0.6

D3CZ5 90

n Vcc='2.5V

ro

13.8V

— Typical curves

f = 470MHz T mb = 25°C

fin

so

0.1 0.2 0.3 0.4 0.5 P DR (W) 0.6

TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRIVE POWER

Mullard BLX66 Page 7 = )

APPLICATION INFORMATION (contd.

D3426

Pi.nom I I I (W) VCcnom=13.8V f=470MHz 4.0 PDRnom PDr at Vcc =13.8V and V.S.W.R. = 1 8 =13.8V, V.S.W.R. =1 and T =25 C PLnom=PL at VCC mb

Short duration overload V.S.W.R. 3.0 uptoTmb =70°C V.S.W.R. =10

=50

2.0

1.0

1.0 1.1 1.2 PDR / PDRnom Vcc/Vccnom

INDICATED LOAD POWER AS A FUNCTION OF OVERLOAD

The transistor is suitable for use withunstabilised supply voltages. The above graph has been derived from an evaluation of the performance of transistors matched up to 3 watts load power in the circuit on page 6, and subsequently subjected to various voltage overloads and mismatch conditions with v. s.w. r. up to 50: 1 at a heatsink temperature of 70°C. This indicates a restriction to the load power matched under nominal conditions with varying supply voltages and v. s.w. r. in the recommended circuit.

Milliard BLX66 Page 8 N-P-N SILICON PLANAR mi^wwRLX66 V.H.F./U.H.F. TRANSISTOR

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is

entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature andof the necessary safety precautions. In particular,

it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiringdisposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from: THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR.

The issue oi the information contained in this publication does n any authority or licence for the utilisation of any patented feature.

Mullard BLX66 Page 9 N-P-N SILICON PLANAR BLX67 V.H.F./U.H.F. TRANSISTOR

Silicon n-p-n transistorfor v.h. f. /u.h. f. mobile applications. The device is mounted in a plastic, capstan strip -line encapsulation. With a supply voltage of 13. 8V and a signal frequency of 47QMHz, the BLX67 will produce typically 3W output into a 50J2 load.

QUICK REFERENCE DATA

V f P P into 50S2 V T cc DR h Circuit (V) (MHz) (W) (W) (%) (°C)

12.5 470 0.35 2. 5 min. 65 min. , 25 Un -neutralised 13.8 470 0.35 3.0typ. 79 typ. 25 common -emitter class B 13.8 470 0. 15 1.5typ. 65 typ. 25

12.5 175 0.03 3. typ. 84 typ. 25

OUTLINE AND DIMENSIONS

All dimensions in mm

ACCESSORIES

Nut and lock -washer supplied with device

Torque on nut: min. 0. 75Nm (7. 5kg cm) max. 0. 85Nm (8. 5kg cm)

Milliard

JUNE 1973 BLX67 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical 36 m3X - V VCBOM 36 maX - (R V VCESM BE=°> 18 V V maX - CEO 4.0 V V maX " EBO

I max. 0.7 A

I max. (f > 10MHz) 2.0 A

P max. (f > 10MHz, T. < 90°C) 4.5 W tot — n — See also graph on page 3 Temperature T -65 to +150 °C stg

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) V. „ Collector -base breakdown voltage Min. Typ. Max. (BR)CBO = 36 - - V Ic 10mA

V. Collector -emitter breakdown voltage (BR)CESc ^ = 1QmA ^ = o 36 - - V

V. „. Collector -emitter breakdown voltage (BR)CEOn jc=25mA 18 . - V

V,„„._„ Emitter -base breakdown voltage (BR)EBO - - 1 10mA 4.0 V E

V__. Collector -emitter saturation voltage CE(sat) - = 10QmA = 2QmA _ a 1 V C D

h Static forward current transfer ratio = 100mA, V^,, = 5.0V 10 40 I„c en

*f Transition frequency T = 200mA, V„„ = 5.0V, f = 500MHz - 1400 - MHz C CE

C_, Collector capacitance V„ =10V,L,=I =0, f=1.0MHz - 6.5 9.0 pF CB E e

C Collector-stud capacitance - 2. - pF

at f = 500MHz, T = 25°C 'Derived from the 'S' parameters measured amb

Mullard BLX67 Page 2 N-P-N SILICON PLANAR BLX67 V.H.F./U.H.F. TRANSISTOR

P max tot (W)

10.0 f > 10MHz p =(p p -p tot DC + DR) L

8.0 Short duration overload condition

6.0

4.0 Continuous operation

2.0

50 100 150 Th CO

If-C max. (A) D.C, 0.7 —

sV 0.1 'h~'" ^

T = h 125°C

Safe )pera ing ar ;a

0.01 i 1.0 10 18 ioo v CE (vi

Mullard BLX67 Page 3 D3 121 1500

f T (MHz) V CE = 5.0V

f = 500MHz

' amb - 2b C 1000

typ

500

Note :- Graph derived from the -

'S' parameters measured at 500MHz

0.2 0.4 0.6 0.8 I C (A)

15

Ctc IpF) I E =I e =

f = 1.0MHz

typ

5.0

5.0 10 20 VCB |V)

Milliard BLX67 Page 4 N-P-N SILICON PLANAR BLX67 V.H.F./U.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F. performance in c. w. operation (T = 25°C)

v f P P into 50S2 V z. Y cc DR l L (V) (MHz) (W) (W) (%) (0) (mroho)

12.5 470 0.35 2. 5 min. 65 min. - -

13.8 470 0.35 3.0typ. 79 typ. 3+j5 27-J38

13.8 470 0.15 1.5 typ. 65 typ. - -

12.5 175 0.03 3. typ. 84 typ. 2.4-J3.8 35-J40

At Pl = 2. 5W and Vcc = 12. 5V, the output power at heatsink temperatures between 25 and 90°C relative to that at 25°C is diminished typically by 5mW/°C.

The transistor is designed to withstand full load mismatch in the test circuit under the following conditions:

V = 16.5V, f = 470MHz T. = 70°C cc h

V.S.W.R. =50:1 at any phase

P = P n°m - +20% DR DR

Where nom. = P for 2. transistor output into a 50S2 POR DR 5"W loadatV =13. 8V.

Milliard BLX67 Page 5 )

APPLICATION INFORMATION (contd.

470MHz Amplifier circuit

/~>> ( Output X2> son Input -v P) son J \J C8

Component values for 470MHz amplifier circuit

CI = C2 = C6 = C7 = 1. 8 to 18pF film dielectric trimmers C3 = C4 = 18pF disc ceramic capacitors C5 = 4nF feed -through capacitor C8 = 0. 1/jF disc ceramic capacitor LI = 1 turn of 1. 2mm copper wire, int. dia. 6mm, lead length

L4 = 2 turns of 0. 5mm copper wire int. dia. 3mm, close wound, lead length ' 8mm R = 10S2 - carbon

Component layout on 1.5mm double copper clad fibre -glass board

Dimensions of the board: - 110 x 50mm

i Output © 50ft

^ (@) gj^#rnI ^C6

Shaded area copper Underside area completely copper clad

Milliard BLX67 Page 6 V

N-P-N SILICON PLANAR BLX67 V.H.F./U.H.F. TRANSISTOR

4.0

P L (W)

3.0

V CC =13.8V >

=12. 5 2.0

Typical curves

f = 470MHz

Th = 25'C

t.O

0.1 0.2 0.3 0.4 0.5 PDR IW)0.6

90

n CM

V cc =12. 5 V^ 80

= 13.8V^

70

Typical curves

f = 470MHz

Th = 25 "C

60

50 0.1 0.2 0.3 0.4 0.5 PDR (W)0.6

TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRIVE POWER

Milliard BLX67 Page 7 )

APPLICATION INFORMATION (contd.

nom I 1 1 1 1 1 1 L (W) Vcc nom- 13.8V f = 470MHz

5.0 PDR nom = PDR at Vcc = 13.8V and V.S.W.R.:= 1 P nom = P at V =13.8V.V.S.W.R.=1and1 L L cc "h=25°C Short duration overload

V.S.W.R.^up to T h =70°C *< VS.W.R.S 4.0 S * ^w

- 3.0 10

= 50 ......

2.0

1.0

1.0 1.1 PDR/PDR nom 1.2 vcc/vcc no™

INDICATED LOAD POWER AS A FUNCTION OF OVERLOAD

The transistor is suitable for use with unstabilised supply voltages. The above graph has been derived from an evaluation of the performance of transistors matched up to

4 watts load power in the circuit on page 6 , and subsequently subjected to various voltage overloads and mismatch conditions with v. s.w. r. up to 50: 1 at a heatsink temperature of 70°C. This indicates a restriction to the load power matched under nominal conditions with varying supply voltages and v. s. w. r. in the recommended circuit.

Milliard BLX67 Page 8 N-P-N SILICON PLANAR #-#%«#BLX67 V.H.F./U.H.F. TRANSISTOR

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular,

it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from: THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR.

Mullard BLX67 Page 9 N-P-N SILICON PLANAR BLX69 EPITAXIAL U.H.F. TRANSISTOR

N_p-N epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 13.5 V. The severe load transistor is resistance stabilized. Every transistor is tested under mismatch conditions with a supply overvoltage to 16. 5 V. It has a capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA

RTF. performance up to Tmb = 25 °C in an unneutralised common -emitter class B circuit. z Y Mode of vCc f PS PL ic Gp 1 i L operation (V) (MHz) (W) (W) (A) (dB) (56) (Q) (mA/V)

1.1 c.w. 13.5 470 < 8 20 < 2.28 > 4 > 65 + j4.9 190-J45

c.w. 12.5 470 < 6. 8 17 < 2.09 > 4 > 65

MECHANICAL DATA Dimensions in mm

*;=<] 0.127

1.6" plastic •efl

-metal 8.0 w ao 5.75™"

max. Torque on nut: min. 7.5 kg cm Diameter of clearance hole in heatsink: (0. 75 Newton metres) 4. 17 mm. max. 8.5 kg cm Mounting hole to have no burrs at either end. surface flat; do not (0. 85 Newton metres) De -burring must leave chamfer or countersink either end of hole.

Milliard APRIL 1971 BLX69 Page 1 RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector -base voltage (open emitter) peak value VCBOM max. 36 V Collector -emitter voltage (open base) VCEO max. 18 V Emitter -base voltage (open collector) VEBO max. 4 V

Currents

Collector current (average) XC(AV) max. 3.5 A

Collector current (peak value) f > 1 MHz ICM max. 10 A

Power dissipation

Total power dissipation up to T. = 25 C max. 50 W f > 1 MHz

2 1ZS030U 60 10 vc D.C. SOA operation £ 'M.-N f sIMHz \--2s°c:: V.S.W.R.>3 << *< Ir 4 S'«k (W) (A) iv * * r' fc e 40 s /ft 10 I p s -i

normal opera \ 1

m-1 10"' 2 50 T h CO 100 10 VCE IV) 10 Temperature

Storage temperature Tstg -30 to +200 °C Operating junction temperature Tj max. 200 °C THERMAL RESISTANCE

From junction to _ mounting base R th j-mb 2.9 °C/W mounting = From base to heatsink Rth mb-h 0.6 °C/W

Milliard BLX69 Page 2 N-P-N SILICON PLANAR BLX69 EPITAXIAL U.H.F. TRANSISTOR

CHARACTERISTICS Tj = 25 °C unless otherwise specified

Breakdown voltages

Collector -base voltage open emitter, Ic = 25 mA v(BR)CBO 36 Collector -emitter voltage open base, Ic = 25 mA V(BR)CEO 18 V Emitter -base voltage open collector; Ig = 10 mA v(BR)EBO > 4 V

Transient energy

L =25 mH;f = 50 Hz open base E > 3.1 mWs

= 1 . = -Vbe 5 V ; RBE 33 Q E > 3.1 mWs D. C. current gain > 10 IC = 1 A; VC E = 5 V h FE typ. 30 Transition frequency

IC =2 A; VC E = 10 V fT typ. 1.0 GHz

Collector capacitance at f = 1 MHz typ. 55 pF IE = Ie = 0; VCB = 15 V C c < 70 pF Feedback capacitance _ Ic = 100 mA; VCE = 15 V Cre typ. 32 pF Collector -stud capacitance Ccs typ. 2 pF

Mullard BLX69 Page 3 1500

tT (MHz)

| /

6 I C (A)

300

I E = I« = Cc f = 1MHz (pFI

200

100 ty P N

10 VCB (V) 20

Mullard BLX69 Page 4 N-P-N SILICON PLANAR BLX69 EPITAXIAL U.H.F. TRANSISTOR

APPUCATION INFORMATION

R. F. performance in c. w. operation (unneutral ised common -emitter class B ciruit)

Tmb "P to 25 °C f (MHz) v (V) P 4 > 65 1.1 + j4.9 190-J45 470 12.5 < 6.8 17 < 2.09 > 4 > 65 175 12.5 typ. 1.35 17 typ. 2.3 typ. 11 typ. 60 1.5+J0.6 170 -j57 Test circuit for 470 MHz:

input . L1 BLX69 T" C2

son r^ci R1 £J^C3 =:c&

List of components:

C1=C2=C7=C8=1. 8 to 9. pF film dielectric trimmer C3=C4= 15 pF chip capacitor C5= 100 pF feed through capacitor C6= 33 nF polyester capacitor Rl= 1Q R2= 10 Q Ll= strip-line (41.1 mm x 5.0 mm) L2= 13 turns closely wound enamelled Cu wire (0. 5 mm); int. diam. 4. mm (0. 32 uH) L3= 2 turns Cu wire (1 mm); winding pitch 1. 5 mm; int. diam. 4 mm; leads 2x5 mm L4= strip -line (52. 7 mm x 5.0 mm) L5=ferroxcube choke coil. Z (at f = 250 MHz) =400 Q ± 20%

LI and L4 are strip lines on a double Cu clad print plate with teflon fibre glass dielectric

(e r =2.74); thickness 1.45 mm

Component lay-out for 470 MHz: see page 6

Milliard BLX69 Page 5 APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 470 MHz test circuit.

— 146 mm *

- nput output L2 v^\C3 rivet son CI Rf 5on iJS- pljo C7 i" o p@ o t/ C2 L1 or oTTo" ^C6 CSI®!^ r2 > / h^vcc]

1 7Z56638 -« 41.1

The circuit and the components are situated on one side of the epoxy fibre -glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets. 7 Z 30 58606

l I I I I I typical values Pl f = 470 MHz T =2St IW) mb

'

20 / / / /

= 13

10

n 5 PS (W) 10

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

Milliard BLX69 Page 6 . .

N-P-N SILICON PLANAR BLAU7Dl VJLQ EPITAXIAL U.H.F. TRANSISTOR

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is

entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who mayhandle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED 2. NEW ROAD, MITCHAM JUNCTION SURREY, CR4 4XY

Mullard BLX69 Page 7 N-P-N SILICON PLANAR BLX91 U.H.F. TRANSISTOR

TENTATIVE DATA

Silicon n-p-n transistor designed for u. h.f. operation in class A,B or C with fre- quencies up to 1GHz. The device is mounted in a plastic, capstan, strip -line en- capsulation.

With a supply voltage of 28V and a signal frequency of 470MHz, the BLX91 will pro- duce 1. OW output into a 50J2 load.

QUICK REFERENCE DATA

v f P P into 50Q V T cc DR h Circuit (V) (MHz) (W) (W) (%) <°C)

28 470 0.08 1. min. 50 min. 25 Un -neutralised common -emitter

28 470 0.08 1. 45 typ. 60 typ. 25 class B

OUTLINE AND DIMENSIONS

All dimensions in mm

ACCESSORIES

Nut and lock -washer supplied with device

Torque on nut: min. 0. 75Nm (7. 5kg cm)

max. 0. 85Nm (8. 5kg cm)

Milliard JULY 1972 BLX91 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

maX " 65 VCBOM V

V maX - (R 0) 65 V CESM BE

mSX - 33 VCEO V

V maX ' 4.0 V EBO

I max. 400 mA

I max. (t a 10MHz) 800 mA

P max. (f£ 10MHz, T 70°C) tot h see also graphs below 4.0 W

Temperature T stg -65 to +150

D/,407 OU08

Ptot 1 1 1 II 1 1 1 1 IW) f S 10MHz (A) =l p p Ptot DC+PDR'- t

5

Short duration Power limited upto overload condition s T h = 70 "C

| derate by 33°C7W U 1.0 "^ i > - i 70 °C & 125 °C \ DC / W ... / 3 \ V Con inuous operation V.S.W. \. « 3 ~-5 v Sa fe op erati ng area \ 2 0.1

5

n n ni - 7 50 100 150 T h (°C) 33 100 Vr-p(V)

Mullard BLX91 Page 2 N-P-N SILICON PLANAR BLX91 U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

Collector -base breakdown voltage (BR)CBO I = 10mA 65

V Collector -emitter breakdown voltage (BR)CES I = 10mA, R = 65 c BE

V Collector -emitter breakdown voltage (BR)CEO I = 25mA 33

Emitter -base breakdown voltage (BR)EBO L = 1.0mA 4.0 E

Static forward current transfer ratio FE T = 100mA, V„„ = 5.0V 10 35

Transition frequency

I = 50mA, V„„ = 5.0V, f = 500MHz 1200 MHz C CE

Collector capacitance Tc I = V„„ = 10V , = I = 0, f 1. 0MHz 3.5 pF CB E e

Emitter capacitance Te V„ n = 0, I = I = 0, f = 1. 0MHz 11 pF EB C c

Collector -stud capacitance 2.0 pF

-O, -'Derived from the 's' parameters measured at f = 500MHz, T , = 25 amb C

Milliard BLX91 Page 3 l=u| n (dB) Meg] Typical curves Vc6 = 28V -I E = 75mA

4-120

f(MHz)

D4410 1*121 III 12 (dB) (deg) Typical curves VCE =28V -I E =75mA

-30 150

(dB)

-20 100

s -10 50 (deg)

200 400 600 800 1000 f (MHz)

TYPICAL VARIATION OF INPUT REFLECTION COEFFICIENT AND FEEDBACK COEFFICIENT WITH FREQUENCY

Milliard BLX91 Page 4 N-P-N SILICON PLANAR BLX91 U.H.F. TRANSISTOR

5 2.| l Mill Ideg) (dBJ Typical curves

VCE =28V -I E =75mA

30

100

IdB)

s 21 Jdeg)

600 800 1000 f (MHz)

1*2,1 1 1 1 1 1 IdB] Typical curves

V CE =28V

f=200l» Hz

400 MHz

800MHz

1 1 40 60 100 120 -I E ImA)

TYPICAL VARIATION OF FORWARD TRANSFER COEFFICIENT WITH FREQUENCY AND EMITTER CURRENT

Milliard BLX91 Page 5 S a I 2 2 | 2 2 1 1 1 1 1 (dB) Typical curves (deg)

V CE =28V -I E =75mA

-150

-100 s 22 (deg)

s l 22l (dB],> -5 •50

200 400 600 800 1000 f (MHz)

TYPICAL VARIATION OF OUTPUT REFLECTION COEFFICIENT WITH FREQUENCY

i i i i 1 1 1 1

V =28V I =I =0 (MHz) CE (pF) E e f = 500 MHz f =10 MHz 2000 80

1500 60

ryp

1000 40

Jyp

500 20

Note : Graph derived from the 's' parameters

l l l l l I 50 100 150 20 30

I (mA) c VCB IV)

Milliard BLX91 Page 6 N-P-N SILICON PLANAR BLX91 U.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F Performance in c.w . operation (T = 25 C)

v f P P into 50Q V z. cc DR l \

(V) (MHz) (W) (W) (%) (S2) (mmho)

24 470 0.05 0. 85 typ. 53 typ. - -

28 470 0.08 1.0 min. 50 min. - -

28 470 0.08 1. 45 typ. 60 typ. 1.4+J1.6 3.7-J22

28 1000 0.40 1.4 typ. 50 typ. - -

P, = = the out u t at heatsink temperatures between At LOW and V^c 28v - P power 25 and 90°C relative to that at 25°C is diminished typically by 2mW/°C.

The transistor is designed to withstand full load mismatch in the test circuit under the following conditions: -

v 28v f = 470MHz T = 90 C cc = hu

P =1. 2W V.S.W.R. = 50: 1 at any phase

470MHz amplifier circuit

Z

Output son

Input son C2 *£? h6

T

Mullard BLX91 Page 7 )

APPLICATION INFORMATION (contd.

Component values for 470MHz amplifier circuit. CI = C2 = C5 = 1. 8 to 18pF film -dielectric trimmer capacitors. C3 = C4 = 18pF disc ceramic capacitors. C6 = 1.0 to 9. OpF film -dielectric trimmer capacitors. C7 = lOOOpF feed -through capacitor. C8 = 0. 1/jF ceramic capacitor. LI = l turn of 1.2mm Cu wire, internal diameter 5mm, lead length = 2mm. L2 = 0.47uH choke. L3 = 5 turns of 0. 5mm Cu wire, internal diameter 4mm, lead length = 5mm, close wound. L4 = 4 turns of 1.2mmCu wire, internal diameter 6. 5mm, leadlength = 4mm, close wound. R = 10S2 carbon.

Component layout on 1. 5mm double copper clad fibre glass board

Input Output son son 50mm

DU19 Shaded area copper

Underside area completely copper clad

1 »'

II 1 1 1 1 1 n 1 M 1 1 II (W) Typical curves (7.1 f = 470MHz f = 470MHz T h = 25 'C Th= 25 'C 70

Vcc =24V 60 287 V =28V » XCC 2tV 50

10

30

70 50 100 150 50 100 150 P (mW> DR PDR lmW) TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRIVE POWER

Milliard BLX91 Page 8 )

N-P-N SILICON PLANAR BLX91 U.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.

D4418 Vcc = 28V (W) f = 470MHz

nom = at V = = PL P L CC 28V, T h 25°C,

V.S.WR.= 1and f = «70MHz

2.0

1.5 Th«70°C P,o,=5.2W

1 T^ 0'c P,o.=46W 1.0

0.5

7 1.0 10 100 V.S.W.R

INDICATED LOAD POWER AS A FUNCTION OF OVERLOAD

The above graph has been derived from an evaluation of the performance of transistors matched up to 1.6 watts load power in the test amplifier on Page 7 and subsequently subjected to various mismatch conditions at 28V with V.S.W.R. up to 50: 1 and elevatedheatsinktemperatures. This indicatesa restriction to the load power matched under nominal conditions in the recommended test configuration.

Milliard BLX91 Page 9 CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this deviceare aware of its nature and of thenecessary safetyprecautions. In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR.

Mullard BLX91 Page 10 N-P-N SILICON PLANAR BLX92 U.H.F. TRANSISTOR

TENTATIVE DATA

Silicon n-p-n transistor designed for u. h.f. operation in class A, B or C with frequencies up to 1GHz. The device is mounted in a plastic, capstan, strip-line encapsulation.

With a supply voltage of 28V and a signal frequency of 470MHz, the BLX92 will pro- duce 2. 5W output into a 50S2 load.

QUICK REFERENCE DATA

f P P into 50S2 V T v h cc DR Circuit

(V) (MHz) (W) (W) (%) (°C)

24 470 0.2 2.4 typ. 70 typ. 25

28 470 0.2 2. 5 min. 60 min. 25 Un -neutralised common -emitter 28 470 0.2 3. typ. 66 typ. 25 class B

28 1000 0.7 2. 5 typ. 50 typ. 25

OUTLINE AND DIMENSIONS

All dimensions in mm ACCESSORIES

Nut and lock -washer supplied with device

Torque on nut: min. 0. 75Nm (7. 5kg cm) max. 0. 85Nm (8. 5kg cm)

Milliard JULY 1972 BLX92 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V , max. 65 V CBOM max. (R__=0) 65 V CESM BE

V maX - 33 V CEO

V m3X - 4.0 V EBO

I max. 0.7 A

max - (f ^ 10MHz) 2.0 A 'cm P max. (fa 10MHz, T, ==70 C) 6.0 W tot n See also graphs below

Temperature

T -65 to +150 stg

01.31.1. Ptot (W) f»10MHz 10 - P|ot = (PDC +pDR)-pL 1c Power limited (A) uptoTh = 70"C

for Tt, between s 70'C and 125°C 1.0 Short duration ^ DC - , 1 1 1 1 1 overload conditions v > Second \ breakdown s limited s N AV , V Th =25'C , i . T =125"C \ 0.1 h

Continuous Safe operation operating areas V.S.W.R.^3

nm T 150 50 100 h(°C) 1.0 33 100 V (V] CE

Milliard BLX92 Page 2 N-P-N SILICON PLANAR BLX92 U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

V Collector -base breakdown voltage (BR)CBO I = 10mA 65

Collector -emitter breakdown voltage (BR)CES I = 10mA = ° 65 ' R C BE

Collector -emitter breakdown voltage (BR)CEO I = 25mA 33

V Emitter -base breakdown voltage (BR)EBO I„ = 1. 0mA 4.0

Collector -emitter saturation voltage CE(sat) I„ = 100mA , I = 20mA 0.17 C B

Static forward current transfer ratio FE I = 100mA, V „ = 5. 0V 10 40 C CIi

Transition frequency l„ = 100mA, V „ = 5. 0V, f = 500MHz 1200 MHz C Lb

Collector capacitance Tc V^„ = 10V, I = I = 0, f = 1. 0MHz 6.5 pF CB E e

Emitter capacitance Te V„ = 0, I =1 =0, f = 1.0MHz 25 pF OD C c

C Collector -stud capacitance 2.0 pF cs

the ' measured at f = = "Derived from s' parameters 500MHz, Tamb 25°C

Milliard BLX92 Page 3 |s„ Sll 1 II 1 1 (dB (deg) i ypical curves VCE = 28V -I E =100mA -4 130 «" (deg „""' 140 |s,il .-> ~* (dB) ^ x -2 ^ ^ j-

^ .'

D43t6 S I2| I "12 II I II (dB) (deg) Typical curves V CE = 28V -I e= 100mA -30 150

s l 12l (dB)

-?n

-10 S|2 50 (deg) y tf£

nl I 1 II 1 1 1 1 1 200 400 600 800 1000 f(MHz) TYPICAL VARIATION OF INPUT REFLECTION COEFFICIENT AND FEEDBACK COEFFICIENT WITH FREQUENCY

Milliard BLX92 Page 4 1

N-P-N SILICON PLANAR BLX92 U.H.F. TRANSISTOR

S21 1=21 (dB) Mill (deg) Typical curves V CE = 28V -I E = 100mA

30 150

N 20 \ 100 s N| s ^ >s 50 S21 (deg)

1*2,1 •••» (dB)

I 200 400 600 800 1000 f(MHz)

s l 2l| 1 1 1 1 1 (dB) Typical curves V C E=28V

15

f = 200MHz

10

400MHz

800MHz

1 1 1 50 100 150 200 250 -I E(mA) TYPICAL VARIATION OF FORWARD TRANSFER COEFFICIENT WITH FREQUENCY AND EMITTER CURRENT

Milliard BLX92 Page 5 s 1=221 22 1 1 1 II IdB) (deg) Typical curves V CE = 28V -I E = 100mA

-150

|s??l =22 (dB) * (deg) " -10 -100

,' ^ X" 50

200 400 600 800 1000 f(MHz)

TYPICAL VARIATION OF OUTPUT REFLECTION COEFFICIENT WITH FREQUENCY

C II I I I -Tc (MHz) V CE = 28V IpF) f = 500MHz 10 I E =I, = f = 1.0MHz

1500

iyp.

Typ.

1000

Note: Graph derived from

the 's' parameters

500 I I I I I I I I 20 V (V) 30 100 I c (mA) 200 CB

Mullard BLX92 Page 6 N-P-N SILICON PLANAR BLX92 U.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F. Performance in c.w. operation (T = 25 C)

v f P P into 50S2 V z. cc DR l ^L

(V) (MHz) (W) (W) (%) (a) (mmho)

24 470 0.2 2. 5 typ. 70 typ. - -

28 470 0.2 2. 5 min. 60 min. - -

28 470 0.2 3.0 typ. 66 typ. 1.6+J3. 4 7.7-J31

28 1000 0.7 2.5 typ. 50 typ. - -

At Pl = 2. 5W and Vqq = 28V, the output power at heatsink temperatures between 25 and 90°C relative to that at 25°C is diminished typically by 5mW/°C.

The transistor is designed to withstand full load mismatch in the test circuit under the following conditions: -

V„„ = 28V f = 470MHz T, = 90°C CC h

P = 2. 5W V. S. W. R. = 50: 1 at any phase

470MHz amplifier circuit

The issue of the information contained in this publication does not imply any authority ot licence for the utilisation of any patented feature.

Milliard BLX92 Page 7 )

APPLICATION INFORMATION (contd.

Component values for 470MHz amplifier circuit. CI = C2 = 1. 8 to 18pF film -dielectric trimmer capacitors. C3 = C4 = 18pF disc ceramic capacitors. C5 = C6 = 1.0 to 9. OpF film -dielectric trimmer capacitors. C7 = lOOOpF feed -through capacitor. C8 = 0. luF ceramic capacitor.

LI = 1 turn of 1.2mm Cu wire, internal diameter 5mm, lead length = 2mm. L2 = 0.47nH choke. L3 = 3 turns of 0. 5mm Cu wire, internal diameter 4mm, lead length = 5mm L4 = 2 turns of 1. 2mm Cu wire, internal diameter 6. 5mm, lead length = 4mm

Component layout on 1. 5mm double copper clad fibre glass board

Input 50A 50 mm

D4342 Shaded area copper

Underside area completely copper clad

D4352

I 1 1 1 1 1 1 Pi 1 1 1 1 1 1 1 u (W) Typical curves (V.) Typical curves f = 470MHz f = 470MHz T = 25"C T h = 25'C h 5 80

V =28V CC «o ^

4 / 70 4 * 24V

24V 3 60

2 50

VCC =28V 40

24V

n 30 1 1 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 PdrIWI PDr(W) TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRIVE POWER

Milliard BLX92 Page )

N-P-N SILICON PLANAR BLX92 U.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.

pLnom 1 Mil (W) Vcc = 28V

f = 470MHz

1 MM = = PLnom PL at Vcc 28V, Th = 25°C,

V.S.W.R.= 1 and f = 470MHz

Th =90«C, P tot = 7.5V

V.S.W.R. 100

INDICATED LOAD POWER AS A FUNCTION OF OVERLOAD

The above graph has been derived from an evaluation of the performance of transistors matched up to 3. 8 watts load power in the testamplifier on Page 7 and subsequently subjected to various mismatch conditions at 28V with V.S.W.R. up to 50: 1 and elevated heatsink temperatures. This indicates a restriction to the load power matched under nominal conditions in the recommended test configuration.

Milliard BLX92 Page 9 CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its natureand of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR.

Mullard BLX92 Page 10 N-P-N SILICON PLANAR BLX93 U.H.F. TRANSISTOR

TENTATIVE DATA

Silicon n-p-n transistor designed for u. h.f. operation in class A, B or C with frequencies up to 1GHz. The device is mounted in a plastic, capstan, strip-line encapsulation.

With a supply voltage of 28V and a signal frequency of 470MHz, the BLX93 will pro- duce 7. OW output into a 50S2 load.

QUICK REFERENCE DATA

v f P P into 50S2 V T cc h DR Circuit

(V) (MHz) (W) (W) (%) (°C)

24 470 1.0 7. typ. 70 typ. 25

Un -neutralised 28 470 1.0 7. min. ()0 min. 25 common -emitter class B 28 470 1.0 8. typ. 75 typ. 25

28 1000 1.5 5. typ. 45 typ. 25

OUTLINE AND DIMENSIONS

ACCESSORIES All dimensions in mm

Nut and lock -washer supplied with device

Torque on nut: min. 0. 75Nm (7. 5kg cm) max. 0. 85Nm (8. 5kg cm)

Milliard JULY 1972 BLX93 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX - 65 CBOM V

maX - 0) 65 VCESM %E = V

maX " 33 VCEO V V_ max. 4.0 V EBO

I max. 1.0 A

max " (f £ lGMHz) 3.0 A 'cm P max. (f a 10MHz, T u £ 70 C) 12.5 W tot n See also graphs below

Temperature

T -65 to +150 stg

D4355

I I I I I I - p 1 lul in II 1 11 (W) f 5s 10MHz Ptot = (Pdc+PdrI-Pl 20 5 S Ic 5 by 10.4'C/W S (A) ^ 70°C and 125°C 1 Short duration v k„ overload conditions DC /,Second \ in rj, - =y- — 1 reakdown > > 1 mited

i in \ t n \\I Th = 25"C V 1 N 1 V,> |_Th =125°C 10 s, \J s * 01 - Continuous operation V.S.W.R. S3 Safe operating areas

2

n 01 50 100 T CC) 150 h 10 10 33 100

Milliard BLX93 Page 2 N-P-N SILICON PLANAR BLX93 U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise sated)

Min. Typ. Max.

Collector -base breakdown voltage (BR)CBO I = 10mA 65

Collector -emitter breakdown voltage (BR)CES I = 10mA,R = 65 c BE

Collector -emitter breakdown voltage (BR)CEO I = 25mA 33

V Emitter -base breakdown voltage (BR)EBO L = 1. OmA 4.0 E

Static forward current transfer ratio FE I = 100mA, V = 5.0V 10 35 CE

Transition frequency

I = 200mA, V = 5. 0V, f = 500MHz 1200 MHz

Collector capacitance Tc V„„ = 10V, L = I = 0, f = 1. 0MHz 14 pF CB E e

Emitter capacitance Te Vrn = 0, I = I = 0, f = 1. 0MHz 60 pF EB C c

C Collector -stud capacitance 2.0 pF

'Derived from the ' s' parameters measured at f = 500MHz, T 25°C amb

Mullard BLX93 Page 3 1

|Slll [[||| (dB) (deg) Typical curves V CE = 28V -I E = 200mA

Sll 130 .^ (deg) <* ^ 140 ** >* ** *"' 150 * ' — I»iil t (dB) <* 160

" i-* 170 ^ • ' 4 y 180 170

200 400 600 800 1000 f(MHz]

l»12| 512 | | | | | (dB) (deg) Typical curves V CE = 28V -I E = 200mA

-30 150 1*12 (dB)

-20 100

-10 50 *' Si? y (deg)

200 400 600 800 1000 f(MHz) TYPICAL VARIATION OF INPUT REFLECTION COEFFICIENT AND FEEDBACK COEFFICIENT WITH FREQUENCY

Milliard BLX93 Page 4 N-P-N SILICON PLANAR BLX93 U.H.F. TRANSISTOR

s l=2ll 2 i IdB) (deg) Typical curves V CE = 28V -I E = 200mA

20 100

50

-50 1000 f(MHz)

D4360 1b Typical curves V CE = 28V |s 2 ll

10 f = 200MHz

b 400MHz

4 A

800 MHz

-S 100 200 300 400 bOO -I E (mA) TYPICAL VARIATION OF FORWARD TRANSFER COEFFICIENT WITH FREQUENCY AND EMITTER CURRENT

Milliard BLX93 Page 5 1

S |S22l Typical curves 22 (dB) (deg) V CE = 28V -I = E 200mA S 22 (deg) *' > 160

/ s I ?? 1 (dB) -HO

-6 120

-5 100 200 400 600 800 1000 f(MHz)

TYPICAL VARIATION OF OUTPUT REFLECTION COEFFICIENT WITH FREQUENCY

04362 D*363 r 2000 1 1 1 1 Tt VCE =28V (pF) f = 500MHz 25 I 6 = I,=0

*T f = 1.0MHz (MHz)

1500 20

lyp. s r / ~^ / fj 15

Typ. 1000

TO

Note: Graph derived from

the 's' parameters 500 M 5 100 200 300 400 10 20 VCB (V) 30 Ic(mA)

Milliard BLX93 Page 6 N-P-N SILICON PLANAR BLX93 U.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F Performance in c. w. operation (T = 25 C)

V f P P into 50J2 V z. Y CC DR l L

(V) (MHz) (W) (W) (%) (S2) (mmho)

- - 24 470 1.0 7. typ. 70 typ.

- - 28 470 1.0 7. min. 60 min.

28 470 1.0 8. typ. 75 typ. 1.6+j5. 5 20-J40

28 1000 1.5 5. typ. 45 typ. - -

At Pi = 7. 0W and Vqq = 28V, the output power at heatsink temperatures between 25 and 90°C relative to that at 25°C is diminished typically by l0mW/°C.

The transistor is designed to withstand full load mismatch in the test circuit under the following conditions: -

V = 28V f = 470MHz T = 90°C h

P =7. 0W V.S.W. R. = 50: 1 at any phase

470MHz amplifier circuit

The issue of the information contained in this publication does not imply any authority ot licence for the utilisation of any patented feature.

Milliard BLX93 Page 7 1 ) 1

APPLICATION INFORMATION (contd.

Component values for 470MHz amplifier circuit.

CI = C2 = 1. 8 to 18pF film -dielectric trimmer capacitors. C3 = C4 = 18pF disc ceramic capacitors. C5 = C6 = 1.0 to 9.0pF film -dielectric trimmer capacitors. C7 = lOOOpF feed-through capacitor. C8 = 0. l^F ceramic capacitor. LI = 1 turn of 1. 2mm Cu wire, internal diameter 5mm, lead length = 2mm. L2 = 0.47juH choke. L3 = 3 turns of 0. 5mm Cu wire, internal diameter 4mm, lead length = 5mm L4 = 2 turns of 1. 2mm Cu wire, internal diameter 6. 5mm, lead length = 4mm

Component layout on 1. 5mm double copper clad fibre glass board

Input son 50 mm

D4342 Shaded area copper

Underside area completely copper clad

n. 1 1 1 1 II 1 II 1 1 1 (W) Typical curves (%) typical curves

f = 470MHz f = 470MHz

T h = 25*C T h = 25=C 90

V CC =28V 80 Vcc=28V 24V

70 24V

60

50

[

40 P D r(W) PDr(W) TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRPVE POWER

Milliard BLX93 Page 8 ) W

N-P-N SILICON PLANAR BLX93 U.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.

PLnom I Mil (W) V CC =28V f = 470MHz J. Mil

P L nom = PL at Vcc = 28V, Th = 25'C, V.S.W.R.=1 and f = 470MHz

- Th% 70 C, P t ot - 20

7h =90°C, P, ot = 18W

10 V.S.W.R. 100

INDICATED LOAD POWER AS A FUNCTION OF OVERLOAD

The abovegraph has been derived from an evaluation of the performanceof transistors matched up to 8 watts load power in the test amplifier on Page 7 and subsequently subjected to various mismatch conditions at 28V with V.S.W.R. up to 50:1 and elevated heatsink temperatures. This indicates a restriction to the load power matched under nominal conditions in the recommended test configuration.

Milliard BLX93 Page 9 CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its natureand of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from: -

THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR.

Mullard BLX93 Page 10 . »

N-P-N SILICON PLANAR BLX94 EPITAXIAL U.H.F. TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for transmitting applications in

class A , B or C with a supply voltage up to 28V. The transistor is resistance stabilised and is tested under severe load mismatch conditions It has a 1/4" capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA R. F. performance at Tmb s 25°C in an un -neutralised common -emitter class B circuit.

Mode of v f P l G z. Y cc DR c l operation P L (V) (MHz) (W) (W) (A) (dB) (%) (£2) (mA/V)

C.W. 28 470 <5 20 <1.3 >6 >55 0. 65+j3. 9 62-J97

OUTLINE AND DIMENSIONS

.127 e iU *h=n -,

•— 16"" — / \ c . plastic at n ^- ^ 3 c b V y K^ metal 8.0 8.6 ^ * e

3.0 mQ 97 5.75

mi„ 25 — ^ All dimensions in mm

Torque on nut: 7. 5kg cm (0. 75Nm) min. 8. 5kg cm (0. 85Nm) max.

Diameter of clearance hole in heatsink: 4. 17mm max.

Note: Do not chamfer the edges of the mounting holes when removing burrs. When locking is required, an adhesive instead of a lock washer is preferred.

Milliard APRIL 1972 BLX94 Page 1 ] | 1

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

65 maX " V VCBOM 33 V V m3X - CEO 4.0 V maX - V EBO 2.0 A W) max - T > 1. 6.0 A CM max. (f 0MHz) 50 , W P max. v(T < 25°C f > 1. 0MHz) tot h — Temperature T -30 to +200 stg T. max. 200 ] THERMAL CHARACTERISTICS 2.9 "C/W R , th(j-mb) R 0.6 °C/W th(mb-h)

D4H7 "1 —\—\ — 1 1 1 III 60 ~ "I —I 100 — T /^ --- Th =25°C "-> ''<

ptot 'n Ifi */ (A) (W) \ -"# A V, / 10 40 *o - / 1 •c'frS

* D.C

Continuous operation \ 20 -v* V.S.W.R.< 3 7

1 5

1

VCE ^ 28V Safe operating cirea

f > 1MHz

0.1

50 T h (°C) 100

Mullard BLX94 Page 2 N-P-N SILICON PLANAR BLX94 EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max.

CEO Collector cut-off current I = 0, V =28V 10 mA B CE

V. Collector -base breakdown voltage open emitter

I = 25mA 65

V. Collector -emitter breakdown (rJK)CEU voltage.open, base

I = 25mA 33

V/r,n\oTT^ Emitter -base breakdown voltage (Di\)bt5U open collector,,

I,, = 10mA 4.0 E

Transient energy L=25mH, f = 50Hz open base 3.0 mWs

- = = V 1 - 5V R 33S2 3.0 mWs BE ' BE

Static forward FE current transfer ratio

I = 1.0A,V = 15 C CE 5.0V 50

Transition frequency

I =2.0A,V =2( C CE 1.0 GHz

Tc Collector capacitance I =1 =0, V =30V,30 f=1.0MHz 32 50 pF W^ciTE e CB -C Feedback capacitance I = 100mA, V =30V,= f=1.0MHz 18 pF c CE Collector -stud capacitance 2.0 pF

Milliard BLX94 Page 3 . 1 1

"".:.. 1500 1 1 1 1 vCE -iUV

~ (MHz)

1000 _ * "» ^ ^ * 'yp ^^ - ^ ^

500

- _ A I r (A)

70 1 1 1

! «E : U w

CTc - A - (pF) V J L 50 5 c ^ \ *v _ ^ ^ 's ^ ^^ ^ "•^ 30

10 20 VCB (V) 40

Milliard BLX94 Page 4 — * * 9 o

N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR BLX94

APPLICATION INFORMATION

R. F. performance in c. w. operation (un -neutralised common -emitter class B circuit)

f = 470MHz, Tmb =25°C

v P P l G V z Y cc DR L c P i L (V) (W) (W) (A) (dB) (%) (fl) (mA/V)

28 <5 20 <1.3 >6 >55 0. 65+j3. 62-J97

Test circuit

input L1 " o t \mmmn-i w//////////////*-\$- jf T.U.T. I 1— C2 C7

500 R1 L3 cs;£ soa ==C3

,C5 O 1 — * •—•— *— R2 C6fT

E] L5

6 + Vcc

Component values

CI = C2 = C8 = 2 to 9pF film dielectric trimmer C3 = C4 = 15pF chip capacitor C5 = lOOpF feed -through capacitor C6 = 33nF polyester capacitor C7 = 2 to 18pF film dielectric trimmer Rl = 13 carbon resistor R2 = 10ft carbon resistor LI = strip line (40. 8x5. 0mm) L2 = 13 turns of closely wound enamelled copper wire (0.5mm), int. dia. 4.0mm L3 = 2 turns of copper wire (1mm), winding pitch 1.5mm, int. dia. 4.0mm, leads 2 x 5mm L4 = strip line (52. 4x5. 0mm) L5 = ferroxcube choke coil. Z (at f = 50MHz) = 750J2 ±20%

LI and L4 are strip lines on a double copper clad print plate with teflon fibre -glass dielectric (€ r = 2.74), thickness 1.45mm.

Milliard BLX94 Page 5 )

APPLICATION INFORMATION (contd.

Component layout and printed pircuit board for 470MHz test circuit.

The circuit and the components are situated on one side of the teflon fibre -glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

The issue of the information contained in this publication does not imply any authority or licence tor the utilisation of any patented feature

Milliard BLX94 Page 6 N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR BLX94

D 153

f = 470 MHz R.F.S0AR f = 470MHz Vcc = 28V 28V T,. - 25"C iO R th((r

IW) T IWI ''\1 h=50'C

30 /l

20 100- ty

1

lr/.r

i-/ l- -

5 PDR (W) 7.5

For high voltage operation, a stabilised power supply is generally used. The graph shows the allowable output power under nominal conditions as a

function of the V.S.W. R. , with heat- sink temperature as parameter.

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is

entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular,

it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned totheMullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from: THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR.

Milliard BLX94 Page 7 .

N-P-N SILICON BLY33 V.H.F. POWER TRANSISTORS BLY34

TENTATIVE DATA

Silicon n-p-n high frequency medium power transistors primarily intended for class B operation inv.h.f. amplifiers. The collector is electrically connected to case QUICK REFERENCE DATA BLY33 BLY34

V___ max. (peak r.f. si.OMHz) 66 40 V

V m3X - 33 20 V CEO I max. (peak r.f. ai.OMHz) 1.5 1.5 A

P„ , max. (T ^100°C) 2.0 2.0 W tot case T. max. 150 150 °C J = f min.

Operation a.m. f.m.

V Supply voltage 13.8 13.8 V

P Output power 2.0 3.0 W G Typ. power gain 8.0 8.0 dB

ij Typ. efficiency 80 80 %

Unless otherwise stated data is applicable to both types OUTLINE AND DIMENSIONS Conforms to B.S. 3934 SO-3/SB3-3B J.E.D.E.C. TO-39

Millimetres

Min. Nom. Max. A 9.10 - 9.40 B 8.2 - 8.5

C 6.15 . - 6.60 D - 5.08 - E 0.71 - 0.86 Fl - - 0.51 F2 12.7 - - F3 12.7 - 15 Gl - - 1.01 G2 0.41 - 0.48 G3 - - 0.53 H - 0.4 - J 0.74 - 1.01

Collector connected to case

Milliard MAY 1968 BLY33-Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

V_,_,„ max. (peakr.f. al.OMHz) BLY33 66 V CES BLY34 40 V

33 V m3X - BLY33 V CEO BLY34 20 V

V m3X - 4.0 V EBO I max. 0.5 A

I max. (f21.0MHz) 1.5 A

I max. (f<1.0MHz) 0.5 A P max. T =25°C, f^l.OMHz 5.0 W tot case T =25°C, f<1.0MHz 4.0 W case See also curves on pages 5 and 6

Temperature

T. max. Continuous operation 150 1 Intermittent operation, total duration 200 hours 200 "C

T ^ min. -65 °C stg

T ^ max. 150 °C stg THERMAL CHARACTERISTIC

R, 25 degC/W 'th(j-case)

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated) J Min. Typ. Max.

Collector-emitter cut-off CES current V =V max., V =0 0.10 5.0 mA CE CES 'BE V =V max., V =0 0.02 0.5 mA CE CEO ' BE

Emitter cut-off current EBO = V 4 -°V l = ° 0.2m 0.5m EB ' C

Static forward current FE transfer ratio = = I °- 2A V 5 -°V 10 60 C - CE

Milliard BLY33-Page 2 . . . . ,

N-P-N SILICON BLY33 V.H.F. POWER TRANSISTORS BLY34

ELECTRICAL CHARACTERISTICS (cont'd)

Min . Typ Max

f Transition frequency = = I - 2A 5 -° V V ' C ' CE f = 100MHz, T = 25°C 250 450 - MHz amb

C Collector capacitance ° V„ =10V, I =1 =0, CB E e ' f=0.5MHz - 11 15 pF

C Emitter capacitance V = E B °> W ' f = 0.5MHz 45 65 90 pF

RECOMMENDED OPERATING CONDITIONS

As a medium power amplifier for the output stage of a small transmitter, or as a driver for larger output stages

f = 175MHz BLY3S BLY34

Operation a.m. f.m. f.m.

v Supply voltage nom. 13.8 28 13.8 V cc max. 16.5 32 16.5 V

V Base bias voltage B V P Output power 2.0 3.0 3.0 W o P. Input power typ. 0.32 0.28 0.5 W max. 0.40 0.40 0.6 W ^C Supply current typ. 180 160 270 mA 1 Efficiency typ. 80 65 80 %

NOTES

1 For a.m. telep lony, collecto r modulation of the outpu and driver s taees is recommended.

2. A heatsink of thermal resistance 20degC/W is recommended foroperation in ambient temperatures up to 65°C. At temperatures >65°C, derating is necessary.

3 . Under the recommended a.m. operating condition and without modulation the transistor can withstand any load mismatch. With modulation applied, operation into an extreme mismatch may adversely affect the life of the transistor and care should be exercised to keep the device within its ratings

Milliard BLY33-Page 3 BASIC V.H.F. AMPLIFIER CIRCUIT

Supply Vcc

0-25uF

Component values for 175MHz amplifier circuit

30 pF

30 pF

30 pF

30 pF

1.0 inch of straight 18 s.w.g.

3.0 turns of 24 s.w.g. on Ferrite FX1115

5.0 turns of 18 s.w.g., d=3/8", 1 = 3/8".

3.0 turns of 18 s.w.g., d = 3/8", 1 = 3/8".

NOTE

To obtain optimum gain performance the emitter lead length should not exceed 1.6mm.

Mullard BLY33-Page 4 —

N-P-N SILICON BLY33 V.H.F. POWER TRANSISTORS BLY34

3772R BLY34

Po (W)

..... 28V FM. \fcc= 40 An * 13"fav FM. a i Mx- n *•' 30 • ~* t • ' * ?-0 * * , BLY33 . / 10

! I i 02 0-4 0-6 08 P (W) TYPICAL VARIATION OF OUTPUT POWER WITH INPUT POWER FOR V.H.F. AMPLIFIER

(See Recommended Operating Conditions on page 3)

i QQ i BL V33 — Boo/fi77/ F . BL ( --- ..... - T 1 - — f >1'0MHz :J_; .__

P =P + ij -r V>t d'- _,_. P ' b tot "l j

V .... —

:

(W) - , :: ._ vX " V 4 bji ^V

. i j~ 'V

i i - L ' I ; , Intermittent > . v operation. -•- ___> _ \/ -I (-: Sx Total duration <200hours [~ j

..., ;. . .- 4 4- ; I 4— \K l - - 1 ! —+ I^L-- U- - -; ' -j i -i r\ "t \ ! " """ _t_ \ ; "if . ^v 1 4 - - -1- - '> t- — 1 ;- — -4 t" r\ 4 50 100 150 2o°w,rc)

MAXIMUM PERMISSIBLE POWER DISSIPATION PLOTTED AGAINST CASE TEMPERATURE FOR FREQUENCIES >1.0MHz — Milliard ( BLY33-Page 5 — . , _ .

10 BLY33 7 BLY34 BLY34 Jc 5 1 1 1

- f < 10MHz (A) 3 \

:

0-1 \\

7 \ ^

- 5 V -

- Permissible areas of operation \ 3 1 -

001 , , , 3 5 7 3 5 7 3 5 7 0-1 10 10 vCE(v) 100 PERMISSIBLE AREAS OF OPERATION FOR FREQUENCIES <1.0MHz

I tot BLY33 ^1 - (°/o) - - j

; " I IT"

j - Hh -- +-H-

-|. ___nt : , w....^ Ll _ --

I ' 100 , —\— \- T ..;. .. 1" I - n -[

1 j ! i _— ^ i-

80 _!__U I = \ - rzr_T-t - — I ; -+-- i A 60 i - -r- -r -. j . .

! • C-i-iJ. J- -| -4--r- 4-r

40 i

-- ;: •

- : L - - ' 20 ' I ~r J - .._, i ! - - j. 1 45 — .-i-i_i...

! J

I I 50 100 150 PERCENTAGE POWER DERATING PLOTTED AGAINST CASE TEMPERATURE FOR FREQUENCIES <1.0MHz

Milliard BLY33-Page 6 -

N-P-N SILICON PLANAR BLY35 V.H.F. TRANSISTORS BLY83

Silicon n-p-n transistors for v. h.f. mobile operation in class B. The BLY35 is mounted in a TO -60 envelope and the BLY83is mounted in a plastic, capstan strip line encapsulation.

The transistors are primarily intended for a.m. operation at 13.8V but are also

suitable for f. m. operation at 24V.

QUICK REFERENCE DATA

v f P P (carrier) P into 50£2 V m d cc DR tot Mode (V) (MHz) (W) (W) (W) (%) (%) (%)

a.m. 13.8 175 0.35 7.0typ. - 77 typ. 80 <5

a.m. 13.8 80 0.06 7. 5 typ. - 77 typ. 80 <5

- c.w. 24 175 1.35 - 13 typ. 65 typ. -

Unless otherwise stated data are applicable to both types

OUTLINE AND DIMENSIONS

BLY35 J.E.D. E.C. TO-60 (Emitter connected to stud)

BLY83 Capstan strip -line (Stud isolated)

For details see page 2

BLY35 BLY83

Milliard OCTOBER 1972 BLY35 Page 1 OUTLINE DRAWINGS (All dimensions in mm) BLY35

man 198 e b 10-3 2UNF 1 H

i Rn= 1

3.1™"" m11.0 max 76 mo 1072 " , n.5 ,

Accessories

Nut and lock -washer supplied with device

Torque on nut: min. 0. 8Nm (8kg cm) max. 1. 7Nm (17kg cm) BLY83

All dimensions in mm Accessories

Nut and lock -washer supplied with device

Torque on nut: min. 0. 75Nm (7. 5kg cm) max. 0. 85Nm (8. 5kg cm)

Milliard BLY35 Page 2 )

N-P-N SILICON PLANAR BLY35 V.H.F. TRANSISTORS BLY83

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX " CBOM 66 V

V maX - CESM 66 V

V maX - CEO 33 V

V m3X - EBO 4.0 V

I max. 2.5 A

I max. (f <1.0MHz) 2.5 A

I„ max. (f &1.0MHZ) 7.5 A

max. (f . P . & 1 0MHz , T s 90°C to( 12 W

Temperature

T -65 stg BLY35 to +200

BLY83 -65 to +150

r «ct '_ M 1 ! II 1 1 1

i

~"~t r

zr f it > _± i r

r__ — T"l1

L _ 5 - 1.

- _- ±___ ± 100 T„(»C) 200

Mullard BLY35 Page 3 ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise stated)

Min. Typ. Max.

Collector -base breakdown voltage (BR)CBO 66 I = 10mA

V Collector -emitter breakdown voltage (BR)CES 66 I = l0mA,R =0 c BE

Collector -emitter breakdown voltage (BR)CEO 33 I = 50mA

Emitter -base breakdown voltage (BR)EBO 4.0 I = 1.0mA E

Static forward current transfer ratio 220 FE = 1.0A,V = 5.0V 10 60 Ic CE

Transition frequency

I -1.0A,V = 5.0V c CE o 450 MHz = 100MHz, T = 25°C 250 f amb

Collector capacitance "Tc 34 45 pF V = 10V, L =1 =0, f = 1.0MHz CB E e

capacitance J Emitter Te 100 155 pF V „ = 0, I„ = 1. = 0, f = 1.0MHz EB C c

— Mullard BLY35 Page 4 N-P-N SILICON PLANAR BLY35 V.H.F. TRANSISTORS BLY83

APPLICATIONS INFORMATION

R. F. performance in a 7. OW a. m. transmitter at f = 175MHz, f mod. = 1kHz

V P P (carrier) I (driver) I„ (amplifier) G V m d cc DR P tot (V) (W) (W) (A) (A) (dB) (%) (%) (%)

13.8 0.35 7. typ. 0. 22 typ. 0. 66 typ. 13 77 typ. 80 5 max.

/l1 <- K 1 r load -^r-

i 10nFX ^TOnF 500 500 pF pF

Modulating X transformer

' Audio ' Input

^ - 13.8V -Vcc OA202VJ®\/ 27n D4773

Component values for 175MHz transmitter circuit: -

C to C, = 4 to 29pF concentric trimmer capacitors

L = L = 3 turns of 1.2mm en. Cu wire, int. diam. = 6.4mm, length = 5.0mm

L = L = 5 turns of 1.2mm en. Cu wire, int. diam. = 6.4mm, length = 10mm

L = 3 turns of 1. 7mm en.Cu wire, int. diam. = 10mm, length = 10mm

RFC j = RFC = 2 turns of 0.4mm en.Cu wire on Ferrite FX1115.

The issue of the information contained in this publication does not imply any authority o, licence for the utilisation of any patented feature.

Milliard BLY35 Page 5 )

APPLICATIONS INFORMATION (contd.

at f = 80MHz, R. F. performance in a 7. OW a.m. transmitter f mod. = 1kHz

I (amplifier) G V m d v P P (carrier) I (driver) tot cc DR P (dB) (%) (%) (V) (W) (W) (A) (A) (%)

21 70 typ. 80 5 max. 13.8 0.06 7. 5 typ. 0. 06 typ. 0. 7 typ.

Component values for 80MHz transmitter circuit: -

capacitors C to C , = 4 to 29pF concentric trimmer 1 6 =6. length = 9. 0mm L =L = 5 turns of 1.2mm en. Cu wire, int.diam. 3mm, 1 4 length = 6.0mm L = L = 3 turns of 1.2mm en.Cu wire, int.diam. = 7.0mm, 3 6 length = 13mm L = 6 turns of 2. 0mm en.Cu wire, int.diam. = 10mm, Ferrite FX1115 L =L = 1 turn of 0.4mm en.Cu wire on or below. R This resistor is incorporated to reduce the carrier level to 8W

Milliard BLY35 Page 6 - i

N-P-N SILICON PLANAR BLY35 V.H.F. TRANSISTORS BLY83

p, x x x i—ii 1 1 1 1 1 1 in 1 B9579 r4Bnl L — - — - X ±± (w) UUU44-Ui44i^Lii-UXLUjJMi_ Xf- „ Typ.T HtttI - ^ i Ml M^ iJ_J_

_ _.. . . i_ i .^

. -+- ^rf^L ^ Min. _ .r — ^^

' ** 1 > >_ * zjz 1 , >p _[_ 4^\ "7 1 J 1 | ^^ , ^ ..x. _ ^ A \ lj

. ; J , i I ^^ j* jj ^ _l_

i , £_ i _^c_ —

'

y ^ i r r -|_.. - y ^ ^_ 7W A.M. 175MHz amplifier JMj' vrc =lJ*8(sec cct on page b) - 6 jf M ~~ f\ f, , i l^ i i M f \M j

< _i___Wl__ , , _j

; ,/_] ' : I __, 1 __,

__l 1

: I 1 I I c __!_ 5 f I r i I (ii -f- jXXXtTTTTTXIXH-+hH 200 300 400 500 600 C.W. Drive Power to BLY33 (mw) AERIAL CARRIER POWER PLOTTED AGAINST C. W. DRIVE POWER FOR THE 7W A.M. 17SMHz AMPLIFIER (see page 5)

- " p, 1 - 1 1 1 1 .«,. i II CARRIER - — (W) 71MHZ 80MHz

,' L^ _l / P J~ ._ jt 88MHz

-if i A 0<* _jf r" i 7 , ,d^ - _ j , r -^r — —

__. f ,r ^ # # r i \i , r —* W- M -d , m A _at' X / _2 ^ 7W A.M. 80MHz amplifier

""' ' " ' =13 8 scc j / - lV 1 \fcc W cct on page 6) fi J L x /" ~~ ' j i : f J j |

/ , / i i I ,

_#_ _Jf _^ # ' _j J § i " ..... w i __^ L , #

,~~ ~~*~ __, J_ J j -j— .. "." ~

Milliard BLY35 Page 7 )

APPLICATIONS INFORMATION (contd.

R. F. performance in c. w. operation at f = 175MHz, T ^40 C

v P P into 5CK2 V G cc • DR P

(V) (W) (W) (%) (dB)

24 1.35 13 typ. 65 typ. 9.8

- - 13.8 1.35 7. 5 typ.

4.0 nF Supply

511

/^rv~v~\

L_ ±*- lr i \\ SOfl Tb.25uF

Component values for 175MHz amplifier circuit: -

C =C =C = 30pF max. concentric trimmer capacitors C„ = 60pF max.

L = 25. 4mm of straight 1. 7mm Cu wire

L. = 3 turns of 0. 5mm Cu wire on Ferrite FX1115

L„ = 3 turns of 1. 7mm Cu wire, int.diam. = 9.5mm, length = 9.5mm 3 L = 2 turns of 2. 0mm Cu wire, int. diam. = 12. 7mm, length = 9. 5mm 4

Milliard

BLY35 Page : N-P-N SILICON PLANAR BLY35 V.H.F. TRANSISTORS BLY83

c 4771 20

— ?L V =24V (W) CC

VCC =13.8V

in

Typical curves U 175MHz Tmb =40'C

n

5 PDR (W)

LOAD POWER PLOTTED AGAINST DRIVE POWER

Milliard BLY35 Page 9 )

APPLICATIONS INFORMATION (contd.

in c.w. operation at f = 80MHz, T s40 C R. F. performance h

v P P into 50S2 cc DR

(V) (W) (W)

13.8 0.5 12. 5 typ.

6.9 0.5 5. Otyp.

1000 pF Supply

Component values for 80MHz amplifier circuit

C, =C C = C = 4 to 29pF concentric trimmer capacitors 1 L =4 turns of 1. 2mm Cu wire, int. diam. = 6. 3mm, length = 8. Omm

L= 2 turns of 0. 35mm Cu wire, on Ferrite FX1115

L„ = 5 turns of 1. 2mm Cu wire, int. diam 6. 3mm, CLOSE WOUND

5 turns of 1. 7mm Cu wire, int. diam. = 9. 6mm, length, = 12mm

Milliard BLY35 Page 10 1

N-P-N SILICON PLANAR BLY35 V.H.F. TRANSISTORS BLY83

p 1 1 \ 1 1 1 1 Ll i i II II 1 _, 1 , JJJJILLLLL) (W) T ^ - Typtcal curves

± T =40°C •aB"""1 *bC"''''*°^ mb — g**

4^Z

i- -i- ^ +j*r : - Vr -H-^^Hi-~' "t/^

1 w\

M \ " q^-p-r ~t jr. "*" ----- =6-9V . ' ' _— 5 # ~l " - . j < — --« i:ip_ " Tti -iB-""T- " -J~[\ PLtf* - " -H "f'JyK "|" "

|# - -4^ -. . ^ QI5"-- — -{- 0-2 0-4 0-6 0-8 PDR (W)

LOAD POWER PLOTTED AGAINST DRIVE POWER

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure thatall those who may handle, use or dispose of this device are aware of its natureand of thenecessary safety precautions. In particular,

it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR.

Mullard BLY35 Page 1 N-P-N SILICON PLANAR BLY36 V.H.F. TRANSISTORS BLY84

Silicon n-p-n transistors for v. h.f. mobile operation in class B. The BLY36 is mounted in a TO-60 envelope and the BLY84 is mounted in a plastic, capstan strip- line encapsulation.

The transistors are primarily intended for f. m. operation at 13. 8V.

QUICK REFERENCE DATA

v f P P into 50Q cc DR V Circuit (V) (MHz) (W) (W) (%)

13.8 175 1.2 7. typ. 77 typ. Un -neutralised

13.8 175 3.4 13.2 typ. 79 typ. common -emitter

13.8 80 0.5 13.5 typ. 80 typ. class B.

Unless otherwise stated data are applicable to both types

OUTLINE AND DIMENSIONS

(Emitter connected to stud) BLY36 J. E.D. E.C. TO-60

BLY84 Capstan strip -line (Stud isolated)

For details see page 2

JkH\4

BLY36 BLY84

Mullard OCTOBER 1972 BLY36 Page 1 —

OUTLINE DRAWINGS (All dimensions in mm) BLY36

198 ™" e b 10-32UNF E_|

\

, £

^J-' ir' ^ 3.1™" 11.0 76 mo, 11.50 11.5™" , 10.72 ,

Accessories

Nut and lock -washer supplied with device

Torque on nut: min. 0. 8Nm (8kg cm) max. 1. 7Nm (17kg cm)

BLY84

All dimensions in mm Accessories

Nut and lock -washer supplied with device

Torque on nut: min. 0. 75Nm (7. 5kg cm) max. 0. 85Nm (8. 5kg cm)

Milliard BLY36 Page 2 1

N-P-N SILICON PLANAR BLY36 V.H.F. TRANSISTORS BLY84

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

m3X - 40 V VCBOM

V maX - (R 0) 40 V CESM BE=

m3X - 20 V V CEO

V maX - 4.0 V EBO

I max. 2.5 A

I max. (f <1.0MHz) 2.5 A

I max. (f ai.OMHz) 7.5 A

(f 12 W P max. v 21.0MHz, T u *90°C) tot h

Temperature

BLY36 -65 to +200 T stg BLY84 -65 to +150

P to, 1 1 1 1 1 1 1 1

IW] f > 1.0MHz

Short duration e* overload conditions — V ' \ 1

v Continuous \ operation d 5 I \ _J

100 Th CO 200

Mullard BLY36 Page 3 ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

Collector -base breakdown voltage (BR)CBO I = 10mA 40

Collector -emitter breakdown voltage (BR)CES I = 10mA, R =0 40 c BE

Collector -emitter breakdown voltage (BR)C EC- I = 50mA 20

V Emitter -base breakdown voltage (BR)EBO L = 1.0mA 4.0 E

Static forward current transfer ratio FE 10 60

Transition frequency

I = 1.0A,V = 5.0V C CE

f = 100MHz, T , = 25°C 250 450 MHz amb

Collector capacitance Tc V„ =10V, I =1 = 0, f=1.0MHz 37 45 pF CB E e

Emitter capacitance J Te V„„ = 0, T =1 = 0, f = 1.0MHz 100 155 pF EB C c

Milliard BLY36 Page 4 N-P-N SILICON PLANAR BLY36 V.H.F. TRANSISTORS BLY84

APPLICATIONS INFORMATION

R. F. performance in c. w. operation at f = 175MHz, T £40 C

v P P into 50Q V G cc DR P

(V) (W) (W) <%) (dB)

13.8 1.2 7. typ. 77 typ. 7.6

13.8 3.4 13.2 typ. 79 typ. 5.8

4.0 nF

Component values for 175MHz amplifier circuit: -

= = capacitors C = C„ C . 30pF max. concentric trimmer C = 60pF max. concentric trimmer capacitor

L = 25. 4mm of straight 1. 7mm Cu wire

L„ = 3 turns of 0. 5mm Cu wire on Ferrite FX1115

L„ = 3 turns of 1. 7mm Cu wire, int. diam. = 9. 5mm, length = 9. 5mm

L =2 turns of 2. 0mm Cu wire, int. diam. = 12. 7mm, length = 9. 5mm 4

The issue of the information contained in this publication does not imply any authotily or licence for the utilisation of any patented feature.

Milliard BLY36 Page 5 20

(W)

V =13.8V Typ. CC

WWCf = 175MHz

5 PDR (W)

LOAD POWER PLOTTED AGAINST DRIVE POWER

Milliard BLY36 Page 6 )

N-P-N SILICON PLANAR BLY36 V.H.F. TRANSISTORS BLY84

APPLICATIONS INFORMATION (contd.

R. F. performance in c. w. operation at f = 80MHz, T, =£40°C h

v P P into 50S2 V G cc DR P

(V) (W) (W) (%) (dB)

13.8 0.5 13.5 typ. 80 typ. 14.2

6.9 0.5 5. 5 typ. 80 typ. 10.3

1000 pF Supply

Component values for 80MHz amplifier circuit: -

C = C = C, = C . = 4 to 29pF concentric trimmer capacitors

L = 4 turns of 1. 2mm Cu wire, int. diam. = 6. 3mm, length = 8. 0mm

L„ = 2 turns of 0.35mm Cu wire, on Ferrite FX1115

L„ = 5 turns of 1. 2mm Cu wire, int. diam. = 6. 3mm, CLOSE WOUND

L . = 5 turns of 1. 7mm Cu wire, int. diam. = 9. 6mm, length = 12mm

Milliard BLY36 Page 7 N-P-N SILICON PLANAR V.H.F./U.H.F. TRANSISTOR BLY53A

Silicon n-p-n transistor for v.h. f./u.h.f. mobile applications. The device is mounted in a plastic, capstan strip -line encapsulation.

With a supply voltage of 13. 8V and a signal frequency of 470MHz, the BLY53A will produce 7. 0W output into a 50S2 load.

QUICK REFERENCE DATA

v f P P into 50J2 V T cc DR h Circuit (V) (MHz) (W) (W) (°C)

12.5 470 2.2 7. min. 65 min. 25

13.8 470 2.0 7. min. 65 min. 25 Un -neutralised common -emitter 13.8 470 2.0 7. 8 typ. 70 typ. 25 class B 12.5 175 0.4 7.2typ. 66 typ. 25

OUTLINE AND DIMENSIONS

All dimensions in mm

ACCESSORIES

Nut and lock-washer supplied with device

Torque on nut: min. 0. 75Nm (7. 5kg cm)

max. 0. 85Nm (8. 5kg cm)

Milliard DECEMBER 1971 BLY53A Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical 36 V maX " V CBOM 36 V maX - (R 0) VCESM BE= 18 V V maX - CEO 4.0 V V maX " EBO 1.0 A I max.

4.0 A I max. (f > 10MHz)

10 P max. (f >10MHz, T. <70°C) W tot — n —

See also graph below

Temperature T -65 to +150 stg

I I I ! I I 10

f » 10MHz P,„ =(P +P DC dr)-Pl " 20 lr (A) Ptot — Short duration (W) overload conditions

DC 15 1

5

10

= 2 5 - C

0.1 --\7 5°C

Continuous operation

Safe operating area

|

o.m 2 5 7 50 100 Th CO 150 1.0 100

Milliard BLY53A Page 2 N-P-N SILICON PLANAR BLY53A V.H.F./U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max.

V Collector -base breakdown voltage (BR)CBO I = 10mA 36

V Collector -emitter breakdown voltage (BR)CES I = 10mA, R = 36 c BE

V Collector -emitter breakdown voltage (BR)CEO I = 25mA 18

V Emitter -base breakdown voltage (BR)EBO L = 1. 0mA 4.0

V Collector -emitter saturation voltage CE(sat) I„ =0.5A, L = 0. 1A 0.2 hFE Static forward current transfer ratio I =0.5A,V = 5.0V 10 C CE 40 tfT Transition frequency I = 0. 5A, V = 5. 0V, f = c 500MHz 1300 MHz

C Collector capacitance Tc V_,= 10V, L, =1 =0, f=1.0MHz 14 20 pF ud ej e C Te Emitter capacitance V„ = 0,1=1 = 0, f = 1. 0MHz 65 pF EBD C c Collector -stud capacitance 2.0 pF

Derived from the 'S' parameters measured at f = 500MHz, T , = 25°C. amb

Milliard BLY53A Page 3 1500

K VCE =5.0V r?1 (MHz) f - 500MHz / f Tomb = 25''C

Jyp

1000 —

NOTE- Graph derived from the 'S' parameters measured at f= 500MHz.

I II II 1 1 1 1 1 M 500 0.5 1.0 I C IA)

D2787

1 C Tr

j IpH) 1 I =1, =0 E 25 f = 1.0MHz

20

15 j¥P

10

5

5 10 15 VCB (V) 20

Mullard BLY53A ?age 4 1

N-P-N SILICON PLANAR BLY53A V.H.F./U.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F. Performance in c.w. operation (T = 25°C)

V f P P into 5012 V z. Y cc DR l L (V) (MHz) (W) (W) (%) (a) (mmho)

12.5 470 2.2 7. min. 65 min. - -

13.8 470 2.0 7. min. 65 min. - -

13.8 470 2.0 7.8 typ. 70 typ. 2. 3+j 6. 3 50-] 36

12.5 175 0.4 7.2 typ. 66 typ. 3+j 0. 5 90-] 40

At Pl = 7. 0W and Vcc = 12. 5V , the output power at heatsink temperatures between 25 and 90°C relative to that at 25°C is diminished typically by 10mW/°C.

The transistor is designed to withstand full load mismatch in the test circuit under the following conditions: -

U V = 16.5V f = 470MHz T = 70 C cc h

V.S.W.R. = 50: at any phase

P =P n°m - DR DR +20%

Where P_ nom. = P for 7. 0W transistor output into 50fi

load at V = 13. 8V.

470MHz Amplifier circuit

J vcc

z. L3

L5 Output f-i Input *tO son V

-L =C1 \> L2 'C3 C6=^ T

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

Milliard BLY53A Page 5 )

APPLICATION INFORMATION (contd.

Component values for 47QMHz amplifier circuit

CI = C2 = C4 = C5 = 1. 8 to 18pF film dielectric trimmer capacitors C3 = 6. 8pF ceramic capacitor C6 = 0. 1/^F ceramic capacitor C7 = 4000pF feed -through capacitor C8 = lOpF ceramic capacitor LI = L4 = L5 = 20mm of straight 1. 2mm copper wire. Height above board = 2mm L2 = 0. 47/^H choke

L3 = 1 turn of 1. 7mm copper wire, int. dia. 10mm, lead length = 5mm R = 10J2 - carbon

Component layout on 1.5mm double copper clad fibre -glass board

Shaded area copper Underside area completely copper clad

Mill Typical curves (W) Mill 1 f =A70MHz Typical curves T - 25°C h IV.) ii i i i « =I3.8 V CC f = 470MHj

T = 25° C 1 1 h 12.5V

4 S > / s' S >v- V S ^ V s V - Vcc = 13.8 V >v "s >s 60 \ V t 12.5V

3P IW)« DR 3 P^IWI

TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRIVE POWER

Milliard BLY53A Page 6 )

N-P-N SILICON PLANAR BLY53A V.H.F./U.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.

D3392

I I I I I I

V nom = 13-8V f = 470MHz cc

= 13.8 V and VS.W.R. = 1

P nom = P at V = 13.8V, V.S.W.R.=1 and T =25°C P nom L L CC h L Short duration (W) overload V.S.WR. uptoTj, = 70°C 10 V.S.W.R.«:3

= 10

= 50

DR, P DR nom 1.0 1.1 1.2 cy V nom cc

INDICATED LOAD POWER AS A FUNCTION OF OVERLOAD

The transistor Is suitable for use withunstabilised supply voltages. Theabove graph has been derived from an evaluation of the performance of transistors matched up to 9 watts load power in the circuit on page 5, and subsequently subjected to various voltage overloads and mismatch conditions with v. s. w. r. up to 50: 1 at a heatsink temperature of 70°C. This indicates a restriction to the load power matched under nominal conditions with varying supply voltages and v. s. w. r. in the recommended circuit.

Milliard BLY53A Page 7 )

APPLICATION INFORMATION (contd.

175MHz Amplifier circuit

Input CI

5oa ^^

Component values for 175MHz amplifier circuit

CI = 30pF ^) C2 = 60pF concentric trimmer capacitors C3 = 30pF C4 = 30pF J C5 = 0. 25/jF ceramic capacitor C6 = 4. OnF feed -through capacitor LI = 25mm of straight 1. 2mm copper wire. Height above board = 3mm L2 = 3 turns of 0. 5mm copper wire on Ferrite FX1115 L3 = 5 turns of 1. 2mm copper wire d = 10mm. Close wound, lead length = 5mm L4 = 3 turns of 1. 2mm copper wire d = 10mm. Close wound, lead length = 5mm R = lOH - carbon

Component layout on 1.5mm single copper clad fibre -glass board

Shaded area copper

Milliard BLY53A Page 8 )

N-P-N SILICON PLANAR BLY53A V.H.F./U.H.F. TRANSISTOR

APPLICATION INFORMATION (contd.

'L 1 1 1 III Typical cui/ves (W) n i m 1 Typical curves f =175MHj Mill 10 T„ = 25-C (%) f = 175MHz T„ = 25" C 1 1 1 1

Vcc = 13.8V

i; .SV 80

70 MB s Nj V cc = 13.8V /. ^ — ^ / S V II 2 s M2.5V 60 /

50

iO 1 0.5 1.0 0.2 0.4 0.6 PDR (W)0.8

TYPICAL VARIATION OF LOAD POWER AND EFFICIENCY WITH DRIVE POWER

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from: THE SERVICE DEPARTMENT MULLARD LIMITED P.O. BOX 142 NEW ROAD MITCHAM SURREY, CR4 4SR. Mullard BLY53A Page 9 . :

N-P-N SILICON V.H.F. POWER TRANSISTOR BLY55

TENTATIVE DATA

Silicon n-p-n high frequency medium power transistor primarily intended for class B operation in v.h.f. amplifiers. The emitter is electrically connected to the envelope QUICK REFERENCE DATA V max. (peak r.f. 21.0MHz) 40 V

V maX - CEO 20 V I max. (peak r.f. ai.OMHz) 3.0 A P, x max. (T , ^100°C) 4.0 W tot mb ' T. max. 150 °C J f min. (I = 0.2A, V = 5.0V, f = 100MHz) T C CE 250 MHz Performance in a 175MHz common emitter amplifier

Operation: f.m. V cc Supply voltage 13.8 V P Output power 4.0 W

G Power gain (typ.) 10 dB

T) Efficiency (typ.) 70 %

OUTLINE AND DIMENSIONS

Conforms to J. E.D.E.C. TO-60

Millimetres

—10-32 UNF Min. Max. 2A A A 9.53 11.56

B 2.29 3.43 ocxa C 5.46 8.13

0D 8.13 9.14

0D1 10.77 11.10

0D2 4.58 5.58

L 3.56 4.06 «D «Dl 0T 0.76 1.17

Emitter electrically connected to envelope

Milliard

MAY 1968 BLY55 Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical max. (peakr.f. si.OMHz) 40 V V„_„CEo

maX - 20 V VCEO

V maX - 4.0 V EBO

I max. 1.0 A

T 3.0 A CM max. (peakr.f. 21.0MHz)

I max. (peakr.f. <1.0MHz) 1.0 A

P, max. T , =25°C, fal.OMHz 10 W tot mb

, f<1.0MHz 8.0 W Tmb =25°C, See also pages 5 and 6

Temperature

+150 T . range 65 to C stg T. max. Continuous operation 150 °C

Intermittent operation, total duration 200 hours 200 °C

THERMAL CHARACTERISTIC

»«.,. 12 - 5 degC/W th(j-mb)m

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated) Min. Typ. Max.

I_,„_ Collector-emitter cut-off

CES . current V =40V, V = - 0.10 5.0 mA CE EB V =20V, V =0 - 0.02 0.5 mA CE EB

I Emitter cut-off current V =4.0V, I =0 - O.lu 0.5m A EB C

h Static forward current transfer ratio

I =0.2A, V =5.0V 10 60 C CE

Mullard BLY55 Page 2 . .

N-P-N SILICON Dl uY55*"* V.H.F. POWER TRANSISTOR " '

ELECTRICAL CHARACTERISTICS (cont'd)

Min. Typ. Max.

f Transition frequency = V 5 - 0V V^' CE ' - f = 100MHz, T , =25°C 250 450 MHz amb

C Collector capacitance V =10V = CB ' h V'°' f = 0.5MHz - 11 15 pF

C Emitter capacitance v™ = 0, 1^=1 =0, EB ' C c ' f = 0.5MHz 45 65 90 pF

RECOMMENDED OPERATING CONDITIONS

As a medium power amplifier for the output stage of a small transmitter or as a driver for larger output stages

F.M. Operation

f Operating frequency 175 MHz

v Supply voltage nom 13.8 V cc max. 16.5 V

V Base bias voltage V B P Output power 4.0 W o P Input power typ. 0.4 W max. 0.6 W ^C Supply current typ. 420 mA V Efficiency typ. 70 %

A heatsink of thermal resistance lOdegC/W is recommended for operation in ambient temperatures up to 65°C. At temperatures >65°C, derating is necessary.

Milliard BLY55 Page 3 . .

BASIC V.H.F. AMPLIFIER CIRCUIT Supply

I B8667I

RS = 50A 0'25jjF

The emitter is earthed via the case and the emitter pin is not connected

Component values for 175MHz amplifier circuit :-

C 30 pF

C 60 pF

C 30 pF

C 30 pF

L 1.0 inch of straight 18 s.w.g.

L 3.0 turns of 24 s.w.g. on Ferrite FX1115

L 5.0 turns of 18 s.w.g., d = 3/8", 1 = 3/8".

L 3.0 turns of 18 s.w.g., d = 3/8", 1 = 3/8".

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The

device is entirely safe provided that it is not dismantled

Care should betaken to ensure that all those who may handle, use ordispose of this device are aware of its nature and of the necessary safety precautions In particular, it should never be thrown out with general industrial or domestic waste. DISPOSAL SERVICE

Devices requiring disposal may be returned to Mullard Service Department. They must be separately and securely packed and clearly identified. If any

are damaged or broken they MUST NOT be sent through the post . In this case advice is available from the Service Department, Mullard Ltd. New Road, Mitcham, Surrey.

Mullard BLY55 Page 4 — N-P-N SILICON V.H.F. POWER TRANSISTOR BLY55

. po (W) 60

-

40 VCC =13-8V

; f = 175MHz

I

2-0

. 1 4- -1 - 7 - 1 ~ ~ I -- : i: -j - L 4 r

i _!__ ] I 02 0-4 0-6 0-8 P. (W)

TYPICAL VARIATION OF OUTPUT POWER WITH INPUT POWER FOR V.H.F. AMPLIFIER (See Recommended Operating Conditions on page 3)

p ^ I tot 3 (W) - - --- r~- -.ft —

+ P -!Ptnt = ( Pdc ^ J4.,i H v f > 1-OMHz -L )_ V i , I ! I I I I I I I I I I I X-~ - N ^j -'. - Intermittent operation \ - total duration 200hours ;"**" y tn * TH ^A * *•. jntinuous operation - 'S V b^p j-fj— j-i-i > — " l' 4=-" 44 ; / \ -^.t. ^ i-T s ^ _n xj^iJv l-^ \ j t

I \L^ L I s ».„ -( e - |~ Permissib areas ~ * of operat ion

|

: * I

• \ V

' ' | > < "±"_l_ > i i n "±H ; , h s. 50 100 150 200 Tmb (1C) MAXIMUM PERMISSIBLE POWER DISSIPATION P T OTTED AGAINST MOUNTING- BASE TEMPERATURE FOR FREQUENCIES >1.0MHz

Mullard BLY55 Page 5 -

BLY55

- 10 " V 7 L 1 5 I f<10MHz (A) 3 t:\

Perrnissib le care of operat on 0-1 \ - \\ i

7 -

- 5 -

- 3

; 001 3 5 7 :i 57 3 5 7 0-1 10 10 10 ° vCE (v) PERMISSIBLE AREA OF OPERATION FOR FREQUENCIES < 1.0MHz

I I I „,,,_,- tot :

~ ~ ' 4^ "" -• - - 1— "V- l-ii 'A

- x ' i -uxx ^^ , - llx i I i i " x " "x +x' ..± _x x - .- it. . . - -- - - TT f J X t -Xt + 100 _ hi_IJ_"S + 4 i t t X

, , | j i j \i i u

' ~ ] 4- tf<1-OMHz!-t " '~ 80 ht\t H t— —4 r I , | i ' ' Vl j I I *

. i ! j ^^ |

*

i , L —1 1 | __[ J_i — i V

I i 1 V ' i_ J. L i i_

! ^\ __, i

I i 60 i : I i _j ^ . _i _|

i .' I 1 < ! T ^t

I 1 j 1 1 [ 1 1 1 ^^ 1 1 _[

1 _!sJ

' T" i ' i 1 1 ^N i

40 i I ' | ]_' i : 1 Sl 1 1 _i_ _| J_ -I J l "+" i_ ^ ~t" ~i xMXx L t*c ^i 1 1 xf IX~

! 1 i TVi (

! ! ' 1 ' ' ' ' 1 1 1 1— 1 ^ — i i II i 20 i ' 1 1 1 j i ' 1 i \

: : : - h M ViPl SHrxxj^J^x^xxf -Srl -#= 50 100 150 PERCENTAGE POWER DERATING PLOTTED AGAINST MOUNTING- BASE TEMPERATURE FOR FREQUENCIES < 1.0MHz

Mullard BLY55 Page 6 N-P-N SILICON PLANAR BLY83 V.H.F. TRANSISTORS BLY84

For details see data sheets for types BLY35, BLY36 respectively

Milliard May 1973 BLY83 - Page 1 . .

N-P-N SILICON PLANAR BLY85 V.H.F. TRANSISTORS BLY97

TENTATIVE DATA

The BLY85 and BLY97 are primarily intended for class B operation in the v.h.f driver stages of mobile transmitters. The BLY85 is designed for 4W f .m. operation

at 13.8V supply and the BLY97 for 4W f .m. operation at 24V supply.

QUICK REFERENCE DATA

Typical performance at T , e.w. mb -<40°C

Type No V f P P CC DR L V (V) (MHz) (W) (W) <%>

BLY85 13.8 175 0.2 4.0 64

BLY97 24 175 0.14 4.0 52

Unless otherwise stated data are applicable to both types

OUTLINE AND DIMENSIONS

For details see page 2

Milliard OCTOBER 1970 BLY85-Page 1 OUTLINE AND DIMENSIONS

All dimensions in mm.

ACCESSORIES

Nut and lock-washer supplied with device

Torque on nut : min. 0.75Nm (7.5kg cm) max. 0.85Nm (8.5kg cm) RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical BLY85 BLY97

max. (f >1.0MHz) 40 66 V CES max. 20 33 V CEO max. 4.0 4.0 V 'ebo max. 1.0 1.0 A

< 1.0 1.0 A CM max. (f 1.0MHz) max. (f > 1.0MHz) 3.0 3.0 A 'cm

p max. (f > 1.0MHz, T < 25°C) 10 10 W tot mb 8.0 8.0 max. (f < 1.0MHz, T , —< 25°C) W tot mb Temperature

range -30 to +150 °C stg max. (continuous operation) 150 °C

max . (short duration overload conditions) 200 °C

Milliard BLY85-Page 2 N-P-N SILICON PLANAR BLY85 V.H.F. TRANSISTORS BLY97

THERMAL CHARACTERISTIC

R 12.5 degC/W th(j-mb)

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated) Min. Max. Collector cut-off current CES V = V maX V = 5.0 mA CE CES " BE ° V = 20V V = 0.5 mA CE ' BE °

EBO Emitter cut-off current Veb^-^'V 0.5 mA

Static forward current transfer ratio FE 10

Transition frequency

T = 250 MHz f=100MHz, amb 25°C

Collector capacitance Tc V„ =10V, I =1 =0, f = 0.5MHz 15 pF CB E e

Emitter capacitance Te V„ =0, I =1 =0, f=0.5MHz 45 90 pF EB C c

R.F. Performance in c.w. operation

T < 40°C mb -

V = nom. cc Type v f P P G cc DR L V number P (V) (MHz) (W) (W) (mA) (dB) nom. max. min. max. mm. mm.

BLY85 13.8 16.5 175 0.4 4.0 480 10 60

BLY97 24 28 175 0.2 4.0 278 13 50

Milliard BLY85-Page 3 . .

BASIC V.H.F. AMPLIFIER CIRCUI'J

4.0nF Supply

Component values for 175MHz amplifier circuit

CI = 30pF LI = 1.0 inch of straight 18 s.w.g. C2 = 60pF L2 = 3.0 turns of 24 s.w.g. on Ferrite FX1115 C3 = 30pF L3 = 5.0 turns of 18 s.w.g., d = 3/8", t= 3/8" C4 = 30pF L4 = 3.0 turns of 18 s.w.g., d = 3/8", t = 3/8"

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular,

it should never be thrown out with general industrial or domestic waste

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED 2, NEW ROAD, MITCHAM JUNCTION SURREY, CR4 4XY.

Mullard BLY85-Page 4 N-P-N SILICON PLANAR BLY85 V.H.F. TRANSISTORS BLY97

p tot BLY85 DI817 max BLY97 (W)

1 1 Ptot=( pdc*Pi)- po

f » 1.0MHz 15

10

Short duration overload condition

0.5

Continuous operation

n i 50 100 150 200 250 T mb CC)

in

0k f<1.0MHz ic (A) \\ BLY85 \\ BLY97

0.) V\ \ \

Permissible areas of operation

nm 0.1 1.0 10 VCE (V| 100

Milliard BLY85-Page 5 1U D1819 — I j- I BLY97

Typical curves pout (W)

BLY85

5.0

13.8V(BLY85) V CC"24V (BLY97)

f = 175MHz R L =5011 Tmb = 25-C

0.2 0.4 0.6 0.8 1.0 PDR (W)

80 D1820

a BLY85 Typical curves

70

BLY97

60

13.8V (BLY85) v CC "24V (BLY97]

f = 175MHz 50 R L =50A T mb = 25'C

an 0.2 0.4 0.6 0.8 1.0 PDR (W)

Mullard BLY85-Page 6 N-P-N SILICON PLANAR BLY89A EPITAXIAL V.H.F. TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class A, B and C operated mo- bile, industrial and military transmitters with a supply voltage of 13. 5 V. The tran- sistor is resistance stabilized. Every transistor is tested under severe load mis- match conditions with a supply overvoltage to 16. 5 V. It has a j " capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA

R. F. performance up to Tmb = 25°C in an unneutralised common -emitter class B circuit.

Mode of v f Cc ic Gp n operation (V) (MHz) (W) (W) (A) (dB) (56) (Q) (mA/V)

13.5 175 <6.25 25 <2.64 >6 >70 1.7+J1.4 209+J13.7

MECHANICAL DATA Dimensions in mm

J 5.1 _0142 cm _4.9 0112

t 10-32UNF 9.5

f- I

#-* 9.5

3.00 _. 2.85

11.6 575 10.6 5.25

Diameter of clearance hole in heatsink: max. Torque on nut: min. 15 kg cm 5.0 mm. (1.5 Newton metres) Mounting hole to have no burrs at either end. max. 17 kg cm De -burring must leave surface flat; do not

( 1. 7 Newton metres) chamfer or countersink either end of hole.

Milliard APRIL 1971 BLY89A Page 1 *

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector -base voltage (open emitter) peak value VCBOM max. 36 V Collector -emitter voltage (open base) VCEO max. 18 V Emitter -base voltage (open collector) v EBO max. 4 V

Currents

Collector current (average) JC(AV) max. 5 A

Collector current (peak value) f > 1 MHz ICM max. 10 A

Power dissipation

Total power dissipation up to TmD = 25 °C f > 1 MHz Ptot 70 W

T260090

DC. SOAR 1 IW25°C Ic V !16.5V 100 CE (A) f>1MHz 7 Put (W) 6

s lort time A 5 operation •'.? ? V.S.WR >1 .*<'* \

i?* t £ V S* \\ vH' h

normal operation

V.S.W.R5 3

50 100 Th (°C) 150 5 6 7 8 9 10 VCE (V] 20 Temperature

Storage temperature -30 T stg to +200 °C Operating junction temperature Tj max. 200 °C

THERMAL RESISTANCE

From junction to mounting base 2. R-th j -mb 5 °C/W

From mounting base to heatsink Rth mb-h 0. 3 °C/W

Mullard BLY89A Page 2 N-P-N SILICON PLANAR BLY89A EPITAXIAL V.H.F. TRANSISTOR

CHARACTERISTICS Tj = 25 °C unless otherwise specified

Breakdown voltages

Collector -base voltage open emitter, Ic = 50 mA v(BR)CBO 36 V

Collector -emitter voltage open base, Ic = 50 mA v(BR)CEO 18 V

Emitter -base voltage open collector; Ie = 10 mA V(BR)EBO 4 V

Transient energy

L = 25 mH; f = 50 Hz open base E > 8 mWs > -VbE = 1-5V; Rbe =33Q E 8 mWs

D.C. current gain typ. 50 I = 1 A; = 5 h-FE C VC E V 10 to 120

Transition frequency

IC = 4 A; Vce = 10 V fT typ. 650 MHz

Collector capacitance at f = 1 MHz typ. 65 pF = = IE Ie = 0; VC B 15 V < 90 pF

Feedback capacitance at f = 1 MHz

= = typ. 41 pF Ic 100 mA; VCE 15 V

Collector -stud capacitance typ. 2 pF

Milliard BLY89A Page 3 1000

=10V (MHz) \fcE

750

s ly V

500 /

/

250

2.5 7.5 12.5 I c (A) 15

300

= I E U=0 Co vlHz (pF)

200

100 S^t yp

10 VCB (V) 20

Mullard BLY89A Page 4 —

N-P-N SILICON PLANAR BLY89A EPITAXIAL V.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F. performance in c.w. operation (unneutralised common -emitter class B circuit)

VCC = 13. 5 V; Tmb up to 25 °C f(MHz) P (W) G (dB) 1(56) (n> Y (mA/V) PS(W) L IC(A) p Zi L 175 <6.25 25 <2.64 >6 >70 1.7+J1.4 209+J13.7

Test circuit 15 C7 th-vi 5011 Jf j -(5)

50X1 . rrr-rx (o) }\

CI = 4 to 44 pF film dielectric trimmer C2 = 2 to 22 pF film dielectric trimmer C3 = C4 = 47 pF ceramic C5 = 100 pF ceramic C6 = 150 nF polyester C7 = 4 to 104 pF film dielectric trimmer C8 = 4 to 64 pF film dielectric trimmer

LI = 0.5 turn enamelled Cu wire (1.5 mm); int.diam. 6 mm; leads 2x6 mm L2 = L3 = ferroxcube choke L4 = 3.5 turns closely wound enamelled Cu wire (1.5 mm); int.diam. 6 mm; leads 2x6 mm L5 = 1 turn enamelled Cu wire (1.5 mm); int.diam. 6 mm; leads 2x6 mm

Rl = 10 Q carbon

Component lay-out for 175 MHz see page 6.

Milliard BLY89A Page 5 . —

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

C5 D-R2 j£=& [-CZZD-JC6

ffl W L3 "U L4 C8

1 t1 —4r « <£*> U c,[®J iV

The circuit and the components are situated on one side of the epoxy fibre -glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets

Milliard BLY89A Page 6 N-P-N SILICON PLANAR BLY89A EPITAXIAL V.H.F. TRANSISTOR

f=r/SMHz

Vfc c =13.5V Tmb =25°C see circuit above s L Pl

(W) i / typ 30 f/ i /

20 10

>l " ty p

5(

10 PS (W) 15

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this

device are aware of its nature and of the necessary safety precautions . In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED 2. NEW ROAD, MITCHAM JUNCTION SURREY, CR4 4XY.

Mullard BLY89A Page 7 N-P-N SILICON PLANAR BLY90 EPITAXIAL V.H.F. TRANSISTOR

N-P-N silicon planar epitaxial v.h.f. power transistor for use in class A, B and C operated mobile transmitters with a 12. 5V supply. It can withstand severe load mismatch conditions with a supply overvoltage up to 15V. The BLY90 has a plastic encapsulated stripline package with all leads isolated from the stud.

QUICK REFERENCE DATA

R. F. performance in an un -neutralised common-emitter class B circuit, T. 5 25°C. h

Operation V f P P ! G V z. Y CC DR L c P l L (V) (MHz) (W) (W) (A) (dB) (SJ) (mA/V)

c. w. 12.5 175 <15. 8 50 <5. 33 >5.0 >75 1.3 + jl.6 270+ J160

OUTLINE AND DIMENSIONS

0.27 .„.

0.23 ||

Wx28UNF

/ - "

I ' \

-5 J

_ 13.5 .. ..8 .5 __ 12.5 7 2

*. AU dimensions in mm

Torque on nut; min. 23kg cm (2.3N m), max. 27kg cm (2. 7N m)

Diameter of clearance hole in heatsink*. max. 6. 5mm

Note: Do not chamfer the edges of the mounting hole when removing burrs.

Mullard OCTOBER 1971 BLY90 Page 1 1

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

36 V maX - V CBOM

maX - 18 V VCEO

V maX - 4.0 V EBO

8.0 W) maX - A

(t 20 A I CM max. >lMHz)

130 P max. (f >lMHz, T, < 25°C)' W tot v h — Temperature

T -65 to +200 °C stg,

2 D3270 150 10 r 1 i i 1 i —i i 1 V I S15V CE Th =25°C- f >1MHz Short duration overload condit ion Ic 'tot (A) max (W)

100 m "DC .,. \ v\

Continuous operation Safe iper iting area

50 1

•in-1

50 Th (°C) 100 10 VCE (VI 10'

Mullard BLY90 Page 2 N-P-N SILICON PLANAR BLY90 EPITAXIAL V.H.F. TRANSISTOR

U ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

V Collector -base breakdown voltage (BR)CBO open emitter, I = 100mA 36

Collector -emitter breakdown voltage (BR)CEO open base, I = 100mA 18

Emitter -base breakdown voltage (BR)EBO open collector, I = 25mA 4.0 L

Transient energy

L=25mH, f = 50Hz

open base 8.0 mWs - = 1 - 33S V 5V ' R 8.0 mWs BE BE=

Static forward current transfer ratio FE I = 1.0A.V = 5.0V 10 50 C CE

Transition frequency V^^CE^ 550 MHz Collector capacitance Tc = V = 0,,v =15V,15v , f=lMHz 130 160 PF lE=Ie cBLB

Feedback capacitance

I = 200mA, V = 15V 82 PF c CE

Collector -stud capacitance 3.5 pF

Milliard BLY90 Page 3 )

APPLICATION INFORMATION (contd.

Component layout and printed circuit board for 175MHz test circuit

- 123mm-

R1 R2 Ik I- C8 C7 C1 L3 CIO

C5 )= 55 mm C2 L1 i_M ca v/ O C6

C9

ground plane removed

The circuit and the components are situated on one side of the epoxy fibre -glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

Milliard BLY90 Page 6 -

N-P-N SILICON PLANAR BLY90 EPITAXIAL V.H.F. TRANSISTOR

60 100 03267 D3268

f = 175MHz ? 1Z.3V Th = 70°C

3 P L .11 Lnom Vcc„m=12-5V (W) (% ^fft-4 (W) BRnom^DR^ Vcc =12.5Vand V.S.W.R.= 1 see page 5 j / Vcc = 12.5 V

I I UQ ,—' | | 80H £-* "' "

f = 175MHz

Th = 25°C see circuit on p.5 ' Pno1 DF I

1 i P nom 1.2 I 3D L DR 10 20 1.0 1.1 Vcc 1.2

Vccnorr

INDICATED LOAD POWER AS A FUNCTION OF OVERLOAD (see note below)

NOTE

The transistor is developed for use with unstabilised supply voltages. The above graph has been derived from an evaluation of the performance of transistors matched up to 50 watts load power in the circuit on page 5, and subsequently subjected to

various voltage overloads and mismatch conditions with V. S. W. R. up to 50: 1 at a heatsink temperature of 70°C. This indicates a restriction to the load power matched under nominal conditions with varying supply voltages and V . S. W. R. in the recom mended circuit.

Mullard BLY90 Page 7 CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED 2 NEW ROAD, MITCHAM JUNCTION SURREY, CR4 4XY.

Mullard BLY90 Page 8 N-P-N SILICON PLANAR BLY93A EPITAXIAL V.H.F. TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 28 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a j" capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA

R. F. performance up to T^ = 25 °C in an unneutralised common -emitter class B circuit.

Mode of Vcc f PS PL 1 zi YL operation (V) (MHz) (W) (W) (A) (<&) (%) (Q) (mA/V)

28 175 < 3.1 25 <1.5 >9 > 60 l.O+jl.2 57.7-J52.7

MECHANICAL DATA Dimensions in mm

5.1 .-_ 0.142 cn _49 0112

t --*(+-»-- 10-32UNF 4 9.5

*- 9.5 1.6max-

3.00^ 265

11.6 , 575 10.6 5.25

Diameter of clearance hole in heatsink: max. Torque on nut: min. 15 kg cm 5.0 mm. ,

(1. 5 Newton metres) Mounting hole to have no burrs at either end. max. 17 kg cm De-burring must leave surface flat; do not (1.7 Newton metres) chamfer or countersink either end of hole.

Milliard APRIL 1971 BLY93A Page 1 RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector-base voltage (open emitter) peak value vCBOM max. 65 V Collector-emitter voltage (open base) VCEO max. 36 V Emitter-base voltage (open collector) vEBO max. 4 V

Currents

(average) max. 3 A Collector current 'c(AV)

Collector current (peak value) f > 1 MHz Iru max. 9 A

Power dissipation

Total power dissipation up to T^ = 25 °C 70 W f > 1 MHz tot 7? 7Z OOZ 8 60030

D.C. SOAR —Iwzs-c | V « 28V 100 CE f>1MHz (A)

5 (Wl * ' short time S* 75 operation •'? * "V.S.W.R S."<% 'tp- lJ>« ft '« 50 s* &Hr.

normal 25 operation V.S.W.R.<3

"0 30 LA 50 100 VC) 150 Vce

Storage temperature 'stg -30 to +200

Operating junction temperature max. 200

THERMAL RESISTANCE

From junction to mounting base R-th j-mb 2.5 °C/W

From mounting base to heatsink Rth mb-h 0. 3 °C/W

Mullard BLY93A Page 2 N-P-N SILICON PLANAR BLY93A EPITAXIAL V.H.F. TRANSISTOR

CHARACTERISTICS Tj = 25 °C unless otherwise specified

Breakdown voltages

Collector -base voltage open emitter, 1q = 50 raA V(BR)CBO > 65 V

Collector -emitter voltage open base, Iq = 50 mA v(BR)CEO > 36 V Emitter -base voltage open collector; Ie = 10 mA v(BR)EBO > 4 V

Transient energy

L = 25 mH; f = 50 Hz open base E > 8 mWs -VBE = 1.5 V; RBE =33Q E > 8 mWs

D. C. current gain typ. 50 I C = 1 A; Vce = 5 V hFE 10 to 120

Transition frequency

I C = 3 A; VC E = 20 V fT typ- 500 MHz

Collector capacitance at f = 1 MHz typ. 50 pF IE = Ie = 0; VC B = 30 V C c < 65 pF

Feedback capacitance at f = 1 MHz

I = 100 mA; = c VCE 30 V "Cre typ. 31 pF

Collector -stud capacitance C cs typ. 2 pF

Milliard BLY93A Page 3 600

VCE~ f

(MHz) t>

400

200

I 1 1 1 6 I C (A)

I

i =i.=o 100 e f=1MHz

Cc (pF)

75

v*yp

50

25

10 20 VCB (V) 30

Mullard BLY93A Page 4 N-P-N SILICON PLANAR BLY93A EPITAXIAL V.H.F. TRANSISTOR

APPLICATION INFORMATION

R. F. performance in c.w. operation (unneutralised common-emitter class B circuit)

Vcc =28V;Tmb =25°C

f(MHz) P (W) P (W) I (A) G (dB) Zi (Q) 7 (mA/V) S L c p n(%) T

175 c 3.1 25 < 1.5 > 9 > 60 1.0 + j 1.2 57.7-J52.7

Test circuit C7 rrw,16 jf . (5) spa C2 L1

Cl = 4 to 44 pF film dielectric trimmer C2 = 2 to 22 pF film dielectric trimmer C3 = C4 = 47 pF ceramic C5 = 100 pF ceramic C6 = 150 nF polyester C7 = 4 to 104 pF film dielectric trimmer C8 = 4 to 64 pF film dielectric trimmer leads 2x6 LI = 0.5 turn enamelled Cu wire (1.5 mm); int.diam.6 mm; mm L2 = 6 turns closely wound enamelled Cu wire (0.7 mm); int.diam.4 mm; leads 2x4 mm L3 - L4 = ferroxcube choke leads 2x6 L5 = 3.5 turns enamelled Cu wire (1.5 mm); int.diam. 6 mm; mm leads 2x6 L6 = 1.5 turns enamelled Cu wire (1.5 mm); int.diam. 6 mm; mm

Rl = R2 = 10 Q carbon

Component lay-out for 175 MHz see page 6.

Milliard BLY93A Page 5 .

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

_ 106mm-

cs . _t D-R2 3=* D-C6 C2 ^ r<= ® ^L 55 mm y ^ \

TTie circuit and the components are situated on one side of the epoxy fibre -glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

Milliard BLY93A Page 6 N-P-N SILICON PLANAR BLY93A EPITAXIAL V.H.F. TRANSISTOR

f = 175 MHZ

Vfc c =28V 40 '" PL Tmb=25°C ,' see circuit above S

(Wl

typ 30

20 10

.1)

1°/.>) *' _| t> p 1 10 50

2.5 5 Ps (W) 7.5

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is

entirely safe provided that it is not dismantled.

Care should be taken to ensure that all those who mayhandle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular,

it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED 2. NEW ROAD, MITCHAM JUNCTION SURREY, CR4 4XY.

Mullard BLY93A Page 7 .

N-P-N SILICON PLANAR BLY94 EPITAXIAL V.H.F. TRANSISTOR

Silicon n-p-n planar epitaxial transistor intended for use in class A, Band C opera- ted mobile transmitters with a 28V supply. It is designed to withstand severe load mismatch conditions TheBLY94 is in a plastic-encapsulated stripline package with all leads isolated from the stud. QUICK REFERENCE DATA

= in an un-neutralised R.F. performance up to Tj1 25°C common-emitter class B cil'cuit.

v f P P G V z. Y cc DR L l L Operation P (V) (MHz) (W) (W) (A) (dB) (£2) (mA/V)

c.w. 28 175 <10 50 <2.75 >7 >65 0.7+J1.45 120-J70

OUTLINE AND DIMENSIONS

0.27 _., 0.23 > C V "«-y 5.5

k. >^ -A. .. Wx28UNF \

u 13.5_ B.5 K"x28UNF 12-5 "7.2

All dimensions in mm

Torque on nut : min . 23 kg cm (2.3 N m) max. 27 kg cm (2.7 Nm)

Diameter of clearance hole in heatsink: max. 6.5mm

Note: Do not chamfer the edges of the mounting holes when removing bui-rs.

Mullard APRIL 1971 BLY94 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

VCBOM maX - 65 V

- 36 V VCEO maX

V m3X - 4.0 V EBO

X maX - 6.0 A CCAV) I„„„CM max. (f >lMHz) 12 A

P, , max. (T. < 25°C, f >lMHz) 130 W tot n *~ Temperature

65 to +200 °C stg T. max. 200 °C } THERMAL CHARACTERISTICS

R., 1.35 degC/W " th(j-mb) R, 0.2 degC/W th(mb-h)

2 DM35 150 in VCE * 28V T h.25°c:: short tim e f >1MHz — operation i Ic r ^ (A) tot V.S.W.R.>3 V \ &V \ \ nc rmal operation \\ V.S W.N .<3 Area of sa fe op eration 50 1

m-1

50 Th CO 100 10 (V) 10"

Mullard BLY94 Page 2 N-P-N SILICON PLANAR BLY94 EPITAXIAL V.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max.

Collector-base breakdown voltage (BR)CBO open emitter , I = 100mA 65

Collector-emitter breakdown voltage (BR)CEO open base, I = 100mA 36

Emitter-base breakdown voltage (BR)EBO open collector, I = 25mA 4.0 E

Transient energy L=25mH, f = 50Hz

open base 8.0 mWs

-V = 1.5V, R = 33Q 8.0 mWs BE BE

Static forward current transfer FE ratio = = I 1 -°A V 5V 10 120 C > CE

Transition frequency = 6 ' V 2 °V 500 MHz V ^ CE Collector capacitance Tc I =1 =0, V =30V,= 3( f = 1.0MHz 75 130 pF WE e ' CB -C Feedback capacitance

I = 100mA, V„ =30V 47 pF C Chj

Collector-stud capacitance 3.5 PF

Milliard BLY94 Page 3 .

APPLICATION INFORMATION (contd.)

Component layout on a printed circuit board for 175MHz test circuit

-123 mm-

R1 R2 L5 < ) + Vn

C6 C1 U C5 C8

' L6 e J- \.y 55 mm INi\ r >- ?L2 o O O C9 C2 C3 M L7

C7

ground plane removed

The underside of the epoxy fibre-glass board is completely metallised and serves as earth.

Earth connections are made by means of hollow rivets

Milliard BLY94 Page 6 .

N-P-N SILICON PLANAR BLY94 EPITAXIAL V.H.F. TRANSISTOR

75 \ f = 175MHz S VCC = 28V Th =25°C (W)

50 100 "T'^V

'I typ (%) '* '1 I*

25 -50- rM 7 1 1 / 1 10 PDR(W) 20

CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled

Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste.

DISPOSAL SERVICE

Devices requiring disposal may be returned to the Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case, advice is available from:

THE SERVICE DEPARTMENT MULLARD LIMITED 2 NEW ROAD, MITCHAM JUNCTION SURREY, CR4 4XY.

Mullard BLY94 Page 7 N-P-N SILICON PLANAR Dl DLVQ77# V.H.F. TRANSISTOR '

For details see data sheet for type BLY85

Mullard JULY 1972 BLY97 Page 1 SILICON P-N-P-N BRY39 PLANAR TRANSISTOR

For use as a PROGRAMMABLE UNIJUNCTION TRANSISTOR

The BRY39 is a planar p-n-p-n trigger device in a TO -72 metal envelope, intended for use in switching applications such as motor control, oscillators, relay replace- ment, timers, pulse shaper, trigger device, etc.

See also data on BRY39 as a Silicon Controlled Switch and as a Thyristor Tetrode.

QUICK REFERENCE DATA

V„ . max. Anode gate to anode voltage GaA 70 V

I, max. Anode current, d.c. (Ts ==85°C) 250 mA A case

T. max. Junction temperature 150 °C i

! Peak point current (V = 10V, R = lOkQ) <5.0 fiA P S G

point = = Valley current (V 10V , R -lOkQ) >50 HA V S G OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-12A/SB4-3 J.E.D.E.C. TO-72

1.16

0.48 max

•a, W max cathode gate L cathode 01102/1

5.3 . max _ -12 7 mm

All dimensions in mm

Anode gate connected to case

*For the application of the BRY39 as a programmable unijunction transistor, cathode gate is not used.

Accessories available: 56246 (distance disc) and 56263 (cooling clip)

Mullard MAY 1973 BRY39 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

70 V_ . max. Anode gate to anode voltage V GaA

max. Anode current (d. c. ) T ,_ =;25 C 175 mA I,A amb T ==85°C 250 mA case

current !.„„»ARM max - Repetitive peak anode t = 10ns, d = 0.01 2.5

max. Non -repetitive peak anode current IASM t = 10ns, T. = 150°C 3.0

Rate of rise of anode current

up to I , = 2. 5A 20 A/ns dt A

Temperature

T Storage temperature -65 to +200 C stg

T max. Junction temperature 150 °C J THERMAL CHARACTERISTICS R Thermal resistance from junction th(j-amb) to ambient, in free air 0.45 °C/mW

Thermal resistance from junction th(j-case) to case 0.15 °C/mW

CHARACTERISTICS (T = 25°C unless otherwise stated) ELECTRICAL amb

Min. Typ Max.

Peak point current V = 10V; R = 10kS2 5.0 HA

V =10V, R : 1MS2 1.0 nA S G \ Valley point current V„ = 10V, R_ = 10kJ2 50 ha S G V = 10V, R„ = 1MS2 50 HA

Mullard BRY39 Page 2 )

SILICON P-N-P-N BRY39 PLANAR TRANSISTOR

ELECTRICAL CHARACTERISTICS (contd.

Practical test circuit

(1) Remove BCY71 for measurement of I

(2) The value of Rl depends on the voltage range of the voltmeter used.

D3075.1 BRY39 with "program" Equivalent test circuit resistors Rl and R2 for characteristics testing

Offset voltage (see graph on page 6)

V =Vp-V (I 0) offset S A=

JoaAO Ip A U

Milliard BRY39 Page 3 —

ELECTRICAL CHARACTERISTICS (contd.) Min. Typ. Max.

Anode gate to anode leakage current GaAO

I = 0, V„ . = 70V 10 nA K GaA

Anode gate to cathode leakage current GaKS

V.„ =0, V ,, = 70V 100 nA AK GaK

TUT. _ - -

+ 4nVGoK

Anode voltage I. = 100mA A 1.4 OM Peak output voltage V 20v 2 >»F 6.0 AA = c = °- Rise time V =20V, C = lOnF 80

90%

10% —

Milliard BRY39 Page 4 SILICON P-N-P-N PLANAR TRANSISTOR BRY39

10 10

=l I I I I II I I I- typical values I typical values zz Ip T b=25°C = V =10V am Ip S I|jAI (jjA) I I I Re=1kft .R G =1kA_—

10" 10" =i.10kil. K nko

100k a 10" IMfL-

^1M.l

I

10" 10" -50 50 T (°C)100 10 20 Vs (V) 30 amb

10- 4 'Till "! 10 — typical values I I I I I Tamb--25°C — typical values VS =10V _J I I Iv P Iv (uA) luAl

10kft 2 3 10 — 10

100kfl R Iki1

1>in 10 — 10^

infIk -|

_ Ml1 10 10 20 Vs (V) 30 -50 50 Tamb (°C) 100

Milliard BRY39 Page 5 ^

zr typical values VS =10V

V offset (V)

1.5

Ug = 1M a

0.5 lookn.^ 10W1

-50 50 Tamb (°C) 100

30 9 VAA I

(V) 510kfl 16kA T 1

20 IT 1 _,*2_100nF r- / *<> * **^ IC ' '—*" ^0 -* i ^

~- «- n n *^^ rt 2on 27k.fl v^" ^ 10nF ^^^ «^ f V ^^^ -*<*** T >$* ^"^ 10 ^ 0*^ ^7/ X *"" *.*'*' iX^** r

I s'2''* ^^^ • ?* ^,*^ ^.—i 1nh ^^ ^ — — — ^* rf^ -,p' ^«^ . ^^^T -, p- — ^^ **"*^ " — -"""""'' ^ **^ -""' ^ —""" e£ * ""l-— — — """T

10 20 30 V.,(V) ^0

Mullard BRY39 Page 6 SILICON P-N-P-N BRY39 PLANAR TRANSISTOR

For use as a SILICON CONTROLLED SWITCH

The BRY39 is a silicon planar p-n-p-n switch in a TO-72 metal envelope, intended as a driver for numerical indicator tubes and other switching applications. It is an integrated pnp-npn transistor pair, with all electrodes accessible. See also data on BRY39 as a Thyristor Tetrode and as a Programmable Unijunction Transistor.

QUICK REFERENCE DATA

Max. emitter -base voltage of the P-N-P transistor EBO (open collector) 70 V

Max. collector -base voltage of the N-P-N transistor CBO (open emitter) 70 V

peak emitter current 2. 5 A ERM Max. repetitive - 275 Max. total dissipation (T 25 c ) mW h Max. operating junction temperature 150 °C

Forward on -state voltage AK <1. 4 I = 50mA, I = 0,R = 10k. V A Ga GkK Holding current Hi <1 I = 10mA, -V = 2.0V, R = 10kS2 mA Ga BBDD GkK Turn-on time <0 25 MS

Turn-off time <5 Us

OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-12A/SB4-3 J.E.D. E.C. TO-72

dimensions in mm

The collector of the n-p-n transistor (anode gate) is connected to the case Accessories available: 56246 (distance disc) and 56263 (cooling clip)

Milliard MAY 1973 BRY39 Page 1 )

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

p-n-p n-p-n V max. (open emitter) -70 70* V

V maX (R = Wka) - 70* V CER - BE V max. (open base) -70 - CLU V V_ n_ max. (open collector) -70* 5.0t V

I max. (d. c. 175 -175 mA h IERM max. (repetitive peak value, t =1Qms, d = 0.01) 2.5 -2.5 A

- I max. (d. c. 175** mA

- I max. (peak value) 175i mA

P max. (T , ==25°C) 275 mW tot amb Temperature

T. max. 150 °C J T range -65 to +200 °C stg THERMAL CHARACTERISTIC R ° - °- 45 C / mW th (j amb)

*In numerical indicator tube driver circuits higher voltages are allowed, provided the collector current does not exceed a d. c. value of 1.0mA.

tin numerical indicator tube driver circuits higher voltages are allowed during the discharge of a capacitor of a maximum value of 390pF, provided the charge does not exceed 50nC.

"Provided the I„ rating is not exceeded.

JDuring switching on, the device can withstand the discharge of a capacitor of maxi- mum value of 500pF. This capacitor is charged when the transistor is in cut-off condition, with a collector supply voltage of 160V and a series resistance of lOOkP..

Milliard BRY39 Page 2 —

SILICON P-N-P-N PLANAR TRANSISTOR BRY39

SYMBOLS AND EQUIVALENT CIRCUITS

P-N-P-N structure and a two transistor equivalent circuit A A (anode) e -2) ( 2) Ga c b 1 I ( 1> 2) Ga Ga PNP p c b • (anode gate) ( 1. 2) transistor J— O Gk N N (cathode gate) P P Gk NPN N o * transistor (bl. = 2) Gk b c J I ( 1. 2) K K K (cathode) e e ( l) ( 1>

Silicon controlled switch

-OGa Vak SkO- |-IK

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

INDIVIDUAL N-P-N TRANSISTOR Min. Typ. Max.

I^P^ Collector cut-off current V = 7 °V R = 10kB 100 nA CE ' BE V__ = 70V, R^ = lOkfi, T. = 150°C 10 HA CE BE j I„ Emitter cut-off current L, =0, V CD = 5.0V, T. = 150°C 10 )iA C EB ]

Mullard BRY39 Page 3 )

ELECTRICAL CHARACTERISTICS (Contd. INDIVIDUAL N-P-N TRANSISTOR Min. Typ. Max. V Collector -emitter saturation CE(sat) voltage

I = 10mA, I = 1.0mA 500 mV C B

V Base -emitter saturation BE(sat) voltage

l„ = 10mA, I = 1.0mA 900 mV C B

D.C. current gain FE I = 10mA, V = 2.0V 50 c CE

Transition frequency

I = 10mA, V =2.0V 300 MHz c CE

Collector capacitance Tc 5.0 pF

Emitter capacitance Te i =i = o,v = i.ov 25 PF c c eb INDIVIDUAL P-N-P TRANSISTOR

CEO Collector cut-off current h = °- -VCE = 70V, T. - 150°C 10 lih

Emitter cut-off current EBO I_ =0, = = -V T, n 70V, T. 150°C 10 pA L JiB j

FE D.C. current gain I = 1.0mA,V = 0.25 2.5 E CB COMBINED DEVICE

AK Forward on -state voltage lOkB) (RGkK = I = 50mA, I =0 A Ga 1.4

I. =50mA, T =0, T. = -55 C 1.9 V A Ga j I. = 1.0mA, I = 10mA 1.2 V A Ga

Holding current

I 10mAmA,'- = 2 -° V V ' Ga = BB R lOkfi GkK 1.0 mA

'"I

J. Gk K

Milliard BRY39 Page 4 I

SILICON P-N-P-N BRY39 PLANAR TRANSISTOR

ELECTRICAL CHARACTERISTICS (Contd. ) (Tj = 25 C unless otherwise stated)

Switching times (see also page 7)

t Turn -on time when switched from = ' = " V - 5VtO+V 4 - 5V R 1 -° kfi - GkK GkK= GkK

2.7kn D5455 + 12VO— I- ovAK 16kfi - I I—O-t-SOV o-C m

Pulse duration increased until dashed curve disappears

Turn-off time R = J.Okfl <5.0 GkK R 10kS2 <8.0 US GkK

R„ 1T/r = lOkG, T. = 125°C GkK ]

+ 12VO-J- —O+50V

1kfl 2.7kA 16kft Ki C

iH -OV;'AK time

mere wettede7 7 QW contact"rt ¥ rh

Capacitance increased until at C=C pt m I—I dashed curve disappeais.

Milliard BRY39 Page 5 APPLICATION INFORMATION

Decade ring counter circuit with display (f s 40kHz)

Operating ambient temperature T = to 70 C

JM

2.-2 c 2

Mullard BRY39 Page I 1 i i

SILICON P-N-P-N BRY39 PLANAR TRANSISTOR

see page b see page 5

20

ton »q (ps) (Ms)

0.75 15

,

0.25 typ - typ, IkAj ^ IkO typ

I -100 100 200 -100 100 200 TambCC) Tambl-C)

i —— i— N-P-N transistor N-P-N transistor^

200 200 C J(1mb=25 Ir =10mA- typical values

150 150

yp

100 100

2V 50 50

50 100 150 50 100 150 T:(°C)

Mullard BRY39 Page 7 . n

10

| | | | R GkK = 10kn 'AI. A 'g. Tamb=25"C ImAI typical values - y T.U.T. IvBB K 7.5 T

I Ga =5mA I Ga = 50mA

// // I I 1 l\ \v vc v, "v. >•. _-VBB = 5V V ">. — — 2V OV

»BB= 3V 2\ -ov 1 1 1 0.7 08 0.9 1.2 1.3 Vak(V)

D5t64

20 I I I I I G „ =5mA ] '1 Tamb=25'C A go 1 I 'a V »y ^GkK 1\ (mA) ( T.U.T. K 3yeB I G „ = 50mA 15 T 1 1 kn

1 / 10 /

VBB =5V RGkK=n

.ov.-iokn I 1 1 1 0.7 0.8 0.9 1.2 1.3 Vak(V)

Milliard BRY39 Page 8 SILICON P-N-P-N PLANAR TRANSISTOR BRY39

1 1 1 1 1 1 1 1 1 1 I I I I 1

1 = I Ga = 5mA A 5mA 25 "C 100 Ub= 400 A '6« JyDical values ?)Ga " T.U.T. -V =0to5V 1 U BB Vqkk .R = 10kn\ ImA) GkK (mV) "Jvbb K 10mA- 1 I '1 A '& 75 v 300- I 7 K 15mA T 100mA 5C m A 50 200

1 1 1 -VBB = /5V;RGkK = 1kfL ,2V;1kn -VBB = 0to5V f/^0;1kn = 25 100 R GkK 10kn .

Tamb=25"C . 7 typical values

100 200 300 25 50 75 VokKlmV) loalmA)

1 1 1 1 1 i i i i = A Ga 5mA I = 100mA >G. A 100 famb^S-C / — 50mA Go / / — 20mA TUT / / /— 5mA p»B K Vrw*- / 7 l/ ImA) T IV) r / 4 L 75 0.75

-rV BB =0to5V - RGkK = 10kn '1 A J So 50 0.5 I ?JGa - TUT. 'bb = 5V K f< 3kK = ikn ~r

1 1 --2V:1«1 25 0.25 -VBB =0to5V

I I I Rgkk = '0kn ,0V; IkH Tamb = 25"C typical values

1 1 1 1 1

1 . 1 1 i II 0.5 1.5 25 50 75 Vgkk(V)

Mullard BRY39 Page 9 Ml! I I A = 1mA

5mA I =5mA 'Ga= . Ga = -V BB 2V . -VBB =2V RGWK = 10kn R = 10kn 'AK 'h GkK (V) [mA|

0.9 0.9

s'yp r>>K 0.8 08

0.7 0.7

0.6 0.6 -100 100 200 -100 100 200 T;(°C]

4 J30B9 10 Tf — z ::- '-¥ -ff ^j\* ^ tttf

h(j-amb) (°C/W)

10 3

10 2

-jl

10 '- +F

—LLL Mi

10" 5 10" 4 10" 3 10" 2 10~1 2 4 1 10 10 10\ , 10 tp (s)

Mullard BRY39 Page 10 — ,

SILICON P-N-P-N BRY39 PLANAR TRANSISTOR

] I I T„ | mb =25°C JUL '* Ia . d=0.0 1 11> J *s> IA) _.'r q.02^ -- 0.05 " ag..;;: o.i| 0,2 ---.,. 1 0.5

- ---

10"

10" 10" 10"' 10 tp (ms) 10^

I I I T = 70°C I amb :;. i i i i *- tpi *P 'A — T-'^ I d-A IA) d = 0.01 T

= ::— 0.02 =

i — — O.H p_=: =" =

0.5

10"

- -- " .. - .— .

10" 10" 10" 10' 10 t p (msl

Mullard BRY39 Page 11 SILICON P-N-P-N PLANAR TRANSISTOR BRY39 For use as a THYRISTOR TETRODE

The BRY39 is a planar p-n-p-n device in a TO-72 metal envelope, intended for use in switching applications such as relay and lamp drivers, sensing network for temperature, etc. See also data on BRY39 as a Silicon Controlled Switch and as a Programmable Uni- junction Transistor.

QUICK REFERENCE DATA

V =V max. 70 V D R VDRM =VRRM maX ' 70 V L max. (T < 85°C) 250 mA T case — ITSM max. (t=10fis, T. = 150°C) 3.0 A T. max. 150 °C i

dIT — max. 20 A/ MS

OUTLINE AND DIMENSIONS

Conforming to B.S-3934 SO-12A/SB4-3 J.E.D. E.C. TO-72

8T''

All dimensions in mm

Anode gate connected to case

Accessories available: 56246 (distance disc) and 56263 (cooling clip)

Milliard JULY 1971 BRY39 Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system.

Anode to cathode V =V max. Continuous voltage 70* V D R

70* - Repetitive peak voltage V VDRM =VRRM maX

70* V =V maX - Non -repetitive peak voltage V DSM RSM

I max. On-state current, d.c. U T , < 25°CC 175 mA amb — < 85°C 250 mA

max " Repetitive peak on -state 'trm current, t = 10(is, d = 0. 01 2.5

max - Non -repetitive peak on -state 'tsm current, t = 10us, T. = 150°C prior to surge 3. A

dL, Rate of rise of on -state currentnt

after triggering to I = 2. 5A 20 A/ us dt

Cathode gate to cathode

,. max. Reverse peak voltage 5. V V_.GkM

maX - Forward peak current 100 mA 'okM

Anode gate to anode

VGaM Reverse peak voltage 70 V

Forward peak current 100 mA 'GaM Temperature

T Storage temperature 65 to +200 °C stg

T. Junction temperature 150 °C J THERMAL CHARACTERISTICS

R, Thermal resistance from th(j-amb) junction to ambient in free air 0.45 C/mW

Thermal resistance from th(j-case) junction to case 0.15 C/mW

"These ratings apply for zero or negative bias on the cathode gate with respect to the cathode, and when a resistor R < 10kS2 is connected between cathode gate and cathode

Milliard BRY39 Page 2 R

SILICON P-N-P-N PLANAR TRANSISTOR BRY39

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Anode to cathode Min. Typ. Max.

V„ On -state voltage I = 100mA 1.4

Rate of rise of off-state voltage that will not trigger any device dt See note below

RM Peak reverse current VRM =70V 1.0 100 nA VDX = 70V, T. = 150°C 2.0 HA RM j DM Peak off-state current VDM =70V 1.0 100 nA

V n =70V, T. = 150°C 2.0 iuA DM j

Holding current

R„, =10kS2, R„ , =220kJ2 GkK GaA 250 M

Cathode gate to cathode

GkT Voltage that will trigger all devices V = D 6V 0.5

GkT Current that will trigger all devices V = D 6V 1.0 HA

Anode gate to anode

V Voltage that will GaT trigger all devices V = 6V D 1.0

GaT Current that will trigger all devices = = V 6V ' R 1(M D GkK 100 HA

Switching characteristics t Turn -on time (t =t , + t ) on on d r'

V = 15V, I = = D T 150mA, R 10k£2 300

Circuit -commutated turn-off time off V =V = 15V, I = 150mA, = 10kS2 D R T GkK 3.0

Note: - The dVrj/dt is unlimited when the anode gate lead is returned to the anode supply voltage through a current limiting resistor.

Milliard BRY39 Page 3 300 600 III / / I /

It It 111 ImA) V ImAI it/ 1

'\ 1/ 200 1*£ 400 u// n - yk\ j¥ 4 °"o t I * £ >s* \* j >o z 1 r i ^ 200 100 I 4 x it ? ,r 3 / 7 if 7 h c

100 T CO 200 2 VT (VI 4

10*

"th(j-amb) (°C/W)

10 3

10'

10

2 3 4 10" 5 10'4 10" 3 10" 2 10"' 10 10 10 10 1 , , tp (si

Mullard BRY39 Page 4 —

SILICON P-N-P-N PLANAR TRANSISTOR BRY39 — I I I | W>=25°C JUL It «_. d = 0.01 (A) L~T-J d^ _ 0.02 1 '--~~0.6'i~ ;=;;= *a=— :; 0.1I

0.2 — 1 - — — -... 0.5

10" 1

2 I 10" .. 10" 10" 10 tp Ims! 10 2

D3091

I

I I I Tamb=70°C I JUL It (A) 1S£Jd.V ... d =°° 1

= :: — 0.02

0.1-

0.5

10"

10" 10" 10" 10 t„ (ms) 10"

Mullard BRY39 Page 5 O309Z 10 3 rq - VD =V R = 70V

Id Id (nA)

m 2

t '5

10

1 —

«n-1 50 100 Tj (°C) 150

Milliard BRY39 Page 6 SILICON P-N-P-N PLANAR TRANSISTOR BRY39

APPLICATION INFORMATION

Sensing network

0+12V

Rg must be chosen in accordance with the light, temperature, or radiation intensity to be sensed; its resistance should be of the same order as that of the potentiometer.

In the arrangement shown, a decrease in resistance of Rg triggers the thyristor, closing the relay that activates the warning system. If the positions of Rg and the potentiometer are interchanged, an increase in the resistance of Rg will trigger the thyristor.

Milliard BRY39 Page 7 N-P-N SILICON PLANAR BSS40 EPITAXIAL TRANSISTORS BSS41

Silicon planar epitaxial n-p-n transistors intended for use in driving very high speed core or semiconductor memories and for similar applications.

QUICK REFERENCE DATA

BSS40 BSS41

V m3X - 60 60 V CBO

maX - 40 30 V VCEO !CM maX - 1.0 1.0 A P max. (T —< 25°C) 360 360 mW tot . amb

h min. (I = 500mA, V = 1V) 25 25 pE c CE

nU,X - (I I = 0.5 0.5 V V =500mA ' 50mA) CE(8at) C B

f min. (I = 50mA, V = 10V) 200 200 MHz T c CE

t max. (-V„„. ,-=2V, I = 500mA, I„. , = 50mA) 35 35 ns on BE(off) C B(on)

t „ max. (I = 500mA, I_, = -I„. =50mA) 45 45 ns off C B(on) B(off)

Unless otherwise stated data are applicable to both types

OUTLINE AND DIMENSIONS

Conforming to BS3934 SO-12A/SB3-6A J.E.D.E.C. TO -18

0.46 max

(.a max =#=

.5.3 max . -12.7 min

All dimensions in mm 03646

Collector connected to case

Accessories available: 56246, 56263

Mullard MAY 1974 BSS40-Page 1 RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

BSS40 BSS41

V maX - 60 60 V CBO

V maX - 40 30 V CEOutsu V 5.0 V EBO

- 1.0 A XCM maX 0.2 w max - A

P max. , T < 25°C 360 mW tot amb —

Temperature

T -65 to +200 stg T max. 200 J

THERMAL CHARACTERISTICS U ,. (in free air) 480 C/W Kui-th(j-amb) 150 °c/w th(j-case)

r. = 25°C ss otherwise stated) J Min. Typ. Max.

Collector -base breakdown voltage (BR)CBO I = 100M, I = 60 C E

Collector -emitter breakdown voltage

V I = 1.0mA, R„ =50£2 BSS40 60 V (BR)CER BSS41 50 V

V I = 10mA, I = BSS40 40 V (BR)CEO c B BSS41 30 V

Emitter -base breakdown voltage (BR)EBO I = 100nA, I = 5.0 E c

CER Collector cut-off current

V =40V ' R 50S2 1.0 fiA CE BE = = V =4 °' R =50n ' T 15rf,C 1.0 mA CE BE J

Base cut-off current BEX - = - = V 4 0V ' V 40V BSS40 1.0 HA BE CE BSS41 1.0 nA

Mullard B3S40-Page 2 N-P-N SILICON PLANAR BSS40 EPITAXIAL TRANSISTORS BSS41

ELECTRICAL CHARACTERISTICS (contd.) Min. Typ. Max.

V * Collector -emitter saturation voltage CE(sat) - - I = 150mA, I = 10mA 0.3 V C D - - I = 500mA, I =50mA 0.5 V C B

* Base -emitter saturation voltage BE(sat) - - I = 150mA, I = 10mA 1.0 V C D - - I = 500mA, I=50mA 1.2 V C o

*Static forward current transfer ratio FE - - I = 150mA, V = 1. 0V 30 c CE - - I = 500mA, V„ =1.0V 25

Transition frequency

I = 50mA, V^ =10V, f=100MHz 200 MHz C Ch

Collector capacitance Tc I =1 =0, V =10V, f=1.0MHz 10 pF E e CB

Emitter capacitance Te I =1 =0, V„=0. 5V, f=l. 0MHz 50 pF C c EB

Switching characteristics (see test circuits on page 4) t Turn -on time when switched from °n -V Dn/ = 2V to I = 500mA, I D/ ,= 50mA 35 ns BE (off)m C B(on)

Turn -off time when switched from off I I = 500mA , . = 50mA to cut -off C B(on)

with -I = 1. 0mA 250 ns B(off) with -I„, ._ = 50mA 45 ns B(off)

Storage time when switched from

T = 500mA, I . = 50mA to cut-off C B(on) with -I„. „, = 50mA 10 B(off)

Measured under pulsed conditions t =300/js, d = 0. 01

Mullard BSS40-Page 3 )

ELECTRICAL CHARACTERISTICS (contd.

Turn -on time test circuit

Q V CC

-oVout TUT ^Pr- -[=> (Pulse generator)

R3 R2

O V Dtoie B8 Tnrn-nff Hmp test circuit

— 10*/.

time

(Pulse generator)

BSS40, BSS41 t on 'off _I v R R R R "V V +V V. "V 'c Von) B(off) cc l 2 3 4 BB in BB in D (mA) (mA) (mA) (V) (B) (B) (B) (B) (V) (V) (V) (V) (V)

500 50 50 30 375 400 56 60 4 24.75 16.7 37.5 3

500 50 1 30 750 00 56 60 37.5

Pulse generator

Pulse duration t > 500ns Fall time t < 5ns P - Rise time t < 5ns Source impedance R = 50fi

Milliard BSS40-Page 4 N-P-N SILICON PLANAR BSS40 EPITAXIAL TRANSISTORS BSS41

.4 OAQ20 10 D.C.SOAR " 'case =25°C

5

lc (mA)

3 in

'

2 ,n

'

BSS41 BSS40

1 Nil 2 5 7 5 2 'io VCE (V)

04021 100

u max (V)

75

50

.._ BSS40

1

. BSS41

25

5 2 2 5 3 5 7.-4 2 5 ? 5 ' io ' io 10 Rbe (Q)

Mullard BSS40-Page 5 —

022 in' 1 -5 7 MM y- BSS40V CE =40> ICER t BSS41 V =30 J (PA), CE / R B E" 3 / ,n

/ /

2 m(IX / in

b / ,

' t / t) P, 10 -/

b > /

t

1 /

5

in''

2 in"

100 T, CO 200

Mullard BSS40-Page 6 N-P-N SILICON PLANAR BSS40 TRANSISTORS EPITAXIAL BSS41

60

Vc6='V. hFE Tj=25 C

40 typ""

20

5 ; 2 5 7 2 3 10 o I r (m Al 10

D402 C 3 in S

7 V CE = 1V Tp25"C 5

k ImAI

typ

2 in

10 b 7 2 2 5 7 2 5 7 10"' 10 mA o 1 \<

Milliard BSS40-Page 7 D4025 DiOSS 0.75

1 CE(sat) •b is- =10 ~ T:=25°C (V) VcE(sat)

1 (V) I I C = 0-5A

0.5 075 1

j «y p/ 05 / / 0.25 ^A typ 025

2 5 2 5 7 ' io' 1 10 -100 100 200 (A) In T; CO

D4028

^£=10 ^=10 "V vBE(sat) v. Ib typ t£=0.5A (V) T,=25 "C

(V)

' 0.75 t 'P/'

0.5

0.5

025

-12 5 7 2 5 7 10 -100 100 200 c (A)

Milliard BSS40-Page 8 N-P-N SILICON PLANAR BSS40 EPITAXIAL TRANSISTORS BSS41

600

Typ. curves Tj=25*C fT f =100 (MHz) MHz ii .nw vCE =iov^»

400 e\i

*^

200

I c ImA)

60

«E-I. =0 (z CTe Ctc f = lMHz Ti =25 •c (pF) (pF) Tj=25°C

40

Jyp

S yp »J 20

2 5 7 5 7 2 io os v FB (V) i V CB IV)

Milliard BSS40-Page 9 30 ,

I c =500mA I =500mA c I B(on|= 50"'A -V B E(offi^V ton -V e(offl=2V ton B Tj=25°C (ns) (ns)

typ 20

25 I A) 50 -50 B (on)< m 50 100 150 T, CO

150 60

l c =500mA I c =500mA 'B(on]=50m/ 50mA 'off \ •off lBlonr Tj=25'C -I „=50mA (ns) \ (ns) B(of \

100 40

typ

>{yp

50 20

(mA 50 -50 50 100 150 25 -Wf) >

Milliard BSS40-Page 10 N-P-N SILICON PLANAR BSS40 EPITAXIAL TRANSISTORS BSS41

60 j

I c =500mA I c =500mA 40 Tj=25'C I B(onl =50mA ts -l „=50mA 'Blonl^'Bloff) B(of •off (ns) (ns) y 30 40

20 tyg

20

25 50 75 -50 50 100 150

'BK>n) (mA)

Mullard BSS40-Page 11 —

N-P-N SILICON PLANAR BSS50 DARLINGTON TRANSISTORS BSS51 BSS52

Silicon n-p-n planar Darlington transistors for industrial switching applications e.g. print hammer, solenoid, relay and lamp driving. Encapsulated in a TO -39 envelope with the collector connected to the can. QUICK REFERENCE DATA

BSS50 BSS51 BSS52

V maX - 60 80 100 V CBO V max. 45 60 80 V CE

I max. 1.0 1.0 1.0 A

P max. (T , -<25°C) 0.8 0.8 0.8 W tot amb P max. (T <25°C) 5.0 5.0 5.0 W tot case h min.(I = 500mA, V = 10V) 1500 1500 1500 FE c CR

- - - (I = 1 -°A J = 1 0mA) V maX ' 1.6 V C E (sat ) C B V „, .max. (I =1.0A, = 4 0mA) 1.6 - 1.6 V CE(sat) C h

t ,, tyP-yv y(I„ = 500mA, off C = _I = 0. 5mA) 1.0 1.0 1.0 us Von) B(off)

Unless otherwise stated data are applicable to all types OUTLINE AND DIMENSIONS

Conforms to BS 3934 SO-3/SB3-3B Collector connected to the envelope J.E.D.E.C. TO-39

0-48 mat

t ! t

T 1

y*- 5.1 -»i "*" max -! 94 - _ '2; 7 „ — ™« —*l

All dimensic ns in mm C

Max. lead diameter is only guaranteed for 12. 7mm from the can.

Accessories available: 56218, 56245, 56265

Milliard FEBRUARY 1974 BSS50 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

BSS50 BSS51 BSS52 v max. 60 80 100 V CBO max. 45 60 80 V *vCE v max. 5.0 5.0 5.0 V EBO max. 1.0 1.0 1.0 A *C max. (peak value) 2.0 2.0 2.0 A *CM

J max. 0.1 0.1 0.1 A B P max. (T 25°C) 0.8 0.8 0.8 W tot amb^ (T == 25°C) 5.0 5.0 5.0 W case Temperature

T range 65 to +200 stg» T. max. 200 1 THERMAL CHARACTERISTICS R 220 "C/W th(j-amb),_,. 35 °C/W th(j-case)

ELECTRICAL CHARACTERISTICS (T.=25°C unless otherwise stated)

Min. Typ. Max.

Collector cut-off current CBO V = 45VlI =0 BSS50 50 nA CB E

I = nA V =60V ' ° BSS51 50 CB E

V = 80V, I =0 BSS52 50 nA CB E

Emitter cut -off current EBO = 4 - , 50 nA V 0V ' EB C=

Static forward current transfer ratio FE I = 150mA, V = 10V 1500 c CE

I =500mA, V = 10V 1500 c CE

'External R not to exceed value shown on page 5. BE

Milliard BSS50 Page 2 N-P-N SILICON PLANAR BSS50 DARLINGTON TRANSISTORS BSS51 BSS52

ELECTRICAL CHARACTERISTICS (Cont' d)

Mln. Typ. Max.

V . . Collector -emitter saturation voltage CE(sat) J 500mA>I 0-5mA 1.3 V {-j B

I = 1.0A, 1=1. OmA BSS51 C 1.6 V

I = 1.0A, I =4. OmA BSS50 1.6 C B V BSS52 1.6 V

T =500mA, I =0. 5mA, T. = 200°C 1.3 V C B ] I =1.0A, 1=1. 0mA, T.=200°C L. D 1 TBSS51 2.3 I =1.0A, I =4.0mA, T.=200°C L B ] BSS50 - - 1.6 V BSS52 - - 1.6 V

Base-emitter saturation voltage BE(sat) 1) I = 500mA, I = 0.5mA - - 1.9 V

I = 1.0A, I = 1.0mA - - C BSS51 2.2 V - I = 1.0A, I =4. 0mA BSS50 - 2.2 C V BSS52 - - 2.2 V

Base-emitter voltage BE 2) I = 150mA, V = 10V 1.4 1.45 1.55 V c CE

I = 500mA, V„„ = 10V 1.5 1.55 1.65 V L Ob

Small signal forward current transfer ratio fe I = 500mA, V„„ = 5.0V, f = 35MHz 7.5 10 L Ld

Saturated switching times

I = 500mA, I = -I = 0.5mA C B(on) B(off)

Turn -on time 400 ns

Turn-off time 1.0 2.0 lis off = I =1.0A, L. ,= -I . „, 1.0mA C T5(on) B(off)D

Turn -on time 400 ns

Turn -off time 1.0 2.0 (XS off

Notes: 1) \ decreases by about 2.5mV/ C with increasing temperature. BE(sat)]

2)V, decreases by about 3. 5mV/ C with increasing temperature. BE

Milliard BSS50 Page 3 MEASUREMENT OF SATURATED SWITCHING TIMES

Test circuit for 500mA switching.

-2.2V + 10V 1

9kfi i8n I

1>jF 36kfl HI- -{ h 6ps + 38V <

l c =500mA 'Blonr-'Bloffi'SOOMA so n

5B5 vfc

Switching waveforms

Input

90"/.

Mullard BSS50 Page 4 N-P-N SILICON PLANAR BSS50 DARLINGTON TRANSISTORS BSS51 BSS52

I0M

c 1 T

b r "BE i K

1 1

1

1

i s External Rbe J ^~ IM

7

5

100 k

Maxirnunn e xte rna 1 F! VS T for th ermal St ibil ity BE j

10k 1 1 1 1 1 50 100 150 T: (°C)

Milliard BSS50 Page 5 'tot max (W)

*>

f. '». s V %

*thn . an>t»=220>*,. >-'W

-50 100 200 TCC)

'•(hit) CC/W)

100

d = 1.0 s)

= 0.5

Tal Z 0) th(toI F 10 — c o ^ao a

o

(?) 1.0 _ri_n_* Z ~ Z d th(1) ~'"th(s) tMtop th(to)

R = Steady state thermal resistance, d=l. (s)

= T ient t hermal innpe da nee d=C . Z th(to) an 0.1

2 io- 10-' 10° 10' Pulse duration tls)

Mullard BSS50 Page 6 N-P-N SILICON PLANAR BSS50 TRANSISTORS DARLINGTON BSS51 BSS52

1000

L "" = Vce=10V VCE 1 OV

ImA) V25-C -j lj= A °C

100 L

— Design rr 3 t

'yp J ('min

? z 7

^ 5 7 2 5 7 0.5 1.0 1.5 V |V) 2.0 BE 2 3 10 l,(mA] 10

3 U10 ) VCE =10V

10 f = 35MHz VCE --5V

I c = 500 mA 100

I = 150 mA / c " typT V. V s 10 \--\ \

50 100 150 200 2 10 100 I c (mA) 1000 T; CO

Mullard BSS50 Page 7 D4fie7 1000 ** .•* z / Typical curves / Design max.

1c / ImA)

I = 4mA / = 0.5mA I / I = 1000 B / c B / * / 100 '

i // _, '

Tj = 25°C /

'

1

1 1

m 1 0.5 1.0 1.5 VcElsatllV)

D4888 1000 ^ ^i ,' 4 —* s V Typical curves 1 Design max. ' "c ImAI / 1 B = 0.5mA = imA l c /1e = l000 i f / 1

i / / /

'

Tj = 25°C 1

, 1

1

1 10 1 1.0 1.5 2.0 ,(V)

Mullard BSS50 Page Hmin. N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BSV52R

Silicon n-p-n planar epitaxial transistor in a microminiature plastic envelope, int- ended for high-speed switching in thin and thick film circuits.

QUICK REFERENCE DATA V max. 20 V CBO V max. 20 V CES V max. 12 V ' CEO JCM max. 200 mA == P max. (T . 25°C) 200 mW tot amb T max. 150 °C i h atI = 10mA,V = lV 40-120 FE c CE =50mA,V = Ic CE lV min. 25 f atI = 10mA, V „ = 10V, T C CE

f == 100MHz min. 400 MHz

typ. 500 MHz

- l max. at I =1 = ! 10mA 13 ns s C B(on) B(off)

OUTLINE AND DIMENSIONS — 2.9 max

r i n

- 0.95 -

b e

! 1.3 2 5 N max m ax I c \

0.i3 max Identification code:B4 = BSV52R D5710

All dimensions in millimetres Plan view from above

Milliard JULY 1973 BSV52R Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical V max. 20 V CBO max. 20 V CES max. (I = 10mA) 12 V CEO V max. 5.0 V EBO I max. 100 mA C max. 200 mA !CM

P max. T , ==25 C, mounted on a tot amb substrate of 7 x 5 x 0. 5mm 200 mW Temperature T -65 to +150 C stg_ T max. 150 °C J THERMAL CHARACTERISTICS R Thermal resistance between junction -1 and ambient, the device mounted on a ceramic substrate of 7 x 5 x 0. 5mm 0.62 C/mW

o ELECTRICAL CHARACTERISTICS (T 25 C unless otherwise stated) Min. Typ. Max.

Collector cut-off current CBO l 0, V 10V 100 nA r CB

i =o,v = iov, T] 125°C 5.0 fiA E CB V Collector -emitter saturation voltage CE(sat) T = 10mA, L = 0.3mA 300 mV C D L, = 10mA, T = 1.0mA 250 mV C D L- 50mA, L = 5.0mA 400 mV

V Base -emitter saturation voltage BE (sat) L. 10mA, I„ 1.0mA 700 850 mV

I =50mA, I 5.0mA 1.2 V c B Static forward current transfer ratio FE I = 1.0mA, V = 1.0V 25 c CE 10mA, V 1.0V 40 120 CE( 50mA, V, 1.0V 25 "C CE Transition frequency T = 10mA, V^„ = 10V, f = 100MHz 400 500 MHz C Cb

Mullard BSV52R Page 2 ) :

Hmin. N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BSV52R

ELECTRICAL CHARACTERISTICS (contd.

Min. Typ. Max.

Tc Collector capacitance I =I = 0,V = 5.0V, E e CB f = 1.0MHz 4.0 pF Emitter Te capacitance

1 = 1. 0MHz 4.5 pF

SWITCHING CHARACTERISTICS

C Storage time (I =I =-I s c B(on) B(off) = 10mA) 13

Test circuit and waveforms

V„„=10V

V in O.luF

_iov 1 1 56H

I VBB :11V

Pulse generator: Oscilloscope Z =50Q S Z in =50n <1.0ns V t r < 1.0ns t p >300ns d <0.02 D5725

Mullard BSV52R Page 3 :

SWITCHING CHARACTERISTICS (contd.)

Min. Typ. Max.

Turn -on time when switched from -V__ =1.5VtoI„ = 10mA, fciJi L. = 12 ns I 3mA -V = 3V ' V = 15V B > BB in Turn-off time when switched from off I = 10mA, I = 3mA, to cut-off with 18 ns = = = 1 - 12V '-V 15V 5mA ' V -Voff) BB in

Test circuit and waveforms

out

V in 3.3kn o—f-r~~>

son I I 'BB

Pulse generator Oscilloscope: Z = 50fl Z s = 50ft in

t r < 1.0ns t r < 1.0ns ns t p > 300 D5726 d < 0.02

Mullard BSV52R Page 4 H min. N-P-N SILICON PLANAR BSV52R EPITAXIAL TRANSISTOR

100 mjvCE = 1V —\- 3 - — ij - 25 C k | '.''<&? (mA) \tu 4> <& 4 / >f ' ' ,' / ' —/ O 10 -/ y *= y , - // .^ " ' / ? t < / / / / / i — f j Z :

0.1

VCE=1V Ij =25°C 200

h FE

150

trvtt*j-^

100

typ= 50 min-

0.1 10 IC (mA) 100

Mullard BSV52R Page 5 —

200

(mA) (mA)

1 VCE (V) 1.5 10 VCE (V) 15

_: « — inni 4Hz _:n -25° 800 •j **' :

(MHz)

600

Ffp-- 400 ~77 r* :5rfe, f* —?£S »/ : #&-

200 \2- 1

10 100 I C (mA) 1000

MuHard BSV52R Page 6 .

Hmin. N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BSY52R

- . . typic rallies - Tj=l 5°C sat)- (V) i£-2n/_ i / / , / J o / / O/i / / ' / / / / / »- / / ,

.'J *^~^~ / ... ** '. 4 02 *'-

n \ EE_:::: 0.1 10 100 IC (mA) 1000

- _ . typic atxulues- -Tf=2ij-i.()°C BE (sat) (V)

I C_m ., 1 ] B \ls^^ !»' ^0

0.5

t .1 1 10 100 Tr (mA) 10

Milliard BSV52R Page 7 typical values ""I I typical vriIiM»<;

i 1 1 Tr <~Cfc„4\ ^=10 BE(sat) t^ = 10 CE(sat) iB (V) (V)

1 ^fc. C\L i ^"" ^»- T ^ "**""" mm, _^»>Q2i=- ^^P0rri ~X m** , I ^h* V'T **L**' ** ^'*' K^""*** J t T ^^^" j_ **^ i""^** f^' L —"" "" J ,_ — | -^ "~-^2£M _ _1_ \rt\^ ^<&A °" ILL -nuXPrT n^ ^ "" ' ,— — •*

n i ,---r-J o 50 100 T] (°C) -50 100 1] (°C)

D57Z7 io» — 1 1 1 1 1 1 1 1 1 1 1 = 7 f 1MHz Tj-25°C ICBO 'E^O /

I I I I (" (pF) A > I I Jk// J I 2 Mtt I I I C =I =0 3 - E e 10 ======- ======r^^^

5 * r / / //

2 " 10 = "i^i^ z

i 7 i y i £ I *^

""*'--. '. """* typj. i i 10 = = -J^a —= 7 ytyt

^ / / > T ^

. . L_ 1 .._ . 50 100 TjCC) 150 10 VC b(V) 20

Mullard BSV52R Page i . .

N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BSY64

N-P-N silicon planar epitaxial transistor, with good high current saturation charac- teristics, primarily intended for use as a print hammer drive.

QUICK REFERENCE DATA V maX 100 V CBO V maX 60 V CEO [CM maX ' 5.0 A < P. . max. (T - 50°C) 5.0 W tot case

h _, min. (I = 2.0A, V = 2.0V) 40 FE C CE = f typ. = 5 -° V °- 5A V V > T C - CE Q f = 35MHz, T =25 C) 100 MHz amb t max = 5A) 1.2 US off ^'-"^'Bionf-hioti)-

OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-3/SB3-3A J.E.D.E.C. TO-39

0.86

0.48 max

1 1 t -J 1 8.5 1 max

\ 'J

6.6 max 12.7 mm H

All dimensions in mm

Collector connected to case

The maximum lead diameter is guaranteed only for 12 . 7mm

Milliard NOVEMBER 1970 BSV64 Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX - 00 V CBO max. (R <50£2 80 V CER B- 60 V maX - V CEO

V maX - 5.0 V EBO

- 5.0 A J CM maX

I max 2.0 A

I max. 1.0 A B P max. T < 50 C 5.0 W tot case

Temperature

-55 to +175 stg T max. + 175 J

THERMAL CHARACTERISTIC

Rn.,- max. 25 degC/W th(j-case)i

ELECTRICAL CHARACTERISTICS (at T. = 25°C unless otherwise stated)

Min. Typ. Max.

cut-off current CBO Collector V = 6 ° V 10 HA CB ' V Emitter cut-off current EBO V = 4 -° V 10 HA EB ' V forward current transfer ratio FE Static 40

Collector-emitter saturation voltage CE(sat) I =5.0A, I =0.5A 1.0 C D

Base-emitter saturation voltage BE (sat) I =5.0A, I =0.5A 1.8 C 13

Collector capacitance Tc V =10V, I =1 =0, f=1.0MHz 80 pF CB E e

Mullard BSV64 Page 2 .

N-P-N SILICON PLANAR RWAd EPITAXIAL TRANSISTOR WTOT

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max.

f Transition frequency = I =0.5A, 5 - 0V f = V . CE 35MHz, T = 25°C - - amb 100 MHz

Saturated switching times

V = 2 -° V BE(off)

- - t Turn-on time 0.6 fiS

- - t Turn-off time 1.2 jjs

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should, if possible, be kept to a minimum bythe use of a thermal shunt.

2. Transistors may be dip-soldered at a solder temperature of 245°C for a maximum

soldering time of 5 seconds . The case temperature during soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or

spaced at least 1 . 5mm above a board having plated-through holes

3. Care should be taken not to bend the leads nearer than 1.5mm from the seal.

4. If devices are stored at temperatures above 100°C before incorporation into equip- ment, some deterioration of the external surface is likely to occur which may

make soldering into the circuit difficult . Under these circumstances the leads should be retinned using a suitable activated flux.

Milliard BSV64 Page 3 DERATING AGAINST MOUNTING-BASE TEMPERATURE The maximum permissible power for selected pulse widths and/or mounting-base temperature can be obtained from the graphs on pages 5,6 and 7, where the P max value for T <50°C is calculated from the line of constant power (i.e. that part mt, of -1), on the relevant I versus V curve. of the curve which has a slope c C£

For mounting-base temperatures in excess of 50°C, the constant power line BC in figures 2A and 2B is reduced to the % of Pmax as read from the % pmax versus Tmb graph on page 5. The safe operating area for the higher temperature is defined either by the points A B' D' D E in figure 2A, or by the points AB'D'E in figure line is only modified by the intersection point D' 2B . The second-breakdown power and is not adjusted against temperature in any other way.

max 1 . (V.I |\ ""

1

figure 1 |

T mb

1 ' It A b; b ic . A B B \\ \ ^v \ \ \ \ \\ \ log log \ C \ C scale \ scQle \ V \ \ \ \ ' figure 2 B fig ure 2 A \D \ \ \ \ D D \ D' E —E log scale V CE log scale \ CE

Milliard BSV64 Page 4 N-P-N SILICON PLANAR EPITAXIAL TRANSISTOR BSY64

100 D2101

IV.)

50

50 100 150 200 T tasc |'C)

'r 02102 (A) V CE =2-0V \l fc. i . a X. 5 Tj = 25"C 1 / \

u I r

J / 3 f

'

| 2 / / /

/'

| f/ /A — s 0-5 10 1-5 20 VBE (V)

Mullard BSV64 Page 5 —

( TJ 3.3. 3— 3. en . (A Ul- £ o z '> O C £ u O O g __ t — IB E- o r o cm in in O o **" in o

W tl

a o V—

ul

in in 3. 3. | | — 3.- b o O --E E o o rO- o - e E_E_j Q U^i^^"~^ Csl in n in S: m ,' *>/ <*>,' in / 3 / $&

/ft « > "• ^/ y^y^

jm'^V \^i^ //

b 9 ~ m o W V/

Ift "O o

Mullard BSV64 Page 6 N-P-N SILICON PLANAR BSV64 EPITAXIAL TRANSISTOR

! — £ _ o ^T'^S F o C) o J "in — lo ON in a n 3 o a in o •

w <'

1/1 TJ a

- - i/) •> s. in w-J-

in o W n

1/1 T3 d u 1—

" 2~

Milliard BSV64 Page 7 1 Q D2107 (A)

7 r "V^

4 T =53 „— =" ^ I ^' V r / ^ -V V 2 -t ^ / ^ vc """ 2 : \\ -V s £ ~:™======^^ IMu( Iti b^r~.zzz±i zzz-~~..zz-~zzz-zz-zzz--~ji 1 *~~ =2

' 1 5 10 10 20 30 40 50 60 VCE (V]

60 21 OB hue VCE =20V Tj = 25°C

50

40

Min.

30

?n 5 I C (A) 6

Mullard BSV64 Page N-P-N SILICON PLANAR BSY64 EPITAXIAL TRANSISTOR

1-00 D2109

'cEbat) (V)

075 'c b typical curve

0-50

0-25

5 MA) 6

600 D2110

'off (ns)

500 - I =, °f 1 and I : B{on) B(off)>- ty

400

200 = *o

100

1

6 7 I 1 2 3 4 5 C(A)

Mullard BSV64 Page 9 .

P-N-P SILICON PLANAR BSV68 EPITAXIAL TRANSISTOR

Silicon planar epitaxial transistor intended for anode switching in dynamically driven numerical indicator tubes

QUICK REFERENCE DATA

-V max. = 10ka) CER CBBE 110 V - maX ' VCEO 100 V -'cm™' 100 mA

P, , max. (T . <25°C) 250 mW tot amb — T. max. 150 °C

h min. (-I = 25mA, -V = 5V) 30 FE c CE

f = f = typ. (-I 25mA, "V =5V , 3 5 MHz) 95 MHz T c CE

OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-12A/SB3-6A J.E.D.E.C. TO-18 rl Millimetres Min. Typ. Max. 3 A 4.8

1 1 B 5.3

C 12.7 - - '' ,- J C : D 0.48

E - - 1.17

~l L D F 1.1.6 T~ y E G 2.54 -

1 1 -^L G -IX F H - 5.8

1 4

Viewed fr am underside

Connections: 1. Emitter

2. Base

3. Col ec1 or conn ected to envelope

Milliard OCTOBER 1970 BSV68 Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

- = 110 V maX - 10flA) V CBO HC

(-1 R„ =10kJ2) 110* V CER max. =10nA. BE

- - = 100 V ma2t - I 1 °°^) V CEO ( C

- - = 6.0 V V m,,X - I 10 ' lA EBO ( E >

-I max. 100 mA

loot mA -k maX ' - 100 mA I BM nmX - 250 mW P max. (T , <25°C) tott t amb - Temperature

-65 to +150 stg

T max. 150 J

THERMAL CHARACTERISTIC

. 5 degC/mW th(j-amb)

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max.

CBO Collector-base cut-off current I =0, -V„ =10'0V, T. = 70°C 10 fiA L CB J

current -I CER Collector-emitter cut-off -v =nov, R = iom 10 KA CE be

EBO Emitter-base cut-off current =6V 10 fiA ^ " VEB

*The transistor may be operated in the breakdown region, provided the collector current does not exceed 10fzA at T =70 C.

It can withstand an inductive load of 4mH in series with a resistance of 4k!2, com- bined with a collector current of 25mA before switching-off

•fThe transistor can withstand a capacitive load of lOOpF, combined with a collector voltage equal to -VCER before switching-on.

Mullard BSV68 Page 2 P-N-P SILICON PLANAR BSY68 EPITAXIAL TRANSISTOR

ELECTRICAL CHARACTERISTICS (contd.) Min. Typ. Max.

-V Collector-emitter saturation voltage CE(sat) -I =25mA, -I =2. 5mA 250 mV C -D

Base-emitter saturation voltage BE(sat) -I =25mA, -I =2. 5mA 900 mV C £>

Static forward current FE transfer ratio 30 -I = 10mA, "VCE = 5V -I = 25mA, -V =5V 30 c CE

Collector capacitance Tc 5.0 pF I =1 =0, -V =10V, f=lMHz E e CB

Transition frequency -I = 25mA, -V = 5V, c CE f= 35MHz 50 95 MHz

15

TJ= 25°C I E =Ie=0 (pF) f= 1MHz

10

^ty p

10 -VrR (V) 20

Mullard BSV68 Page 3 100

-VCE=5V T,=25°C typ

i

| 10"1 10' 10 -I c ImAI

?n?2 100 l j s

-V = 5V (MHz) CE S f=35MHz ''typ \ T = 25°C I

50

25

10 -I c (mA) 1

Mullard BSV68 Page 4 N-Ci FIEL P-N-P SILICON PLANAR BSY68 EPITAXIAL TRANSISTOR

mu D207 3

*CBO (nA) -Vcb=100V

m 3

m2

m

OUTL

'\ y r

1 4 m"1

All dim

m-2 50 100 Tj (°C) 150

MAY Muilard BSV68 Page 5 RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

V max. Drain-source voltage 40 V DS

maX ' Drain-gate voltage (open source) 40 VDGO V

- V maX - Gate-source voltage (open drain) 40 V GSO

I max. Forward gate current 50 mA Cj

P max. Total power dissipation, T < 25°C 350 mW tot

Temperature

T Storage temperature -65 to +200 stg. T. max. Junction temperature 175 J THERMAL CHARACTERISTICS

R Thermal resistance from junction th(j-amb) to ambient in free air 0.43 degC/mW

u ELECTRICAL CHARACTERISTICS (T. = 25 unless otherwise stated)

Min. Typ. Max.

Gate cut-off current GSS - V = 2 ° V V = ° 0.25 nA GS ' DS = 20V, = T. = 0.5 -V^„ Vt^ o . 150°C HA Gb Da j

Drain cut-off current = V 15V - V 12V 0.25 nA DS= ' GS V_, =15V, -V^ =12V, T. = 150°C 0.5 HA Ob UD J

Drain current DSS V = 15V, V =0 BSV78 50 - mA DS ' GS BSV79 20 - mA

BSV80 10 - mA

Gate-source cut-off voltage (P)GS = I = lnA V 15V BSV78 3.75 11 V D ' DS BSV79 2.0 7.0 V

BSV80 1.0 5.0 V

Milliard BSV78-Page 2 :

N-CHANNEL SILICON BSV78 FIELD-EFFECT TRANSISTORS BSV79 BSV80

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max.

-V Gate-source voltage GS 1 ' 5 V =15V BSV78 3.5 10 V ^' DS V BSV79 1.75 6 V BSV80 0.75 4 V

Drain-source 'on' voltage DS(on) 2 ° mA V = ° BSV78 500 mV V ' GS = 10mA v =0 BSV79 400 mV in < gs = = I 5n,A V ° BSV80 325 mV D ' GS

Drain-source 'on' resistance DS(on) I =0, V„ =0, f=lkHz BSV78 25 a

BSV79 40 a

BSV80 60 a

y-parameters at f=lMHz (common source) - V = =10V ' V GS DS °

Input capacitance 10 PF

Feedback capacitance 5 PF

Switching characteristics (see test circuit on page 4)

Turn-on time when switched from

- V =11VtOl = 20mA V =10V (BSV78 GSM D ' " = = = V 7V t0 l WmA V 10V (BSV79) GSM D < DD " V = 5Vt0l = 5mA V =1 ° V (BSV80) GSM D ' DD BSV78 BSV79 BSV80

Delay time 5.0 10 8.0 *d t Rise time 5.0 5.0 7.0 r t Turn-on time 10 15 15

Mullard BSV78-Page 3 ) : :

(contd Switching characteristics .

Turn-off time when switched from

= 20mA to -V 11V, V =10V (BSV78) L GSM DD

I =10mAto-V = 7 V> V =10V (BSV79) D GSM I =5mA to -V„„ : = 5V, V = 10V (BSV80) D GSM„„ BSV78 BSV79 BSV80

Fall time 6.0 10 20 ns

t Storage time 4.0 5.0 5.0 ns s

Turn-off time 10 15 25 ns 'off

Test circuit Input and output waveforms

Vod

51 .ft 1MF

10mF

W7>

3dB PAD ^

1 knl i sin

BSV78 BSV79 BSV80 - io v „, , DS(on) r - 51S2 R = 424 909 1885 a L ^(on)

Pulse generator: Oscilloscope:

R. = 50B R. = 50S2 l l

t < 0.5ns t < Ins r r

t < 5ns t < Ins

Kili illorrl BSV78-Page 4 N-CHANNEL SILICON BSV78 FIELD-EFFECT TRANSISTORS BSV79 BSY80

D2875 m" ~~ - H-4- - typical curves '05 Tj=25°C uu VDS =1V ^ — EE

B V 8" = HI 11 B .V 9- B Or s

= rr _i EE

10 »

__ : f —

w'

-

m s

10 5

1 10 it — "~

10 J "

2 10 S —

-15 -10 -5 VG5 (V) 5

Mullard BSV78-Page 5 150 BSV78

I I typical characteristics Id under pulse conditions _ (mAI Tj = 25°C VGS -uv —rr

100 ' 0.5V-

- 1V

~r i 1.5V

-2V -t-t" -?5V 50 -vDS =i5vyi -3V

-3 .5V - --4V-

-I i ^.5V -hV " ZL -7.5 -5 -2.5 10 20 VDS (V] 30 Ve5 (VI

D2877 100 typical characteristics BSV79 under pulse conditions Id Tj = 2 5°C (mA)

VG5 = 0V 75 -0.5V

n

50

VDS =15\II byy

-2.bV 25

-3 1

-3.5V -4 V —

-5 Vnq (V) -2.5 10 15 VD5 (V) 20

Mullard BSV78-Page 6 N-CHANNEL SILICON BSV78 FIELD-EFFECT TRANSISTORS BSV79 BSY80

60

i i

Id rVGS =uv typical characteristics (mA) under pulse conditions

i Tj=25°C I ' 0.5\ 40

i

/' - _|_ -

5V — 20 VpS= "3

~-tv -1 1

2.b

3 V-

-5 VGS (V) 10 20 Vns (V) 30

Milliard BSV78-Page 7 N-CHANNEL INSULATED GATE BSY8I FIELD EFFECT TRANSISTOR

Depletion type, insulated gate, field effect transistor in a TO-72 metal envelope, with the substrate connected to the case. It is intended for chopper and other special switching applications e.g. timing circuits, multiplex circuits etc. The BSV81 features a very low drain-source 'on' resistance, a very high drain- source 'off resistance and low feedback capacitances. QUICK REFERENCE DATA

DS(on) DS US V =0, f = lkHz) 50 a Bg r min -V 5V, V == 0) 10 GQ DS(off) - ^DS^' GS= BS -C max. <-V =5V, V =0, rs GS DS 1=0, f=lMHz) 0.5 pF

-C max. <-V = 5V, = 0, rd GD VsD T =0, f=lMHz) 1.2 pF

OUTLINE AND DIMENSIONS

Conforms to BS 3934 SO-12A/SB4-3 J.E.D.E.C. TO-72

Millimetres

Min. Nom. Max. A 4.53 - 4.8 B 4.66 - 5.33 CI - - 0.51

C2 12.7 - -

C3 12.7 - 15 Dl - - 1.01 D2 0.41 - 0.48 D3 - - 0.53 E 0.84 - 1.17 F 0.92 - 1.16 G - 2.54 - H 5.31 - 5.84

Viewed from underside Connections 1. Drain 3. Gate 2. Source 4. Substrate connected to envelope

llarrlllaia APRIL 1970 BSV81 Page 1 RATINGS

Limiting values of operation accoi-ding to the absolute maximum system.

Electrical

voltage 30 V VDB max. Drain-substrate V max. Source-substrate voltage 30 V gB

maX - Gate-substrate voltage (continuous) 10 V ±VGB

V max - Repetitive peak gate voltage ± G-N (gate to all other terminals) V„ = V„ = 0, f>100Hz 15 SB DB

V maX - Non-repetitive peak gate voltage ± G-N (gate to all other terminals) V = V = t<10mS 50 SB DB '

i Peak drain current d:>M t =20ms, d=0.1 50 mA r

max - Peak source current w 50 mA t =20ms r d=0.1 r

P. , max. Total power dissipation tot 200 mW Tamb—^<25°C Temperature

Storage temperature -65 to +125 stg T max. Junction temperature 125 J THERMAL CHARACTERISTIC

R„ Thermal resistance, junction to th(j-amb) ambient, in free air 0.5 degC/mW

ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise stated) Min. Max.

Drain cut-off current, )SX Vbs=0 = - V = 10V, V =5V 1.0 nA DS GS

== - = 1.0 jlA V 10V, V =5V ' T. 125°C DS GS

Source cut-off current, V = SDX BD V == 10V, -V = 5V 1.0 nA SD GD

== - = T =125°C 1.0 HA V 10V, V 5V ' SD GD i = Gate current, VBS - = V = 10V, V 10 PA GSS GS= DS °

V = 10V, V ° 10 pA ^SS GS= DS =

" == 200 V 10V, V = °' T = 125"C PA GSS GS DS j V = 10V, V = °> T = 125°C 200 PA ^SS GS= DS 3

Milliard BSV81 Page 2 N-CHANNEL INSULATED GATE BSV8I FIELD EFFECT TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd) Min. Max.

Substrate current, VQg = -I_ -V„ =30V, I =0 10 fiA T3DO BD ' S -I_ -V = 30V, L=0 10 MA ^SO BS ' T>

r , Drain-source 'on' resistance DS(0n) atf=lkHz. VBS =0 V V 100 a GS=°' DS=° ° = =0 = 150 a V °> V ' T 125 C GS DS 3 +V =5V V = ° 50 a GS > DS

r Drain-source 'off resistance DS(off) -V =5V, V =10V, V =0 10 - Gfl Gg Dg BS

Feedback capacitance at f = lMHz " - = " °- 5 C V =5V V °' PF rs GS ' DS V - = = " " C V 5V V X ' 2 PF rd GD ' SD > V

Gate to all other terminals capacitance at £=lMHz C -V =5V V =V =0 - 5.0 pF g-n GB ' SB DB

OPERATING NOTE

Mounting and handling instructions

To exclude the possibility of damage to the gate oxide layer by an electrostatic charge building up on the high resistance gate electrode, the device is fitted with a conductive rubber ring around the leads. This ring should not be removed until after the device has been mounted in the circuit.

Milliard BSV81 Page 3 1

20 dr V -n /•»* Tamb =25<,c -4^ £\ ^Mi typical curves s 1

V nc-WV (mA) vBS -° o Tamb 25°C

03 ^

* t^ ff

1 i5V_ —

| " 2 V (V V (V| 20 GS » DS

01202 20 d r $

. b ^ , -5gfift -Vbf * J* s ?f

V =14V i 'd DS ' ^ fmA) W 25 c typical curves

,

n-V, X

-A, 5. y ,*1 ^f ^ * s v\ r~ ^ , y / ' S y ss y * s ^ <*• x ,* 5* -»• ** •«* n — vGS (V)

Mullard BSV81 Page 4 N-CHANNEL INSULATED GATE BSY8I FIELD EFFECT TRANSISTOR

. DS V 10.) BS"° * A VDS-IV

lyp

1= =

5 V„IV) 10

Milliard BSV81 Page 5 1

D12CU

v Bs-° Tamb=25°C typical curves "> Lf) +

II o) & o^e 200

to (uA)

100 JS.

- 2.2V — DO -50 . -2.4V -2.4 V ™o 50 V^(mV') 1C)0 -2.2V uo A -100 ^J* i.] 'If 200 c3 > in +

- Mullarc1- BSA?81 Page 6 N-P-N SILICON PLANAR BSW66 EPITAXIAL TRANSISTORS BSW67 BSW68

N-P-N silicon planar epitaxial transistors intended for highly inductive load switching.

QUICK REFERENCE DATA BSW66 BSW67 BSW68

V maX - 100 120 150 V CBO

V maX - 100 120 150 CEO V Y X CM maX - 2.0 A P max. T =100°C 2.85 W tot case T = 45°C 0.7 amb W E max., L=150mH 5.0 mWs

T. max. 200 °C "fe^-W^c = 10mA 30 V = 5V J = 500mA 30 CE - C = I I = 400 400 V n,M - B00mA ' 50mA 500 mV CE(sat) C B

f typ.,V = 20V, -I = 100mA, f == 35MHz 80 MHz T CB E

Unless otherwise stated data is applicable to all types

OUTLINE AND DIMENSIONS

Conforms to BS 3934 SO-3/SB3-3A Collector connected to case J.E.D.E.C. TO-39

0.48 max

1 t 8.5 t max

1 /

6.6 max „ 12.7 mm ""

All dimensions in mm

Max. lead diameter is only guaranteed for 12.7mm

Accessories available:- 56218, 56245, 56265

Mullard NOVEMBER 1971 3SW66-Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical 3SW66 BSW67 BSW68

120 150 V maX ' 100 V CBO 100 120 150 V maX ' V CEO

maX - 6.0 V VEBO 1.0 A maX 20ms ^ ^(AV) - h^ 2.0 A T CM maX - P max. T ==25°C 5.0 W tot case

T , *25°C 0.8 W amb E max. (switch-off energy, L=150mH) 5.0 mWs

Temperature

T range -65 to +200 °C stg T max. 200 °C 1 THERMAL CHARACTERISTICS

In free air 220 degC/W R , , , th(j-amb), R 35 degC/W 'th(j-case)

ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise stated)

J Min. Typ. Max.

Collector cut-off current CBO Vt^cbo^-V1/2V 100 nA 1/2V max. 1=0, CB CBO E T. = 150°C 50 uA

= = 100 V V maX - I liA CB CBO E °

EBO Emitter cut-off current 100 nA

V = 6.0V,I = 100 uA EB C

Collector-emitter breakdown (BR)CEO voltage

I = 100mA, 1=0 BSW66 100 C B BSW67 120 BSW68 150

Mullard BSW66 -Page 2 N-P-N SILICON PLANAR BSW66 EPITAXIAL TRANSISTORS BSW67 BSW68

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max.

Collector-emitter saturation CE(sat) voltage

I = 100mA, I = 10mA C B 150 mV

I = 500mA, I = 50mA BSW66 400 mV BSW67 400 mV BSW68 500 mV T =1.0A, I. 150mA 1.0 V

Base-emitter saturation BE (sat) voltage

I = 100mA, I = 10mA O B 0.9 V

I = 500mA, I = 50mA C B 1.1 V

I =1.0A, I = 150mA G B 1.2 V

FE Static forward current transfer ratio

I = 10mA, V =5.0V 30 c CE I = 100mA, V =5.0V 40

I = 500mA, V„ =5.0V 30 O CE 15

Transition frequency -I = 100mA, V = 20V, f=35MHz - 80 E CB MHz

Collector capacitance Tc = V 1 ° V ' CB ' W f = 1.0MHz 35 pF

"Te Emitter capacitance = V ' EB > 'c^e^ f = 1.0MHz 650 pF

Switching characteristics (see test circuits on page 4)

Turn-on time

I = 500mA, I = 50mA, -V =4V 0.5 |US Bon BEoff

Turn-off time off I = 500mA, T = = 50mA 1.0 MS C Bon Bofl

Mullard BSW66 -Page 3 ELECTRICAL CHARACTERISTICS (cont'd) Test circuit for switching characteristics B9787

O

21V 25/1 20011 -CZ3 ® i- t »5 S p H phhy 13V t r £ 10ns 5on ison •£ 10ns tf 1 I I 6.5V -tr

Test circuit for switch-off energy

f«10Hz

L=1Hmax I V V i5kn "=" A 0.4 toikn. I I 5V 6V r20 V 1+ 1"

! ! ! B9762

i j

(W) !

;

;

4 J

[ (

i $'/> s e A &4* " V1

2

iTn f

s | j 50 100 150 Tamb CC) 200 Mullard BSW66 -Page 4 N-P-N SILICON PLANAR BSW66 EPITAXIAL TRANSISTORS BSW67 BSW68

<•>;-- " g.\ I CD.. 5 .4... k_ X-- A I

1 1 I \ \

\ \ \ 1

\ I s ''% O . I E > _l c CD ; 3 ~ ! >° :> 1 L 2 5 . i-? ^ I/) - 2 CQ - . 1

l 1 1 1 s

1 1

1

1 1 [

t 1

J. [ 1 „ — o Sou.

Milliard BSW66-Page 5 B9766

/r (mA)

BSW 66 to ->R -- B9767

(mA)

1000 t:::—^k'i' ,e. Fttt ?1tfltN />: '.'' = /yV Vce 5 i/ 100 V 1 3"C =

-/ 4W 1 * v/- /''V Mins Max cur ves

10 A "| <~ 'i ' il / rTTT / / 1 / / / / 100 001 0.1 /„ (mA)

Mullard BSW 66 -Page 6 N-P-N SILICON PLANAR BSW66 EPITAXIAL TRANSISTORS BSW67 BSW68

1000 ' 1 to B9768 BSW66 G8 ~ V " BE(sat) TyP' - cEisat: V J- BE(sat):- / (mV) - -

-

: l / / ' c S ;1 5° ASV 100 r "" - j -

-

"

"

' '

-

-

:

10 10 100 1000 Ic (mA)

C ||i I I i ] 1 bOOi Tr || 1 1 1 1 1 1 1 j 1 1 1 1 u —rm 1 769 i B? , 1.1 BSW6€!tn fiR r H^Wfifi in fiR (pF)f " ~~- _ _ InF) ,- - I 5 _ _

I_ r- I - -- - suu -<- >t T . t n — — -i=o""" E e . \ C c - _ " = :~ T, 25°C £ Ti = 25°C

[ _ __ : _ 1i ;

— k- \ z.n -

Vs. V _ v. i - *>.„s ±JyaX- *« r s ?0 "**->^£i -T --* = "~--H

n - - 10 20 VCB (V) 30 U VEB (V) 6

Mullard BSW66-Page 7 1000 B9770

/ (mH)

RB = 15 V.Q

-Vbe* 5 V ;

\ \

'. Perm issible a ea of operation - 10 " . K\ \ \ \ \\

'

1 10 !00 1000 /c(mA)

5 ' 1 ' B9771 BSW66 to 6 8 Emax (mWs)

'

1

at -max /? = 15kf? fl -

0.1

missible'area of 6

0.01 ~JL. _L i j >j> 10 100 1000 Ir (mA)

Milliard BSW66-Page 8 SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

The BSX19 and BSX20 are n-p-n silicon planar epitaxial transistors, primarily intended for high-speed saturated switching and high frequency amplifier applications. TO-18 construction, collector connected to envelope.

Unless otherwise shown data is applicable to both types

QUICK REFERENCE DATA BSX19 BSX20

= 40 V mflX - (I 0) V CBO K ^ES^^EE^ 40 V = 15 V V maX > CEO -

0V) 20-60 40-120

= 100mA, V =2.0V) >10 >20 ac CE min. = 10mA, V = 10V) 400 500 Mc/s fT ac c£ 13 ns t max. a =I = -I = 10mA) 10 s c B BM OUTLINE AND DIMENSIONS

Conforming to J. E.D.E.C. TO-18 V.A.S.C.A. SO-12A/SB3-6A

Millimetre 3

H Min. Nom. Max. A - - 4.8 B - - 5.33 C 12.7 - - D - 0.43 - E - 1.0 - ^Ld F - 1.05 - G - 2.54 - H G y k. IF H 5.3 5.55 5.8 V Connections 1. Emitter 2. Base 3. Collector connected to envelope

Milliard MAY 1967 BSX19-PageDl RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V max - (I =<,) 40 CBO E V V (V = CES max. BE 0) 40 V = = VCEO max. aB 0, I 10mA) 15 V

= V nULt - (I 0) EBO C 4.5 V I max t = 10 ls 500 CM " < ' ) mA

P. .max. (T , =25°C) 360 mW tot amb Temperature

T min. -65 stg

T . max. 200 stg T. max. 200 J

THERMAL CHARACTERISTICS

0.48 degC/mW j-amb e. 0.15 degC/mW j-case

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max. CBO Collector cut-off current 400* nA

v =20V = T.=150 30 cb >V 0, C CES Collector-emitter cut-off current = ° V =15V ' V 55 CE BE 'V C 0.4 iiA V 40V V = ° 1.0 (iA CE= > BE EBO Emitter cut-off current

V =4 - 5V 10 ^A EB ' V Base-emitter cut-off current *B:EX V =15V, V -3.0V, CE ' BE T. = 55°C -0.6 nA CEX Collector-emitter cut-off current V =15V = - 3 - V -°V CE BE ' T. = 55°C 0.6 nA J

Mullard BSX 19-Page D2 SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

Min. Typ. Max. Base current = -10mA,V = BSX19 167* 500* )jA lE CB BSX20 83* 250* (iA

Collector-emitter CEO(sust) sustaining voltage = 10mA,I = 15* _ V I c B _ I = 10mA B =10° 20 V CER(sust) C ' BE Collector-emitter ^CE(sat) saturation voltage

I =10mA, I =1.0mA 0.25* V

I = 10mA, I = 0.6mA BSX19 0.3 V

I = 10mA, L= 0.3mA BSX20 0.3 V

I = 100mA, I = 10mA 0.60 V

Base-emitter saturation BE(sat) voltage 0.85* I =10mA, I =1.0mA 0.70* V C D

I =100mA, I = 10mA 1.5 V

Base -emitter voltage BE V = 20V, I =30nA, CE c T. = 100°C 0.35 J Static forward current FE transfer ratio

I =10mA, V =1.0V BSX19 20 60 c CE BSX20 40 120

I =10mA,V =1.0V, BSX19 10 c CE T =-55°C BSX20 20 ] T = 100mA, V =2.0V BSX19 10 C {S& BSX20 20

Transition frequency = 10mA, V = 10V BSX19 400 500 - Mc/s I c CE BSX20 500 600 - Mc/s

These are the characteristics which are recommended for acceptance testing purposes.

Milliard BSX 1 9-Page D3 —

Min. Typ. Max.

Collector capacitance tc

f = 1.0Mc/s 4.0 pF

Emitter capacitance te

f = 1.0Mc/s 4.5 pF Switching characteristics

Turn-on time (see Fig.l)

I =10mA, I =3. 0mA C si from V =-1.5V 12 ns

I =100mA, I =40mA C B from V=- 2.25V 7.0 ns

Turn-off time (see Fig.l) off

I =10mA, I =3. 0mA, C i3 IBM = - 1.5mA BSX19 15 ns BSX20 18 ns

I =100mA, L =40mA, = IBM - 2toA BSX19 .18 ns BSX20 21 ns

lOOnF V„ u . |B4258| -A/WV-j—1|—VWV-to) R4 R5 Rl @ t WW- 4 :son >R2

2-3 nF |2-3nF 3nF 3nF . R3 Hl- HI- 4h HI ot lOOnF lOOnF +

-10°/. V|„ Rise time less°r

than I ns 'm f" - 10"/. tp 0-*— -, > 300ns *- = -- I I Duty cycle <2'U T~ -90V. V»... out V„.v out l--90°M 1_

Fig. 1

Milliard BSX19-Page D4 SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

Circuit conditions:

R x _I v R =R R R c *B BM cc 1 2 3 4 5 (mA) (mA) (mA) (V) (kfl) (fi) (a) (kfl)

10 3.0 1.5 3.0 3.3 50 220 1.0 100 40 20 6.0 0.33 56

t on 'off V V V. V V. BB BE in BB in

(V) (V) (V) (V) (V)

-3.0 -1.5 15 12 -15

-4.5 -2.25 20 15.3 -20

can flow during switching -off. Note: -IBM is the reverse current that applied cut-off The indicated -IBM is determined and limited by the voltage and series resistance.

Min. Typ. Max.

Storage time (see fig.2)

=1 =-I =10mA BSX19 - 5.0 10 ns C B BM BSX20 - 6.0 13 ns

Milliard BSX19-PageD5 '

Storage time test circuit

\A/W 1 1| VvVv IB300II I @ A 89 on lOOnF Ikfl lOOnF ° 50on • 5) 1| 1>—vvw- © >9in 500n<

2-3nF 2-3 nF.

>56n I

IOuF I0|JF +

I IV 10V

+ 6V -I0°/o Pulse waveform at point A"

-4V I . -10- — r V|„ Rise time less Vout than Ins JO /. tp>300ns _ 1 Duty cycle<2°/o |— r. —

Fig. 2

Mullard BSX19-PageD6 SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

TYPICAL CIRCUIT USING BSX20

NAND gate (Diode-transistor logic)

0.12V

O 6-OV

Fan-out = 5

BSX20

IB56901

Typical delay time per stage t = 15ns, when 'fan-in' =5

NOTE

Fan-out = 5 means that the circuit may be loaded by a maximum of five the circuits, each presenting a load identical to that of one input branch of input circuit itself.

Milliard BSX19-Page D7 SILICON N-P-N PLANAR BSXI9 TRANSISTORS EPITAXIAL BSX20

(mA) Ml! Tj=25°C 30

o 075 m A 0. *-. 1 20

0-50 mA

10

0-20mA Mill 0-10mA TTTTT \" 005mA 0-2 0-4 0-6 0-8 VCE (V)

ic BSX20 (mA) I M I i Tj = 30 25°C £ o v i ii V) 0-4mA

*-* ] 20

_ 0-2mA t-

-.

10 ~1~

\ 0-10mA O i -r mm 0-05 m A -H Mill - 0-01 m A 0-2 0-4 0-6 0-8 VCE (V)

TYPICAL OUTPUT CHABACTERISTICS. T. = 25C

Mullard BSX19-PageCl rr Bo^ay (mA)

100 IB =40mA Tj = 25°C * * = 3-0mA >* ' ^ * ^ 75 / * m— / ** + ,/ A "20mA A / Ml m* m* M M / • U » » h-ri i 50 i/ f =1-5mA / • •

fj < ^ I I I I W • =10mA 25 u< I I I I 1 = 0-5mA F

r,

1 / I 10 20 30 VCE (V)

z c - 1mA) - 100 I„=20mA T|=25*C

I

= 1.5mA I 75

— = 10mA

=0-75mA 50

I I I I =0-5 mA

25 [ =0.2mA

.. I I 1-0 20 V (V) 30 CE

TYPICAL OUTPUT CHARACTERISTICS. T.=25°C J

Milliard BSX19-PageC2 SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

ic B5497 BSX19 (mA)

. V CE = 1V Tj = 25°C

10 "L^ "r^yt

- r-*/,^S

vo ' 5 3 !i ' 0-1 (mA) 0-01 10 I B

ic BSX20^ (mA)

. VCE =1V Tj = 25°C >^

; 10 /y '->*& >' - *s

1-0 5 ' 5 0-01 0-1 1-0 I B (mA)

COLLECTOR CURRENT PLOTTED AGAINST BASE CURRENT

Milliard BSX19-Page C3 1000 . - - BSX19 - 7 - BSX20

-

5 Max Typ -

I I I I V 1 - - V = 20V (fJA) 3 C£ / / - Tj = 100°C - I / I * 1 :

100 T.1 t - - - 7 - - 1 - - I 5 - - I - - 3 1 - -

1

-

: 1

i\ 10 1 1 - - - r 7 - - 1 - - 5 1 - -

- - 3 - -

:

1-0 - - - -

7 - -

- - 5 - "

- - 3 "

- -

-0-1 0-1 0-2 0-3 0-4 0-5 VBE (V)

COLLECTOR CURRENT PLOTTED AGAINST BASE -EMITTER VOLTAGE

Mullard BSX19-Page C4 ' ;

SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

1 1000 1 135495 7 — BSX19

J -- BSX20 : c 5

' [

! (pA) !

'

: ! !

i ! ! | VCE = 20V i V = 035V i ; BE 100 _L

:

i

/ ; 10

7 —

' \i ':

I i ! i , f

' j M MM i i

'

i ^ I 10 i

7

'

! i : : 5 , /

: ! 1 . : . . ; !

!

'

i ! ;

:

! !

|

i

i !

i

i

i 0-1

~

! _ ; . i ~l i . 1

:

[

i

; , ! | ! Mi,

1 i I ! i

1

001 i

1

! II

' ' : j '

! i !

! : !

: ! ,'

, ',

1 i

0-001 50 100 150 Tj CO

TYPICAL COLLECTOR CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE

Mullard BSX19-PageC5 - - - IN *0) - m - CD -

- CO

-

> 2§ O U X X 10 10 CO CO

. IN -

-

-

- CO

-

: :

.

- IN -

-

-

- - CO

-

:

™ -

- o 0) In - C\J X >< - I/) to - CD CD r

-

-

O UJ o o o O O •* 00 u. IN (0 ID 00

TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT

Mullard BSX19-PageC6 ' 9 !

SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

• 1 - :-J " J ! . 1 [" 1 " E3SX19 -| -H-|B5493 ] i- (sat) - -r] "f ; - i-j 3SX20L J~i 1— J U 1 1 cv) 'V- :'"-*-'

:' I ^] i 1 U i * c=ioH i d j-± i \ M -ft - te -F- iJ f;*-Ni _+. L -( 4-j- J 1 j | r- X f 1 B X i r^ ' i 1 t ; fT xJ.Jx| : .. 1 ^ =R- -' 1 i i -L -ft- T1 i-xT X -T .+ iXtl ^- 1 J^ 1 33331 .XX. _+_ hi .j H- -T-t r»u^ Nutrx XX X -ir > ^ i ±: ( j -M-l—i-4 -r- _ ^jxx !-i- 3 _+ ^f^ '-I-' ^^ - ^0^ ! L ; ^-^

^^ ! i ' i ' t 1 1 r^ ^ i !_, _, x 1 ; 4- l--t 1 ^^-L_[_, j 5^ ^ 1 +- i^U-w* . !

. --i-- X —t^k-,._*-f^_kL Xx:.x :

.. .. + ' x it"" .... i

. T 1 i ++- - -7- 1 r -H--4 i o 1 t XI "X_ 1 ; -100 100 200 Tj CO

""""

'

! v .. ' 1 ' BE J J^ 1 B b X 1 P^xpn

tvj 1 .

C J • - ~— • -10 u. ... — ...... i j-,-.- _ lj T n .... . 4 - . + — -X i x ] -•- - - ! -- J ... ^. __,_.._. j hlffi 1 t .J. u xLxx -h- "1-4X -]

It- -J ' _

i ".._ tefc *s«x 1 _+ j i xx • , X 2Gb»«L~ - -. r *•» ..">&»» '£?=;<->/-, "T" s»l m> SSiT^'1

^^ ^1 i^*^^^ '" 5 t - -+ ^it 0X7 X

.^_i .. -1- t_ h iX^TX/o!x»" ^h+H1 -f-

XX -100 100 200

TYPICAL COLLECTOR-EMITTER SATURATION AND BASE-EMITTER SATURATION VOLTAGES PLOTTED AGAINST JUNCTION TEMPERATURE.

Milliard BSX19-Page C7 '

•* m m

I j 1 1 1 < * \ — 1 IT o § t

" |~ *ii J U 1 / 1-1 -i J

J. i I I J L T r I- i_ j i i

I i i

I _i i ] j J T T L T l ^ /_ 1 do "1 b 1 /_

m cd ' (j 3 1 > it 1 f / /

, 1 J

—4— I 7 ,

i 1 1 i ~j j r — / / / 1 i_ / it J / I f —— *"""" " j ^B J j. .. r_ i_\

, / _i i / ¥ J / 7 + t f f , f / j j J Z

i

CO > 6

TYPICAL BASE -EMITTER VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BSX19-PageC8 [SILICON N-P-N PLANAR BSXI9 TRANSISTORS EPITAXIAL BSX20

100 3SX19 E.5489

BSX2C - rCBO -

;

10 - :-

I

\ i --

- ?J (/JA) iC5 * t 1-0 J 1000

(nA) -

- -

-

o A ;

c

-

- A.?

; ; ^\co ' c

if - i

;

-

-

-

;

i 0-1 i 50 100 150 200 Tj CO

COLLECTOR CUT-OFF CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE

Mullard BSX19-PageC9 y | r

ioo . ^tpriq^r^^^pppp- BSX1S T7TTT P 1 "i^TiB5486

" *

I ' |~ ' rT~^~\ | | 1 i ""f" T- -r-H i- J ! 4h M ! ! ' i '

i I i ! 1 1 t 1 | ^ ! -r H ' ! H ! — ' tli ; 'it r —- ^r~~ CBO 3^— ^-f^^ ~^^+^r rt^^^^t

; i I I ' ! . I i i , i , i ' '

: 1 ! 10 - M t-li- o-U-L^HLJ-U^^- 1 jl^ 1 jV _!^ tt^^^^^tt^ ~- .—T—t tt M T: = 150°C _^_ J ^^'

i T~T^ — —ITT ^r-"* t I

'

, 1 I 1"" 1 _l_ i 1 ' ' Ml [-Lt—^ 1 J_|_ jl (M

1 1 1 ,,,., ^ i JU**"Tt r^~^m ii——— 1 -+-th Nh t (pA) ! ^^^—rMT— —— Li°._^x^L L^l^ii^t ffi Tttitfc ' ' 1UUU 1 | 7bTJTt^tt=t^tt^T3=t ttr ~^flt ^x+-" +rt (nA) s +tVZ ^~ TTr"+^^JTl£

' i "T^tt It ttr T 3

T, i . jt t. :

I - 1 100 I | 1 j | | | N 1| MM N |jtJ-tiJU — pj: i jjjJ 1

J^1 .. i

- I :> I I I - j -r- -ti^t ^ - tl I I ! I , I I I °

! =55 c "Ml ' t N I ^rtT^

!

- 1

10 i i#/T|' H- -+J-t: T j^~—— ^f-^z:

i ? 7 : —— T~ ~p 'Mi . j/4^ ^^ ' 5 .^ ' trTt~T^T ± ±+± t 1 ^f^ +- I tT l| ^f" j t

^ 1

I ^^LS-rif ; I Uf^^^ to -i-U —r-^*f T+1 =fc-=j=i—^MmJ^I

, j 1 7; ^-^^^ — 1 ; — — " i'

- 1 f \ , 1

. 1 | j 1

1 1 1 1 1 1 1 1 . 1 1 1 1 1 , 1 1 1 1 0-1 1 1 1 1 i li 1 tlii^itilj 10 20 30 40 VCB (V>

TYPICAL COLLECTOR CUT-OFF CURRENT PLOTTED AGAINST COLLECTOR-BASE VOLTAGE

Milliard BSX19-Page CIO — .-

SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

l l l - BSX19 ||||||l||l![nr|||| f-|'| || |l'l|l' B5485

' BLX V -.£ = 15v —H— ' ( ~ri F _ 10 -^IJ^ ^^ 4L li^Al >' M ^ q- a^X it X 2 ' :jfj —i—

. i_ | JLjL

3 i H i y/K i

(ua) -\ —i- "!- - Vvr "i

-1000 ' n^— =f=T =p—'~ —

j- i i | | -xjtyt. ^^ _j_|_ _J_|_

'

-H- -^i/C+— ii I -i-U

-100 --=ti ±-=j§^i:-=rT=-ztt:— 4= - 4= 1—'—H ^ IrX Ml 111 ! | lH. .

_i

i 1 | ^jy j ni _,: !/ ,

-io -^^y^^^^^^-1.^ _^, ^^j_^^^_ — "^ pi-ii-_titr_J ] --^-—jjfi,] -^--pr ~^XY~ \a~

i

3 fr XX- -4- i

'

_i _i I I

-1-0 -4z =t_4z —rt =c_t-_-=b--4= — 4=-^- I I 4-

7; , , , | _

—f—

i —.— p

I :

1 Ml _, 1 IE

-

I i . : , i i -n.1 LLj— _i i Mi' i i 50 100 150 200 Tj (°C)

TYPICAL BASE-EMITTER CUT-OFF CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BSX19-PageCll " *

V F ,

* I I I " 1 |j

\,E Jr.V 1 -+- ~^ =P-i- *K£+~ =F

' i 1 ^ .^ ^^ ,^r ^ **^ ..* ji-

rf ^ -*^*^

J+*"\ ***\ '

" .~^- - -»«•'*' -^-L^*" -+- 4- - F «.- jrf^n ^^ ""«^^^ i\ jJr**\ ***" _^--— l r'\oom>* ; J**^ ^«*^** — apW*^- — * ¥* ^^ m air i

! ' ^ |

;

i ! ! \ |

' i ' i 1 i j i ;

:'

: i i ! i I

-50 50 100 ,50 . 200 . T ( c)

1 \ 1 1 1 1 j 1 /'\/\\'* I

! i v p= 1-OV ^\n ^^ 1 i> ^.o / > ' ^ ' >^ -^

1 1 i ^p' -^ ^ — i ^^ ^*

L^^^ ^' ^ j — - rff "i *•*

1*^ ' ^0"* L^ "| - « ^^ ^ ^ ^ 1 - J^ ^0 — -^w ~ "^ 1 : ! * ^ ' - ^^ ' «-* — g i r"* * ' -^"^__ i i, ^ ^ ^ *— * ^f* *^ - — JUcf. J^^ ,•*"* ^^ »•"* — ^w* 1- \G0'*^ ^^^ : ^^.^ - ^* ^1 i -wr"*^ W «^H^^" m ^ "i"*- " —

; i !

'.

.

'

! !

i i I

! 1 ill

: U i ! 1 III II -50 50 100 150 200

TYPICAL VARIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH JUNCTION TEMPERATURE

Milliard BSX19-PageC12 r

SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

i J^c ( ! + BSXI9 35670 (mA) — BSX20 !

:

1

i \~\l ~ 5-0mA 0mA 25mA f_ 50 mA r

V ~r - 100 \ 1- l ^ , tt^

IB =1-0 mA ! — i --

50 i

/ ! Tj =25°C

" "

j J / -

i

i 0-5 0-7 0-9 l-l 1-3 V BE (V)

'

! 1 ! 1 'T _, (MHz) r- --M-

1 ' 600 - ! S^

j rter

TT" t 400

1 - _[ --

;

Tj = 25 C VfcE'lOV 200 !

!

1

.

i

L- 10 20 30 40 I r (mA)

TYPICAL COLLECTOR CURRENT PLOTTED AGAINST BASE - EMITTER VOLTAGE TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT

Mullard BSXl 9 -Page C 13 . . :

J-Clr- : • BSXI9 B5R7I m A) BSX20 - • • :

• • • Tj =2 5°C

• VCE = • •

. • 120

'

: -

' • •

: •

. '

:

100 :. •1

. . . . -

/ .

. - : :..

80

'.

: ' - .. - 1 :: .... 60

' ':

: , ; /

:

. / 40

. -

;

i

I

• ' 20 • 7

" :

: ::: / • •

• • f • ;

:: ;

0-2 0-4 0-6

TYPICAL COLLECTOR CURRENT PLOTTED AGAINST BASE-EMITTER VOLTAGE

Milliard BSX19-PageC14 . . H !

SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

BSXI9 ! . : u B5672

i IpF) : " ; BSX20 ;.i ' ' 1 6-0

j •

j - Tj = j -- 25°C 1 ' -1 • j - : - jMax 1 1 K i f =1-0 MHz

.

i J C J- c -w

- ..].. : - • -| -i ___

1 'I ,. .

! ! 4-0 Typ.

1 " ; " - +- i

-- - 1- i

- - — . i ..4-i~ j — t- ' ' *— '" — . ~^T ,-L J ]"] - - - — - ; 2-0 ! ' ! 1 j t -f __i_._ i 'r- — ' T i"

i 1 ! |j ^ _[ 0-5 1-0 1-5 2'0 VEB (V)

~I c .. tc BSAia J^ - + r T ' - _. _. ! CpF) BSX?n !- *

1 1 i 6-0 "V"l~ IT 1 k Tj = 25°C -- :; f =1-0 MHz i i =i« =o .1 E - .- 4* j.

1

1

i 4-0 | -'- ^i Max.

! i i- 4 — tit*" -

; ' t TT -{ ~ : Typ. i.

" t— !- ->- j— L _|_ -t r 2-0 - 1 j ^

! -

1 1 2-0 4-0 6-0

EMITTER CAPACITANCE PLOTTED AGAINST EMITTER-BASE VOLTAGE COLLECTOR CAPACITANCE PLOTTED AGAINST COLLECTOR-BASE VOLTAGE

Milliard BSX19-PageC15 ' x -._J_ 1 on \ BSXI9 B5673 (ns) \ i BSX20 \ 1 JJJJ..JJJ.. \ i - \ Tj = 25°C ~*

'- 1 i 4 — \ 1 I =IOmA l \ . i c ' \ ! v 60V 1 Cc = v BE -I-5V

- j _ - --

_!_.. --

; 1 X

_;

'

i : l i-\

. 1

;

j

!

!

'

i

__L i -1 ] , 1 1 T 1 2-0 4-0 6'0 8-0 I B (mA)

' t«« X 1 : BSXI9 (ns) BSX20

II 1 1 1 II

I I c = IOmA I B =3-0mA vcc = 60V V BE .-l-SV

\

10 -

1 i -50 50 100 150 Tj t°C)

TYPICAL TURN-ON TIME PLOTTED AGAINST BASE CURRENT TYPICAL TURN-ON TIME PLOTTED AGAINST JUNCTION TEMPERATURE

MuHard BSX19-PageC16 SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

1 ton i -f-^~ nc;y|Q y15674 (nsl BSX20 15

I

i

1

1 T = 25'"C J

j xT,- =IOOmA 10 ( J Vr C =6-0V 1 r V F E = -2-25V

-+— 1

|

i T* 50

i

_u - -- .

: t i r

i i 1 -f 1 10 20 30 40 I B (mA)

1

1 t li 1 J_ 1 BSXI9 (ns) BSX20 15 11:1111 '--

: I c =IOOrr iA |z i

|

; | I B =40m A ; VCC --60V

! r- +\ V =-2-2 ;

i BE 10 1 _ , d - )._l.

1 ~~t"T

'

__, — i

: i ! i ; < ! .-.:-

Li--r-[-.U| p*f| 1— 1

. i 55-0 TH^-rf.. j —\ i^u.i£ T ; 1 !

1-1 \ -Hl-

i

j

i i 1 1 ! I 1 1 -50 50 100 150 Tj (°C)

TYHCAL TURN-ON TIME PLOTTED AGAINST BASE CURRENT TYPICAL TURN-ON TIME PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BSXl 9-Page C 17 —-

I'M i _. 1 ii i_i 1 -i [_ l | off , 1 J 3SXI9

| (ns) | - XL L Mill

! 30 M 1 i 1 _j__j_ - - M~ I c =IOmA -, 4 1 I = 3-0mA - B - ^ I BM=-l-5mA V =6-0V !: E:- CC "- -U ^T [

i 20 ~n 1 — XX — -X -4. _i . - T — - - |-|~- 1 Wj - - i - -

1 --! _- " hi- -- - -

" T X

; 1 F -50 50 100 150 Tj CO

TYPICAL TURN-OFF TIME PLOTTED AGAINST BASE CURRENT TYPICAL TURN-OFF TIME PLOTTED AGAINST JUNCTION TEMPERATURE

Mullard BSX 19-Page CIS SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

8-0 I R (mA)

1 ; ii- toff , BSX20 t|J" d- | -J4 {- (ns) ! 'tt-

1" iflj i =iomA .-- -i- +"_- i c K- l+ ffi -] "t-.T r^ t h+ =3'0mA [ ! I i^-"-- tr - ffi B — " ' 3 1 +H 1 5 " * J-f— Ibm "t" ' 1 i^'Tl 6 ' 0V "-4 Vcc= !! .! j

: ! ! J,>f|

t t i ;-4 #If-i-l-fl^Miit-S %>r^T" "ft j|JH|[ "li^F- frlf

f_ ! :t " ji ; ! f Ijl;- H 'fiM^fll'-p^ii -| F i ;_4.. •^^^^ll^ljl -50 50 100 50 Tj CO

TYPICAL TURN-OFF TIME PLOTTED AGAINST BASE CURRENT TYPICAL TURN-OFF TIME PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BSX1 9-Page C19 !

~4t ' ' b sx 9 Bbe// ! (ns) i

i i i

'

I

1

j = 25°C

; = IOOmA j c , 1 CC =6-0V i

.

i

ii 1 t i k

, :\o^ ' 1^

,v ftfA. 1 * "7

! , 1 !

! !j^ ^^i

1

!

1

'2^r i -- .... - _ A. -t

^1

!

'. :. i ! 1 10 20 30 40 Io(mA)

toff 3SX.I9 1 (ns)

I J 1 II II

i 30 i ! Ic = IOOmA

| I B = 40mA I BM ="20mA -° vcc = 6 v

1

1 20

|

1 |

- ^^

10 !

1

1

! s I'M 1

. .

i 1 -50 50 100 150 Tj (°C)

TYPICAL TURN-OFF TIME PLOTTED AGAINST BASE CURRENT TYPICAL TURN-OFF TIME PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BSX19-PageC20 ^

SILICON N-P-N PLANAR BSXI9 EPITAXIAL TRANSISTORS BSX20

' A ' 1 I 'off — BSX20 Z\Z IL B5678 1- """— X =t XC ~Ti b." X 1 1 _j_i_ . 30in „ aO.r,^^^,_^>» ~ -r Ti =2bc r Tm - „»a* ^^' -+-4- -l*- 1 X j -\.«v>' —4 =IOOmA - Tc lJ«f' v =6-ov i—: cc ^^-P ^ T

' ^' _ 1 l (_ _l_ ^ ^

! \A^ 1 ^^ * H—+4 v .* -20 rn* __ ^^ ^*^^^^\ j**^^! 1 _| , — *** _^^*^^^l^^ -*^oro^^— ^0**^ ^^^^""^^^1 I pi rf^"n ^* ^**f^* ^^^ i-* — ^*LJ^^"" , ^^L*^ —

1

1 ! 1 !

i 1 0"t 1 : 1 " "T T" 1 10 20 30 40 I B (mA)

toff BSXZO (ns)

II ! 1 1 II 30 I c =IOOmA I B =40mA I BM =-20mA Vcc = 60V

20

10

-50 50 100 150 Tj (°C)

TYPICAL TURN-OFF TIME PLOTTED AGAINST BASE CURRENT TYPICAL TURN-OFF TIME PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BSX19-Page C21 1

...... X s _ TI -XXX " " 4-1 B5679 Xt ITT BSXI9 _ _1_ -l_ (ns) I XX ^ i_. .... <«^>'' , _^ - 15 0*>T t T- - 25°C - ' ~ " X " >»T X ^ X J = "-+ " 7 C '"-I-M

1 ^ 1 II j* _L_ r

__i— ... . — .[

1 \jf . 1 K -f- — -<^ A.of!i^*^"

1 ^ ...... _... . j.... i ' .^r i --^^*" t r " '" " ^r- ' .*«* . , ; -- _, - nro^awi*

r : [ !>** | " 1 L>r i I r '- 1 - ^^ 1 *^tnx ^k^^ r 1 1 ^ t—^T

'

i ^ ^^ ^^ | jj^*r""T i j-

' -M°m£-i— : ' 5-0 1 j>«* ,^-Kp

! rf'^H : 4— ^ — j L w" , T^T : :fc=ffTt LM-"h i i T ! '*r 1 i [ i~f T 4

! *^^ i " t^--h+-- t~"""1 1 "t 4 - — "1 '- rt+1- t-f-h" I" i o— r~x- i — ± 1 tx i~H- 2-0 4-0 60 8-0 Ib (rnA)

ts J-- -I-, — - , ^ usxi9h_i.._ ... _ _. (ns) """- XCLLl— _^_ -+- - ^- -4- - _ X __i i -^ = 10 ! ---T- x J-c = -- -j— - .... _U- XTn IOrriA f Tnk/l-IC mA ""[ *r

* ! 1 * ^ i*

! ! ' . . i

1__ 1 I

!

f* : 5-0 -fl ^& *"

- 4-1 1--

: ! ' _ 1_r " |" 1 o 'Ti~~i—r i Al _L -50 50 100 150 Tj (°C)

TYPICAL STORAGE TIME PLOTTED AGAINST BASE CURRENT TYPICAL STORAGE TIME PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BSX19-Page C22 : — .

SILICON N-P-N PLANAR BSXI9 TRANSISTORS EPITAXIAL BSX20

! ! T +4 - B56*=(<"> BSX20 Cns) - ... 4 11 ~ ~" . _ 4i-"-t "{"TTi l — " ^ ^ ,* : : Tj =25°c :t: rrr" + ~.o v .>' = "* I 10mA ^i c * J : r^^ " ~* — +~ - T ! v^t T" j ^*^"* - - - ' vt j t * " - o<^ | _A'41 - i i i- r- l

; — kC*--! ft -!, i -;i 6.o<^*-. : t L*^- ^^*" _J_j_ : • -+Jp'^---l Hi" !,r .- - , J»*r **f^<*="+^j-»" r* r' 5-0 •*"^^^**""^'" j-j -"" * --"| -~ - -H , . - - ^^——— T - "IT" 1

1

:: - - - • ~~Z"' —~ ^'* --i— - - ' : r: r t i _L j 1 i lEi f _r~ 2-0 4-0 6-0 8-0 I B (mA)

i

j ts \ BSX20 (ns)

"""I-- I 15 n I i -'-- L -'«'"

. . .. vr: c - -: ~ •ti ' -•--

' ' • 1 - ~f ^ 1" 10 i

.

j " ..i

!

: 1 1~ i't . ^_ 4 5-0 I **T -4-

f-

i

~~"- - J i ! "" - i : : 1 : -L - 1 t -50 50 100 150 Tj CO

TYPICAL STORAGE TIME PLOTTED AGAINST BASE CURRENT TYPICAL STORAGE TIME PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard BSX19-Page C23 N-P-N SILICON BSX2I PLANAR TRANSISTOR

N-P-N silicon planar transistor for use in general industrial applications and as a driver with numerical indicator tubes. TO-18 construction with collector connected to the envelope.

QUICK REFERENCE DATA

+120 V max.

= 20 - (I 4 -° mA =+3.0V) h min ' V FE C CE

f min. (I = 4.0mA, v - +10V) 60 MHz T c cE

OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-12A/SB3-6A J.E.D.E.C. TO-18

Millimetres

Min. Nom. Max. A 4.8 B 5.3

C 12.7 D 0.48 E 1.0 F 1.05 G 2.54 H 5.3 5.55 5.8

Connections 1. Emitter

2. Base

3. Collector connected to envelope

Mullard JULY 1969 BSX21 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

fV max. (I = 0) -120 V CBO E

max. (I = +80 tV CEO B 0) V = V maX - (I ()) +5.0 V EBO C "cm max - 50 mA * X maX - 50 mA C(AV) V max - 50 mA *Vv) max - 50 mA = P . max. (T 25°C) 300 mW totx amb Temperature

-65 T . min. °C stg

T , max. 175 °C stg T. max. 175 °c J THERMAL CHARACTERISTICS

Rii /• ,, in free air 0.5 degC/mW th(j -amb) R, 0.15 degC/mW th(j -case)

* Averaged over any 20ms period.

fThe BSX21 may be operated in the breakdown region up to V = +160V, CE provided that P, <100mW at T , s85°C. tot amb

|The transistor can withstand a capacitive load of 500pF, with V max. = 150V during switch-on.

Mullard BSX21 Page 2 N-P-N SILICON PLANAR TRANSISTOR BSX2I

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

CBO Collector cut-off current v +50V 0.5 - jiA ciT ' V V = +120V - 40 MA CB ' V EBO Emitter cut-off current V = +3 -° V 0.1 jiA EB ' V°

Collector-emitter saturation CE(sat) voltage

I = 1.0mA, T =100fiA +250 mV

I = 10mA, I = 1.0mA +1.8 V C B

V Base-emitter saturation BE(sat) voltage

I = 1.0mA, T =100nA +670 mV

I =10mA, T =1.0mA C B

Collector-emitter sustaining CE(sust) voltage

I =4. 0mA, I =0 +80 C B

BE Base-emitter voltage I =4. 0mA, V =+3.0V +700 +900 mV C CE

Static forward current FE transfer ratio 1=1. 0mA, V =+3.0V 25 C Chi I =4. 0mA, V =+3.0V 20 40

I =10mA, V = +3.0V 32 c CE

I = 20mA, V =+3.0V 7 C CE

Collector capacitance Tc =1 1 I =0, V = +10V ' WE e ' CB f = 1.0MHz 3.e pF

Emitter capacitance Te V = +1 -° V W ' EB f=1.0MHz 3.5 pF

Transition frequency I =4. 0mA, V =+10V 60 120 MHz C CE

Milliard BSX21 Page 3 .

TYPICAL CIRCUIT Vht ? +250V + 10%

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly

into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.

2. Transistors may bedip-solderedatasolder temperature of 245°C for amaximum soldering time of 5 seconds. The case temperature during dip-solderingmustnotatany time exceed the maximum storage tem- perature. These recommendations apply to a transistor mounted flush on a board having punched -through holes, or spaced at least 1.5mm above a board having plated -through holes

3. Care should be taken not to bend the leads nearer than 1.5mm from the seal.

Milliard BSX21 Page 4 —

N-P-N SILICON BSX2I PLANAR TRANSISTOR

-

' r 1 ! 1 1 1 ! 1 Af>°r „,*a? zt"j" Tj *?'*' 1 ' 1 11 1 = 25C ^S— Ip 14 ! ZJZ i ^r ! X

' L 1 \^&* *" ' 1 -^^Lrf^

' i . 1 *+ (mA) i -h

!_rf

1 ,

! ^^ A *

'

1 A _i |_

' s3° ^/ - 1 -i- f —f'-TTi r ^^C^^\ i' aff^V^ # ^* — ^

' ^^ ' 1 ^" i

: i i 1 ; 1 j*^ ! i l / ^^ i 1 I j r n* i

- *"* # # rf* # ' j^^

If. J^ i

! j' i J i ^

i • i f '# ]^ J Jf j^| ! : if/ -pnnjiA f

Wr ' : = * j 150fjA

f : ' =125uA

'

ir i H =^.p: . i i;: iiH -;M::::^-:;

#T i

, , _/_!_ i

l ' ! j '

/ 1 f ~Jr K i— fill . * ^

on I : '| "~

1 1 | ill I L [ I C ,-\ .. A -J^4== = = ^= = = ' = = ==~ — 4^^'H^^ ^==j=^^=^ -jt I |-^=N = I » j_ -

1 j | _M _j_j_ j J^

: : : 1 ' ===p^^==^ 4Uj— " | Mil t=^=t===-= =^

1 1 o 1 Mlii MM 1 2-0 4-0 60 (V) 10 8<)VCE

TYPICAL OUTPUT CHARACTERISTIC

Milliard BSX21 Page 5 . : : : . :

_ .. r> V,CEfeat) - B4536 • -

- - . 1.5 • • ' . ,<

'.

' «VT • • ;

: (V)

: VyS : : 10 : I = 3.6nnA c I =400 uA

0-5

'

.

I , i ,

50 100 150 200 T-CC) 250

v . BEfeat) B . •

;

. . - 800 : : : ....

: :

'. ; '-

- '

'." (mV) I =3-6mA r '. '. k : I =400uA : • 700

; : :

. : • •

. . .

• • ^^ . **yp: 600

-

' . • • ::

:

...... ; 500 50 100 150 200 Tj(°C) 250

TYPICAL VARIATION OF COLLECTOR-EMITTER AND BASE -EMITTER SATURATION VOLTAGES WITH JUNCTION TEMPERATURE

Mullard BSX21 Page 6 . ; ! .

N-P-N SILICON BSX2I PLANAR TRANSISTOR

FE BSX21 Dioe

' 3V - 'CE=

. . 60 T. =25°C '

' "

; .

• '

: -

- 40 . .. .

'

:

'.

- / S^ -

- • •\ 20 > - • : w

:

- . .

15 20 -I 50 10 £ (mA) 25

rr- ... ' hfc \J 1 IW •Ie = A A -j .. CF" _...[. H no '

.. ! . .

'

1 1

' ' P .

bU '

'

i 1

j : !

i :

! i : ; ; !

I i-

: . I [ 1 ! , ] : I

;[ i ; j i

: : ; !

; : Tp ' \ ...... _. ! ....j_...

; ; 20 : 50 100 150 Tj( C)

TYPICAL VARIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH EMITTER CURRENT AND JUNCTION TEMPERATURE

Mullard BSX21 Page 7 f T (MHz) vCE = iov

T : = 25°C

140

120

-.,

100

80

60 5*0 10 15 I F (mA) 20

TRANSITION FREQUENCY PLOTTED AGAINST EMITTER CURRENT

Milliard BSX21 Page 8 ! [ ' —

N-P-N SILICON PLANAR TRANSISTOR BSX2I

! ! ! C j T BSX 21 - ! DIOS (pF) T = 'I M HZ 60 1 i =i E e =o-

;

i

~!~

\ ! V

4-0 "I

: ! tyD 1

| -i- -i :: ]i

i : | i -J _| — --: -^ -i- -- t- -r- -f-h

'

i i

i i

i ' - - - _;;- — — —i - J " T 10 20 30 40 VCB (V) 50

! ! 1 ; t . c : E l e

: , j i T" i =i =o: 10 c c - T

: -]- .. "T ! i i r

i -- — ... ±t"li - 4 - _j_ 1_ : |! -i- > 80 I' !

--J . . - ^4*

' - "" j !

I : _i h ~~

i /,. 1

1 i --]- rp

i

j

... .| — . . J - -._... ,J" -*- ..- f- I ) ti'O ! j — j "T

i

~f "r ; ! ^

1

]

J i !, i i

1 t i ;

1 . 4- : j __,

I i D^ j

4-0 ; ! i i 1 I 1 i 1-0 20 3-0 40. V,r B (V)50

COLLECTOR CAPACITANCE PLOTTED AGAINST COLLECTOR-BASE VOLTAGE AND EMITTER CAPACITANCE PLOTTED AGAINST EMITTER-BASE VOLTAGE

Milliard BSX21 Page 9 BSX21 B4542

: VCB =50V 10

- CBO • (pA) ,s> |

2 '

_

-

"

" " 0-5

'

- 0-2

i

-

50 100 TjCC) 150

BSX21 B4 SA

. V 3V EB= 10

T - - EBO - - <»

((JA) -

I

-

-

-

-

- 0-5 -

-

0-2

-

0-1 O 50 100 TjCC) 150

TYPICAL VARIATION OF COLLECTOR-BASE AND EMITTER-BASE CUT-OFF CURRENTS WITH JUNCTION TEMPERATURE

Milliard BSX21 Page 10 N-P-N SILICON BSX2I PLANAR TRANSISTOR

Ul

....

1 1

1 [

1 I 1 •» 1 1 1 1 1 1

j J X j [ II

SS :$

V< jlL 1 1

i__i_ 1 II 1 ± r - ^^ :;>: ft: 1* :

O :;•: :';:: :;•:: S! :•:;

-t-> 1 o S : : ; ft: : : ! a *; ;ft! tf: :*: £•: o ~r SS tt S?

: : ::=:: : : :|:J: :•:•; £ O j si *: i i n 8 a m w IS ::•: m$A O |:|!; ::?:

|:!: ' Is! W& & :¥: Ai *: 1 /m & °

:':': 1 m 5s :> 1* & :;:

m : : mz :K: f\ •:•:: & :*: *: : : :•: : : : 1 : :l-:-:-: S ;:|: • & $: §1 8 £: Si *S :$i

1? :•:• :S "U S? sp :§; S

:•: iijss :•:•: ui 2 :£ :* o o 2o f ° o o o- E E m

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

Milliard BSX21 Page 11 SILICON PLANAR EPITAXIAL BSX59 N-P-N TRANSISTORS BSX60 BSX6I

Silicon planar epitaxial n-p-n transistors intended for use in very high speed core driving applications QUICK REFERENCE DATA BSX59 BSX60 BSX61

V maX - 70 70 70 V CBO 45 V maX - 45 30 V CEO

I max. 1.0 1.0 1.0 A

P, , max. (T = 25°C) 800 800 800 mW tot amb T. max. 200 200 200 °C h = 500mA, V = 1.0V) 25min. 30-90 25min. FE ac CE = = 0.5 0.7 V V maX - (I 50°mA ' I 50mA) 0.5 CE(sat) C t max. (I = 500mA, I = 50mA, on v C Bon -V = 2 -°V 35 40 50 ns BEoft > t maX = 500mA I = _I = 50mA) 60 70 100 ns oB - ^C ' Bca Boff"

Unless otherwise stated data is applicable to all types OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-3/SB3-3A J.E.D.E.C. TO-5 Millimetres

Min. Nom. Max.

A 9.10 9 40 B 8.2 8 50 C 6.10 6 60 D 5.08 E 0.71 86 Fl 51 F2 12.7 F3 38.1 41 3 Gl 1 01 G2 0.41 48 G3 .53 H 0.4 J 0.74 1.01

The collector is connected to the envelope

Mullard JULY 1967 BSX59-PageDl RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V „ max. 70 V CBO max. BSX59 45 V VCEO BSX60 30 V BSX61 45 V

V max. 5.0 V EBO

I max. 1.0 A

I max. 0.2 A B

P max (T , = 25 C) 800 mW tot amb Temperature

T ^ min. -65 C stg

T ^ max. 200 °c stg T max. 200 J THERMAL CHARACTERISTICS

9 (in free air) 0.22 degC/mW j-amb, e. 0.035 degC/mW J-mb

ELECTRICAL CHARACTERISTICS (T.=25 C unless otherwise stated)

Min. Typ. Max.

CBO Collector cut-off current V =4 °V - 50 500 nA CB ' V° V„ =40V, I =0, T. = 150"CC - 100 300 /jA CB E j

EBO Emitter cut-off current I =0 50 300 nA EB =4.0V, BSX59.60 BSX61 - 50 500 nA

V„ =4.0V, I =0, T. = 150 C 5.0 50 ^A EB C j

Currents with reverse biased emitter junction V =40V, -V „=4.0V BSX59.60 50 500 nA CEX CE BET5 BSX61 50 1000 nA

V =40V, -V =4.0V, T =150°C CE BE j BSX59.60 100 300 fiA BSX61 100 500 /iA

V =40V, -V„ =4.0V BSX59.60 50 500 nA ~ BEX CE BE BSX61 50 1000 nA = V =40V, -VT5 „=4.0V, T. 150°C CE BE ] BSX59, 60 100 300 /iA BSX61 100 500 fiA — Milliard — BSX59 Page D2 SILICON PLANAR EPITAXIAL BSX59 N-P-N TRANSISTORS BSX60 BSX6I

ELECTRICAL CHARACTERISTICS (cont'd)

Min. Typ. Max.

Collector-base breakdown (BR)CBO voltage

I =10mA, I =0 BSX59 70 120 V BSX60 70 110 V BSX61 70 100 V

Collector-emitter breakdown voltage

I =100/^A, V. BSX59 60 110 V (BR)CES BE BSX60.61 60 100 V

I = 10mA, I =0 BSX59, 61 45 55 V (BR)CEO B BSX60 30 50 V

3.5V, R =70S2 BSX59,61 See note 1 (BR)CEX BB B

Collector-emitter saturation CE(sat) voltage

I -150mA, I =15mA BSX59 0.24 0.3 V C B BSX60 0.21 0.3 V BSX61 0.18 0.5 V

I = 500mA, I = 50mA BSX59 0.44 0.5 V B BSX60 0.42 0.5 V BSX61 0.4 0.7 V

I =1.0A, I = 100mA BSX59 0.58 1.0 V BSX60 0.56 1 V BSX61 0.56 1.3 V

Base-emitter saturation BE (sat) voltage

I = 150mA, I = 15mA O.t 1.0 C B I = 500mA, I = 50mA BSX59 0.85 1.0 1.2 V C ' B BSX60 0.7 1.0 1.3 V BSX61 0.77 1.0 1.3 V

I = 1.0A, I = 100mA 1.2 l.E C B

Static forward current FE transfer ratio

I = 150mA, V == 1.0V BSX59 30 70 c CE BSX60 30 100 BSX61 30 110 NOTE

No breakdown may occur when the transistor is switched from Ic ; 1.0A to = with -I = 50mA. VCE 60V Boff

Milliard BSX59-Page D3 ELECTRICAL CHARACTERISTICS (cont'd) Min. Typ. Max. h Static forward current FE transfer ratio

I = 500mA, V =1.0V BSX59.61 C BSX60 30 - 90

I =1.0A, V =5.0V BSX59 20 40 C BSX60 25 50 BSX61 20 55 h Small signal forward fe current transfer ratio

I = 50mA, V = 10V, c CE - f = 100MHz 2.5 4.75 c., Input capacitance ido - -V =0.5V, I =0,f = 1.0MHz 36 50 pF BEo C c Output capacitance obo - V = 10V, I =0, f = 1.0MHz 5.75 10 pF R F

Q Recovered charge (see fig.l) S I = 500mA, I = 50mA, V =30V BSX60 - 3.8 5.0 nC t Turn-on time (see fig. 2) on I =500mA, I„ =50mA, -V„„ „ = 2 .OV, C Bon BEoff V = 50V BSX59 - 17 35 ns CC V =30V BSX60 - 17 40 ns V =50V BSX61 - 18 50 ns

Turn-off time (see fig. 2) 'off I =500mA, L, =-I_ „ = 50mA, C Bon Boff V =50V BSX59 - 45 60 ns V =30V BSX60 - 58 70 ns

V„ =50V BSX61 - 70 100 ns CC

Milliard BSX59-Page D4 SILICON PLANAR EPITAXIAL BSX59 N-P-N TRANSISTORS BSX60 BSX6I

Recovered charge test circuit and waveforms

i 30V

Input pulse

Turn-on and turn-off test circuit and waveforms

i500ns-H Pulse generator output impedance =50C1 Fig. 2

90% BSX59 BSX60 BSX61 Measure- 50 30 V ment R 100 60 10% c -V 4.0 V t B on V. 24.75 V 10% in "V 16.7 V B 'off V. 37.5 V m !P1° _ L

-A *on U- h- *off —I

Milliard BSX59-Page D5 .

SILICON PLANAR EPITAXIAL BSX59 N-P-N TRANSISTORS BSX60 BSX6I

150 — BSX60 BSX61 ^FE - _LLLLL. VCE =1-0V -

- Tj = 25°C 100 f - -»-j*

- y *' --^? BSX61 t- 50 BSX60 liX -r< ~ -

*** ' " " - 4- BS X59 In.i.Ti; 3 5 7 5 7 3 5 7 5 7 0-1 1-0 10 100 I c(mA) 1000

1b0 E3SX59 B7517 3SX60 - 3SX61 hFE 1 LJ1L .. : - = 5-0V E '"" - 25°C V

-^ - — -- - :=:

- BSX6 +** *' \ 50 BSX6C, \

-- — ""- - BSX5S - TT41' .rfr.r. H-7 3 5 7 3 5 7 5 7 5 7 0-1 10 100 I r (mA) 1000

TYPICAL VARIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH COLLECTOR CURRENT AT V =1.0 and 5.0V RESPECTIVELY CE

Milliard BSX59-Page CI . . - ;

—1 ^ i_* ^/\ ^ ->

'

' ' .... V CE 150 •

4

'FF I c = 100mA

• -

f • - 100

• ; I : : ^^ Li^ = 1mA L-K*^ : . . . "

: ... , . " • 50 - ^^ ' - _ — • - ; ; L^-*" ...

- . • • ^T. - L ' -50 50 100 Tj CO 150 TYPICAL VARIATION OF STATIC FORWARD CURRENT TRANSFER RATIO

WITH JUNCTION TEMPERATURE ; BSX59

_i BSX60 — B7519 - X

: | •- i ! !

„. c,.n i i v\t ~ " • I5u | j ] \""-' '.'A --4- ... — __ _ "i i i : i

! '1- L — 10mA •4- # i -\ f '.I

-- - ill -rf | ! : A ; = 500 mA^ 100 1 -H— A JIJP -- *^**T^ I:- \

i

- ... - • t

;.. } 50 'Jr -- - — - 1 :

i

; - - -i-| X-

'

1 . j... '-'--—

- --. -

.

: ! T ZL -50 50 100 Tj CC) 150

TYPICAL VARIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH JUNCTION TEMPERATURE; BSX60

Milliard BSX59-Page C2 SILICON PLANAR EPITAXIAL BSX59 N-P-N TRANSISTORS BSX60 BSX6I

100 Tj(°C) 150

TYPICAL VARIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH JUNCTION TEMPERATURE; BSX61 5 B7521

1 1 h BSX60 fe vCE =iov^

1 1 1 T

f = 100MHz = 5V Tj-25"C

= 2V

2

. i i i i I'M 3 5 7 3 5 7 3 5 7 10 10 100 I c CmA) 1000 TYPICAL VARIATION OF SMALL SIGNAL FORWARD CURRENT TRANSFER RATIO WITH COLLECTOR CURRENT

Milliard BSX59-Page C3 r

—i— " o — CM o in " m " " -

" - < CO b " -

!

1 : o — o

- j " - 1^ -

-

-

-

i

- -

/ U - O °if) n

BSX59 BSX60 BSX61 CD / hImU| h)!_

-

- J

- CO

-

:

n

.

-

-

-

- 01 o in - ID X X X CO

:

o O o o O o o ID 1 uuj £ >

TYPICAL VARIATION OF COLLECTOR-EMITTER SATURATION VOLTAGE WITH COLLECTOR CURRENT

Mullard BSX59-Page C4 -

SILICON PLANAR EPITAXIAL BSX59 TRANSISTORS N-P-N BSX60 BSX6I

1-5 BSX59 - B7523 - - ~ — " --~ BSX60 BSX61 — — VBE(sat) (V) ULLL - = :l: :: - - - -/- : IB 1-0 - Tj=25°C ---~ ------— ''- — ------:I ..— --" -- 0-5

- — --

-

-

, 11 L 1 1 1 lliu S 7 S 7 3 5 7 i 7 0-1 1-0 10 100 I c(mA) 1000

!

• 4 1 — i BSX60 ~t BSX61 -j- "f- i !

1-5 |

i i ; i , .

.._ - : ~ ^c=io : i — f" ' . ; — , I IB VBE(sat) ;

i : ; '- (V) -;--;- -(- j

.

: - -I 1-0 A -, -r~ T ~r T

1

' . i 1

:

i

:

0-5 ~

: -

!

: T

I -50 50 100 Tj('C) 150

TYPICAL VARIATION OF BASE-EMITTER SATURATION VOLTAGE WITH COLLECTOR CURRENT AND JUNCTION TEMPERATURE RESPECTIVELY

Milliard BSX59-Page C5 ' . ; ;

i i ..... , . „ i-i-; j ~] BSX60 - -

1 1 -.1 - ! - BSX61 • 7 : t-r

40 I j_ I ---

! i" :fc- I = c I-

- i -I . ; f ! —\ Hbo -+-{- i =1-0MHz ^^. Tj = 25°C - (pF) N^ ill i r|-:!i ;i-iT ::

. : . . i : : .;...; .| i ;1 ;_._ 30 ] 1 I - . 1. " f i- ! ! !

: • • j ! i Till- t t|!i -+— _— *^~ -r [ | . . i . ;

: ' i i 1 I t - ; -1-- t

| ' j ; tf - 20

! - 1- - :

i

1 I ~: I ; i - ~ ! t -

-- j j_ ; • ! - r -r- i i r j. ' I I : :+- -'-\- __ 10 ! i 4 -VBE (V) 5

TYPICAL VARIATION OF INPUT CAPACITANCE WITH BASE-EMITTER VOLTAGE

1 _, -,,- BSX60 BSX61 i 10 i

- .L'l.l i I i _o

; I E

n i i C bo Ji - f = 1-0MHz (PF) _ Tj = 25°C \-l- =

- 8 !

1Vt\ i

i . ]

i * . 6

I

| --

-

1 4 i 10 20 30 *° VCB (V) 50

TYPICAL VARIATION OF OUTPUT CAPACITANCE WITH COLLECTOR-BASE VOLTAGE

Milliard BSX59-PageC6 . !

SILICON PLANAR EPITAXIAL BSX59 TRANSISTORS N-P-N BSX60 BSX6I

B7527 _[_ - BSX60 i BSX61 30 ' "T l I l ! I

, _j_ - I = 500mA : c » f v c ton I Bon = 50mA Insl -VBE = 2-0V — BSX59 20 riii• BSX60 T

~~

'.

i t "j < - ->- 10 I

:1 T- : 'r -r-U- I | : I For test circuit see page D5 -

.._j_ ._ r i- -50 50 100 Tj(°C) 150

~ ' B7528 :

l BSX60 I I I I BSX61 150 MINI BSX61

t I =500mA c - t " j- - I = 50mA \ I* t„«off lBon = Boff

- J- ! ... -i 4 4-- BSX60 ~!~ 100 ; T 1

, j - f 1 -i

:

: : , T *

- ..|..: ; »"

I pfT I 50 :!!: {- \ 1 +- - - "T -t. - -

1 I ^ -}- I I t-

' : r II 1 ! 1 1 , I I ,_ i -50 50

TYPICAL VARIATION OF TURN-ON AND TURN-OFF TIME WITH JUNCTION TEMPERATURE

Milliard BSX59-Page C7 100 Bsxsy B7529 - 7 BSX60 - BSX61 -

5 - : CBO -

3 (pA) -

:

10 -

- V 40V > 7 I C BO< CB= - -

5 -

- 3 -

: :

10 - - - -

- 7 - "•EBCV *EB

-

5 - -

- - 3 - -

: -

- - - -

- -

7 - -

- - 5 - -

" - 3 - "

:

- 0-01 50 100 TjCC) 150

TYPICAL VARIATION OF COLLECTOR AND EMITTER CUT-OFF CURRENT WITH JUNCTION TEMPERATURE

Milliard BSX59-Page C8 — W

SILICON PLANAR BSY95A EPITAXIAL N-P-N TRANSISTOR

Silicon planar epitaxial n-p-n transistor for general purpose low level switching applications. QUICK REFERENCE DATA

V maX - 20 CBO V

V m3X - CEO IS V

max - 'cm 200 mA

P. . max. (T =£25°C) 300 mW tot amb h WmA 50-200 FE V C = ^ f min. Tm = 10mA, V = 9.0V, a c CE f = 100MHz) 200 MHz

t max. 50 ns s

OUTLINE AND DIMENSIONS

Conforming to J. E.D.E.C. TO-18 B.S. 3934 SO-12A/SB3-6A

Millimetres

A Min. Typ. Max. r ^i - " ~~1 A 4.53 4.8

3 B 4.66 5.33

( , Cl - 0.51 Cl — D1 ^f- C2 12.7 "D c 2 3 ; , ',, C3 12.7 15 r

._ Dl 1.01 r_]__l uj D2 0.41 _ 0.48

E D3 0.53 t ~Kir 7 - G -4- T E 0.84 1.17 2\ 1 \ o>

1 y F 0.92 1.16 r v G - 2.54 -

Viewed from underside H 5.31 - 5.84

Connections 1 . Emitter 3. Collector connected to envelope

2 , Bas>e

Milliard MAY 1974 BSY95A Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

V maX - 20 V CBO

V maX - 15 V CEO

V maX - 5.0 V EBO

maX - 100 mA ^CtAV)

max - 200 mA 'cm ° (T S25 mW P maX - C ) 300 tot amb

* Averaged over any 20ms period. Temperature

T ^ min. -65 stg 175 T ^ max. C stg o„. T. max. (operating) 175

THERMAL CHARACTERISTIC

R.U/- u\ 0.5 degC/mW lii^j -a.ii.-iw/

ELECTRICAL CHARACTERISTICS (T , =25°C unless otherwise stated) amb Min. Max.

I Collector cut-off current CBO - V =16V, I =0 50 nA CB E V Collector-base breakdown BR(CBO)v ., ' voltage I"=1.0uA 20 - V C r

I Emitter cut-off current - V,, =1.5V, I =0 25 nA EB C V.--.--,^. Emitter-base breakdown ,, v(BR) EBO ' voltage - I =10fiA 5.0 V E I„_„ Collector-emitter cut-off

CEO , current - V_ =12V, I =0 250 nA GE B

v /t,t,v^ti^ Collector-emitter breakdown (BR) CEO .. voltage - I = 10mA** 15 V

f Transition frequency I = 10mA, V = 9.0V, c CE - f = 100MHz 200 MHz

**Pulsed: Pulse width = 300fis, duty cycle <2%.

Mullard BSY95A Page 2 .

SILICON PLANAR BSY95A EPITAXIAL N-P-N TRANSISTOR

Min. Max.

h Common emitter forward current transfer ratio

I = 1.0mA, V =0.35V 30

I = 10mA, V,= 0.35V 50 200

v ^,t,, „ Collector-emitter CE(sat saturation voltage

I =10mA, I =0.2mA - 0.35

V„„, ,, Base-emitter saturation BE(sat) voltage

I =10mA, I =0.2mA 0.67 0.87

C Collector-base capacitance = 9 = V - 0V l ° CB ' E f = 1.0MHz - 6.0 pF

t Storage time S I = 10mA - 50 ns

See test circuit on page 4 SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.

2. Transistors may be dip-soldered at a solder temperature of 245 C for a maximum soldering time of 5 seconds. The case temperature during solderingmustnotatanytimeexceedthe maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes

3. Care should be taken not to bend the leads nearer than 1.5mm from the seal.

4. If devices are stored at temperatures above 100 C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated flux.

Mullard BSY95A Page 3 —

STORAGE TIME TEST CIRCUIT

IB6231I I 1| Vv\^ (O 89 on 0-1uF lkn V, n 0-1pF 9 soon500A @- ^\ >9in 500 n<

2-5nF 2' 5nF, >56n I

^F " Hf IOuF IOuF I0V

*6V— -I0°/o Pulse waveform - at point A* -4V-- — -I0- r V| n Rise time less V„ut than Ins .10°/. _ J_ tp> 300 ns Duty cycle<2°/<> ts

Xnput and output waveforms

Mullard BSY95A Page 4 HIGH VOLTAGE N-P-N BU126 SILICON POWER TRANSISTOR

High voltage n-p-n silicon power transistor intended for use in the switched mode power supply of television receivers. QUICK REFERENCE DATA

V maX - (V 750 V CESM BE=°> - = V maX - V 1 - 5V > 750 V CEXM ( BE 6 A I„.CM. max. (peak value) P max. (T ,s 50°C) 30 W tot mb Wtr't 52 -^-^ = 0.25A) 10 V = =2 - 0. 0.15 US t typ - (I 5A ' I 25A) f CM B(end) OUTLINE AND DIMENSIONS

Conforms to BS 3934 SO-5A/SB2-2 J.E.D.E.C. TO-3

illimetres

Min. Nom. Max.

A 16.9 -

B - 26.6

C 10.9 - D 30.1 -

E 4.0 - 4.2

F - 20.3 ^n- G 3.15 - H - 9.5

- J 11 13 K - 39.5

L 1.0

Collector electrically connected to the envelope

ACCESSORIES

56201 consisting of: - 56201A (insulating bushes) and 56201B (mica washer) 56214 lead washer

Mullard JUNE 1973 BU126 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V max. (V _ = 0) (peak value) 750 V CESM BEn V max. (-V„_ = 1. 5V) (peak value) 750 V CEXM Dli V max. (open base) 300 V CEO h max. (d.c.) 3 A value) 6 A rCM max. (peak ~ !CM max. (peak value) 3 A h max. (d.c.) 2 A max. (peak value) 2 A n\*

-I, max. (d. c. or averaged over 'B(AV) 100 mA any 20ms period)

max. (peak value, turn-off current) 1.5 A BM p max. (T ^50C) 30 tot mb W Temperature

T range 65 to +125 °C stg T. max. +125 °C

THERMAL CHARACTERISTICS R 2.5 °C/W th(j -mb)

. . mica 0.75 R , , , with washer and lead washer °C/W th(mb-hs)

R^i_/ with lead washer only 0.5 °C/W th(mb-hs)x. _ v

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max.

I Collector cut-off current CES t V 750V;V 0.5 mA CE = BE=°

- V = 750V V T = 125°C 2 mA CE BE=°- J Emitter cut-off current EBO l =0; V = 6V mA c EB Large signal forward current transfer FE ratio 1A; V 5V 15 60 CE

V Collector -emitter saturation voltage CE(sat) I 2.5A: L, =0.25A 10 V B

I =4A; 1A 5 V C

tMeasured with a half sinewave voltage (curve tracer).

Mullard BU126 Page 2 )

HIGH VOLTAGE N-P-N BUI 26 SILICON POWER TRANSISTOR

ELECTRICAL CHARACTERISTIC (contd. Min. Typ. Max.

V„„, . Base-emitter saturation voltage BE(sat) l 2-5AfI .25A 1.5 V C B

V Collector -emitter sustaining voltage CEO(sust) I = 0; I = 100mA ; L = 25mH 300 V B C

+50V '100-2000

200 30-60 Hor RLA Hz ImA) Oscilloscope 100 min V r o CEOsust iRLA/l

6V 30on in VceolV) 'U w,

Oscilloscope display for V___ sust Test circuit for V_„_ sust CEO CEO

Mullard BU126 Page 3 )

ELECTRICAL CHARACTERISTICS (contd.

Min. Typ. Max.

Transition frequency T T = 0.2A, V-,„ = 10V, f = 1MHz MHz C CE

Collector capacitance C,Tc I =1 =0, V „ = 10V, f = 1MHz 85 pF E e CB

Emitter capacitance Te I = 1.4 =I °' V = 2V ' f=lkHz nF C c EB

Turn-off time

1 = 0. 25A 'cM^^ B(end)'

Storage time 1.2 US

Fall time 0.15 f

Practical turn-off circuit

Min. Typ. Max.

V_,_,(t ) Allowable value of V,_,„ after 0. 5|js 500 V CE 1 CE Tl Core EI 25 nl = 350 turns, lOOmH n2 = 32 turns Leakage inductance at secondary 3fiH

The value of Cl depends on the stray capacitance of T2and on the capacitive loading

of the secondary (typical value for C j is 1. 5nF).

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

Mullard BU126 Page 4 HIGH VOLTAGE N-P-N BU126 SILICON POWER TRANSISTOR

D500B 3 io

5

lr Tmb <50'C- IA)

in 2

5

Repetitive pulse operation b=0.Ul If \ \ --Jt 10 '" - 7 - — "v --+5)JS --TO.OIrrs I c max --If).02 \ --jfins

1 y\ 7 V' \ \ V t- fl 5 J i 'TO.I / Hi Secc>nd \ I :m2 brea kd iwn (dO io-' : 1^0.5 = 7 !: 5 s ^ -- " ' r

* 1 11 2 IO"

5

Tiv

3 in" 1

J 10' 10 VCE (V)

Safe Operating Area (Regions I, II and III forward biased)

I Region of permissible d. c. operation

II Permissible extension for repetitive pulse operation

III Area of permissible operation during turn -on in switched mode power supply

provided t <0. 6jns and Rg < 100S2 circuits, p E IV Repetitive pulse operation in this region is allowable, provided V„„ <0 and t <2ms DO — V —

Milliard BUI 26 Page 5 :

2 D5009 10 7

Zlh (j-mb) cc/w) V^-J °"T 6 =1.0 10 075": 7 : 0.5 f^// 033 : L /// 0.2 . 4 44^ —!-- 2 w ^ ^^™ 1 7

5

01 -- N 0.05 in' it \ 002 - - 7

2 ,ri 2 2 5 2 5 7 2 5 7 ' 10-' 57?2 5732 STL .o 10 10 t p (msl 10

05012 10

'cE(sat)

'

(V) I Typical values

Tj = 25°C 1

\ IC = 5A \\

5

i4A

25 \ 3A

2 1 A fr 0.25 0.5 0.75 1.25 | B (A) 1.5

Mullard BU126 Page 6 HIGH VOLTAGE N-P-N BU126 SILICON POWER TRANSISTOR

l c-^2 — Ta VCE =750V VBE =0V ' 3A "l A Ices IuA) VBEsat 1A (V)

0.75

typ

0.5

0.25 typical values Ti=25*C

50 100 TjCOlSO 0.5 1 1 B (A) 1.5

100

h FE typical values

75

V =5V;T =125°C c6 i

50 Vce^v^s'c "i

— / 7 25 V C E=5V;T =25°C j

Vce=1V;T =25°C^"^. j

I 5 ' 10 lr(Al 10

Milliard BU126Page 7 VCE = 10V T = 25 fl C 't j (MHz)

10

1 C IA) 10

DSS92

100

tot max 17.)

75

50

25

50 100 Tmb [°C) 150

Milliard

BU 126 Page I HIGH VOLTAGE N-P-N BU126 SILICON POWER TRANSISTOR

APPLICATION INFORMATION (Note 1)

Switched -mode power supply circuits

Important factors in the design of switched -mode power supply circuits are the power losses and heatsink requirements of the output transistor and the base drive condition during turn-off. The basic arrangements for parallel and series -type switched-mode circuits are shown in Figs. 1, 2 and 3, together with the basic waveforms. In power supply circuits for colour receivers the duty cycle 6 varies between 0.4 and 0.6. value of the recommended base current Ig versus the maxi - Fig. 4 gives the nominal encj mum peak collector current (which occurs at maximum load and minimum input voltage). Fig. 5 shows the base current waveform during turn-off. peak collector current. Fig. 6 gives the total device dissipation Ptot versus the maximum The max. permissible thermal resistance for the heatsink can be calculated from:

1 1 jmax amb = -R, R .[ (mb-a)max(Note2) ( 1 th j-mb

the Tj = 125 C and R = 2.5°C/W For BU126: max th j. mb To ensure thermal stability, the thermal resistance of the heatsink used must not exceed the value plotted in Fig. 7.

Fig. 1 Parallel type switched- mode power supply, basic circuit arrangement.

I c TR

1

' L

-~Y~ + Fig. 2 Series type switched-mode Driver V, c D D 2 vo power supply, basic circuit - system " arrangement. Q D

t'F "

. i 1 1 i— o NOTES

1. Detailed application information available on request.

2. Including additional thermal resistances resulting from mounting hardware.

Milliard BU126 Page 9 APPLICATION INFORMATION (continued)

D558G

Icit Y\ KFI — «p-* 1 t

Fig. 3 "Waveforms applying K to switched -mode power supplies.

D5587 I c (max) IA)

3.0

Fig. 4 Recommended nominal value of base current versus max. peak collector 2.0 current.

Applies for ratio I /I - 2 (Fig. 3). CM C1

1.0

1

| 125 250 375 500

'B( e nd)nom lmA >

Milliard BU126 Page 10 HIGH VOLTAGE N-P-N SILICON POWER TRANSISTOR BUI 26

APPLICATION INFORMATION (continued)

Fig. 5 Basic waveforms during current turn-off *« 1 ** DSbS8 2 ^0 7US-

D5590

1 1 1 1 1 1 ! =+10V. -20V. M B « nd J

; I CM /l c,3 2(Fig3) 6 °° c 10 20 U« p (W)

7.5 15

T = 5 >M

5 10 . T=64(is

50ns>

2.5 5

n 12 3 cMmaxW cMmaxIA) Fig. 6 Total transistor dissipation Fig. 7 Max. allowable value of R th(mb-a) versus max. peak collector current. to ensure thermal stability.

Mullard BU126 Page 11 D5270 axl

(A))

3.0

2.0

1.0

|

l (max) R th(mb-a c 1 1 1 1 These curves are for copper heatsinks (A) CC/W) of thickness 0.079 in (2.0mm] and for - *- 'amb aluminium heatsinks of thickness O.llBin (30mml 3.0 12.5 _L it If L 10.0 I \ 1 \ ' 2.0 7.5

I

|

5.0 Bright

Blackened 1.0 2.5 70 60 50

5.0 10 15 20 50 100 150 200 R.htah.m CC/mW) Heatsink = 2 area lengthx width (cm )

Mullard BU126 Page 12 HIGH VOLTAGE BUI 33 SILICON POWER TRANSISTOR

High voltage n-p-n power transistor intended for general purpose consumer appli- cations.

QUICK REFERENCE DATA

= (peak value) V max. 750 V Collector -emitter voltage (V nr 0) CESM value) max. 6 A Collector current (peak 'cm Total power dissipation up to ° 50 p max. 30 W Tmb = C tot Collector -emitter saturation voltage

T, = 2.5A; 1 =0.25A V < 10 V C D CEsat Fall time

- l 2 - 5A 5A V 125V typ. 0.5 MS CU- 'hl-^2-°- CC- k

MECHANICAL DATA Dimensions in mm

Collector connected to case

TO -3

9.5" „ 266™" —* 315

.

< . / ^ V

/ i

en / ' A CO o K^w n ' <\6 /

' \fi/ J 13

10-9 „,, 11 . . |. „

Accessories available: 56201 and 56214

Milliard JULY 1973 BUI 33 Page 1 ) )

RATINGS Limiting values of operation according to the absolute maximum system.

Voltages

Collector -emitter voltage (V„ 0) (peak value) max - 750 F VCESM V Collector -emitter voltate (-V = 1.5V) (peak value) V max. 750 BE CEXM V Collector -emitter voltage (open base) CEO 250 V Currents

Collector current (d. c. max. 3 A

Collector current (peak value) CM max. 6 A Reverse collector current (peak value) JCM max. 3 A Base current (d. c. max. 2 A

Base current (peak value) max. 2 A BM Reverse base current (d. c. or average over any 20 ms period) max. 100 mA B(AV) Reverse base current (peak value) (note 1) max. 1.5 A BM

Power dissipation

Total power dissipation up to T = 50°C max. 30 m fo W

Temperatures

Storage temperature -65 to +125 stg Junction temperature max. 125

THERMAL RESISTANCE

From junction to mounting base R 2.5"C/W th(j -mb) From mounting base to heatsink with mica washer and lead washer (56201 and 56214) R 0. 75°C/W th mb-h with lead washer (56214) only l 0. 5 °C/W th mb-h

Notes

1. Turn-off current.

Mullard BU133 Page 2 HIGH VOLTAGE BUI 33 SILICON POWER TRANSISTOR

CHARACTERISTICS T = 25 C unless otherwise specified ]

Collector cut-off current (note 2) V 750V;V ° < 0.5 mA CEM = BE = CES < V 750V;V = 125°C ! 2 mA C EM = BE = °'V CES Emitter cut-off current

< 5 mA I =0;V = 6V C EB EBO

D.C. current gain

15 to 80 I = !A;V =5V C CE FE

Saturation voltages

:2.5A; I =0.25A < 10 V B CE sat V < 1.5 V BE sat

Collector -emitter sustaining voltage

I = 0; I = 100mA; L = 25mH B C

min VCE0[suS t). y 6V 30-60HZ -Q^Oa V CE0 (V) Oscilloscope display for V Sust CE0 [ ) Test circuit for VCE0(sust) 0^039

Notes

2. Measured with a half sine wave voltage (curve tracer).

Milliard BUI 33 Page 3 ^

CHARACTERISTICS (contd.) T. = 25 C unless otherwise specified

Transition frequency at f = 1MHz

I =0.2A;V = 10V 8 c CE tj. typ. MHz Collector capacitance at f = 1MHz

= 0; V = K)V C typ. 85 lE=Ie CB pF Emitter capacitance at f = 1kHz

l =l = 0;V = 2V typ. 1.4 nF c c EB Switching times

I =2.5A;i = -I =0.5A;V = 125V c B1 B2 cc

turn-off storage time yp- 2 ns

turn-off fall time yp. 0.5 fZS turn-off fall time, Tmb :95°C < 2 Us

Ib

(on) input waveform Jf time (off)

*. t s — tfi— 125V L f 90 '°

/ output I waveform \

- 10% , Waveforms time D404IQ VCC =125V o

^100jiF

1 H F X^X(P)BD!31 180H. V^V oscilloscope

©Transistor under tes.

'-LT T=1ms tp=20ys

Mullard BU133 Page 4 —

HIGH VOLTAGE BUI 33 SILICON POWER TRANSISTOR

i r-rr io3 T m b£50°C

5 Ic (A)

2 10

Repetitive putse operatio i; d= 0.01

[ ^ 10 -_::: rU M "—T-l ^ '. °' i \ N s 'Cm IX ~0. \V\ D2 1 ; 05 v.,\ \ \ -aS-I^,

i! V s ! ^~s = :S i;i3EE=R *>- !l =Vt-T1 :;;.£: iS 7

j :5V^ \ Sect)nd breakdown d.c)-' 5 - == W w 1 E"S:^ —mti

'>' i

I io- -~"zl$

i

i ! T III 10" 1 5 7 2 5 7 2 5 5 2 ' 3 4 io io 10 VCE(V) 10

Safe Operating Area (Regions I and II forward biased)

I Region of permissible d. c. operation

II Permissible extension for repetitive pulsed operation

III Repetitive pulsed operation in this region is allowable, providedv \f £ 0V and t =s 2ms BE p

Milliard BU133 Page 5 r

I I I I i I — th max leve S.B.vc Itac e n j| ipl /ing fac lor 3t e c

- .

^d=0

' ——2J)2

— 0. Jb

0.

0.2 v^_> 0.3 3

1 0.5

0.75

] 5^^ 2 5 2 7 z 5 7 2 7,2 in-2 in-' 1 in t , 1 TIS 10

Mullard BUI 33 Page 6 1

HIGH VOLTAGE BUI 33 SILICON POWER TRANSISTOR

™i

| ] 'SB(V)

SB. current multiplying factor at the i/CEO max level

10' 5.

_J!^5

0.1 I

0.2 10 0.33^ ~ ~0.5

0.75

,,257, 57 i -j 2 25 10~ 10 1 10 tp(ms) 1(T

10 ' V -- CEIsat) - — ' — (V) — - T - -

7.5 l Tj =25"C

\ — I c = 5A \' -

1

- \iA 1 \ 3A \ 2.5

L \ 2A \ K, ^ *» H- '— ~ 0.25 0.5 0.75 1 1.25 UA| 1.5

Mullard BU133 Page 7 D4053Q , n 2 1 1 V = 750V I C =5A^ ' CE V =0V ~3A BE 2A (jjA) BE(sot) (V) & 1A

0.75 10

5 I—

typ 0.5

0.25 Typical curves Tj=25°C

la" I 50 100 TjCC) 150 0.5 1 ln(A) 1.5

100 Mill Typical curves hFE

|

75 J

~m^m-m*^^-__

50

VCE =5V, Tj =125'C -^—"^ V CE =5V, Tj = 25'C

25 V CE =1V, Tj =125°C VCE = 1V, Tj = 25"C

5 lc(A) ' 10

Milliard BU133 Page 8 HIGH VOLTAGE BUI 33 SILICON POWER TRANSISTOR

lb VOV f T Tj s25"C MHz)

10

5

10"' UA) 10

Mullard BU133 Page 9 — )

HIGH VOLTAGE BU204 TRANSISTORS SILICON BU205 BU206

TENTATIVE DATA

The BU204,205 and 206 are N-P-N High voltage power transistors intended for use in line output stages of television receivers.

QUICK REFERENCE DATA BU204 BU205 BU206

maX - 1300 1500 VCESM 1700 V

I max. (d. c. 2.5 2.5 2.5 A ° P maX - (T 90 C > 10 10 10 W tot mb <

h min - (V =5V;I =2A) 2 2 1.8 FE CE C t typ. (I = 2A; I = 1A) 0.75 0.75 0.75 US f c B

OUTLINE AND DIMENSIONS

Conforms to BS3934 SO-5A/SB2 -2 J.E.D.E.C. TO-3 Millimetres

Min. Nom. Max

A 16.9 -

B - 26.6 C 10.9 - D 30.1 - E 4.0 - 4.2

F - 20.3 G 3.15 - n^ -* H t r H - 9.5 j - 13 J 11

L II K - 39.5 K- L 1.0

Accessories available (High voltage types)

56336A insulated bushes, 56336B mica washer,

Milliard FEBRUARY 1973 BU204 Page 1 )

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical BU204 BU205 BU206 =0 V nU,X - 1300 1500 1700 V CESM BE

V maX - (R 10a2) 1300 CERM BE± 1500 1700 V

V„_-, max. (open base) 600 700 800 V

I max. (d. c. 2.5 2.5 2.5 V

I max. (peak value) 3.0 3.0 3.0 A

I max. (peak value) HM 2.5 2.5 2.5 A

-I max. (peak BM value)* note 1 1.5 1.5 1.5 A

P power dissipation (max) 10 10 10 w Tmb. -<90°C

TRANSIENT RATINGS (During flashover)

V_„ "Flashover" 1650 CE » 1750 V

I„ "Flashover" 5 5 5 A

Temperature

T range -65 to +115 °C stg

T. (operating) max. 115 °C

THERMAL CHARACTERISTICS

R. 2.5 "C/W th(j -mb)

R .. . , . using mica washer 56336B 1.0 "c/w

*Note 1 Turn off current in line deflection circuits.

Milliard BU204 Page 2 HIGH VOLTAGE BU204 SILICON TRANSISTORS BU205 BU206

ELECTRICAL CHARACTERISTICS (T. =25 C unless otherwise stated) J BU204 BU205 BU206

Collector cut-off current (max) CES 1.0 1.0 1.0 mA V„ 0:1 V = V BE CE CESM

h (min) Static forward current transfer ratio pE (I =2A;V =5V) 1.8 C CE +V Emitter -base voltage EBO '= =0; I 10mA) (min) V dc E

= 0; I = 100mA) (typ) V dc E

Collector emitter saturation voltage (max) CE(sat) (I =2A; I = 1.0A) 5 V

d =2A; I =1.1A) V c B

Base -emitter saturation voltage (max) BE(sat) d =2A; I =1.0A) 1.5 1.5 V c B

(I =2A; I =1.1A) 1.5 V C B

Collector -emitter sustaining voltage (min) CEO(sust) (L = 0; I = 100mA; L = 25mH) 600 700 800 B C

Ic (mA)

100 minVCE0sust^ VCEOIV)

Milliard BU204 Page 3 ELECTRICAL CHARACTERISTICS (cont)

BU204 BU205 BU206

Transition frequency (typ) (f = 5MHz; I = 0. 1A; V™ = 5V) 7.5 7.5 7.5 MHz

Collector Tc capacitance (typ) (f=lMHz;I =I = 0;V =10V) 65 65 65 pF E e CB

Switching times (in line deflection circuit) (I =2A;I = 1A;L = 25^ C B ( end) B

Fall time (typ) 0.75 0.75 0.75 us

Storage time (typ) 10 10 10 us

907.

Milliard BU204 Page 4 HIGH VOLTAGE BU204 SILICON TRANSISTORS BU205 BU206

BU204 :

T .. <

'c (A)

d=0.01 -

IcMr -\ !v^s V ^mc x » &. 8*> -2 'fi -5 2^5 -10 -20 -50 p \5, -100 -200 -500 -jvS /1ms L%,\.N\S ? y /10 ^dc i I'M

III II

10 J 4 VCE (V) 10

Safe Operation Area with the transistor forward biased.

I Region of permissible d. c. operation.

II Permissible extension for repetitive pulse operation. Ill Repetitive pulse operation in this region is allowable,

provided R nr, <100S>, t <20)js; 5 <0. 25. Da p

Milliard BU204 Page 5 =4+ BU205 = *fflf <90°C TT 'c (A)

d=0.01 -

ST" t„ = P Icma 'JW X /1ps ski ^S s$ -

-20

-100 -200 — ^500 = 4. ^ /Ims - f ^Nfc z So, \S / 5 / ^ /'° -

i >

'I 5 7 2 5 7 3 4 10< 10 v iv) 10 1 CE

Safe Operation Area with the transistor forward biased.

I Region of permissible d. c. operation.

II Permissible extension for repetitive pulse operation.

Ill Repetitive pulse operation in this region is allowable, provided R„„ -<100fl; t <20ns-, 6 <0.25. BE p

Mullard BU204 Page 6 HIGH VOLTAGE BU204 SILICON TRANSISTORS BU205 BU206

BU206 - " z: 7 k<90*C

(A)

10

d=0.01 -

'cMr _, . N V 'Cmi X /1>iS

> /.2 '5

I 7 ! '10 -20 -50 -too -200 v! '500 -=1*** y !>- B /1ms %» VOSc 3 / ?b, \S +\)> Tl 'i y J 7 c I Is

ln II 2 57 2 57 2 57 2 57 2 3 4 1 10 10 10 VCE (V) 10

Safe Operating Area with the transistor forward biased.

I Region of permissible d.c. operation. II Permissible extension for repetitive pulse operation. Ill Repetitive pulse operation in this region is allowable, provided R„„ <100fi; t <20ms; 6 <0. 25. DC p

Milliard BU204 Page 7 : — T

10 7

Zthj-mb -- CC/W) d=1.00 2

t 0.33 = = - 20

0.10

0.05 _ _

0.02 ^ = ,

-.11 I

!

::: --- ..L --- •4 - — ~ * J

b 10 (pips) 10"

D5136 n 2

VCE =5V

s Tj=25'C

FF

Typ m ~

j

i

L. (A) 10

Milliard BU204 Page 8 HIGH VOLTAGE BU204 SILICON TRANSISTORS BU205 BU206

750 1250 T = 25° C T = 25"C

'==2 "CEsat ImV) ImV)

500 1000 ryp /

250 750 T)IP/

500 2 5 7 5 Ir (A) 10 Ir (A) 10

Mullard BU204 Page 9 )

HIGH VOLTAGE BU207 SILICON TRANSISTORS BU208 BU209

TENTATIVE DATA The BU207, 208 and 209 are N -P-N High voltage power transistors in metal envelopes intended for use in line output stages of colour television receivers.

QUICK REFERENCE DATA BU207 BU208 BU209

V maX - (V =0; peak value) 1300 1500 1700 V CESM BE

I max. (d. c. 5 5 4 A ° P maX- 12.5 12.5 12.5 W tot mb^ h (min)(I =4.5A; V = 5V) 2.25 2.25 - pE c CE "C^^CE^ - - 2.25 - t (typ) (I =4.5A; I =1.8A) 0.9 0.7 MS f C B - - (I =3A; I = 1.3A) 0.7 MS C B

OUTLINE AND DIMENSIONS.

Conforms to BS3934 SO-5A/SB2-2 J.E.D.E.C. TO -3. Millimetres

Min. Nom. Max A 16.9 -

B - 26.6

C 10.9 - D 30.1 - E 4.0 - 4.2 F F - 20.3 r ~i - ,i r 4n G 3.15 H - 9.5

- 13 J 11 K - 39.5 L 1.0

Accessories available (High voltage types)

56336A insulated bushes, 56336B mica washer.

Milliard FEBRUARY 1973 BU207 Page 1 )

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

BU207 BU208 BU209

= V maX - (V peakvalUe) 1300 1500 1700 V CESM BE °'

maX (R 10(Kl eak value) 1300 1500 1700 V " - P V CERM BE ' V max. (open base) 600 700 800 V CEO

max. (d. c. 5 5 4 A

CM max. (peak value) 7.5 7.5 6 A

max. (peak value) 4 4 4 A BM

max. (d. c. or average over any B(AV) 20ms period) 100 100 100 mA

max. (peak value, see note 1) 2.5 2.5 2.5 A BM

P niax. (T , -<95 C) 12.5 12.5 12.5 W tot mb

TRANSIENT RATINGS (During flashover)

V "Flashover" 1500 1650 1750 V eh

I "Flashover" 10 10 10 A

Temperature

T rangeB -65 to +115 °C stg

T. (operating) max. 115 °C

THERMAL CHARACTERISTIC R max. 1.6 C/W th(j -mb)

R , with mica washer 56336B 1.0 "C/W th(mb-h), , , ,

Note 1

Turn off -current in line deflection circuits.

Mullard BU207 Page 2 HIGH VOLTAGE BU207 SILICON TRANSISTORS BU208 BU209

ELECTRICAL CHARACTERISTICS (T. =25 C unless otherwise stated)

BU207 BU208 BU209

maX - Collector cut-off current 'CES V =0:V =V nUUt > 1.0 1.0 1.0 mA < BE CE C ESM

h min - Static forward current transfer ratio FE (I =4.5A;V = 5V) 2.25 2.25 C CE

(I = 3.0A;V = 5V) 2.25 C CE

+V Emitter -base voltage EBO (I., = 0; I = 10mA) min. 5 5 5 V C b

(I = ! = - 7 7 7 V ° ; 10°mA) C E tyP

V„„. .max. Collector -emitter saturation voltage CE(sat) = 5 5 - V (Ic =4.5A; ^ 2A)

- - (I =3A; I = 1.3A) 5 V C B

V„., .max. Base -emitter saturation voltage BE(sat) - i = 4 .5A; I = 2A) 1.5 1.5 V C B - - (I =3A; I = 1.3A) 1.5 V c B

V^,„„, , Collector -emitter sustaining voltage CEO(sust) T n r ,„«, , , t ,, 1=0; I = 100mA; L = 25mH 600 700 800 B C

c (mA)

100 min Vn T

~T ioon in VCEOIV) I— I T-*-l

Mullard BU207 Page 3 9 7

ELECTRICAL CHARACTERISTICS (cont)

BU207 BU208 BU209 f (typ) Transition frequency (f = 5MHz; I = 0. 1A, V__ = 5V) MHz

CT (typ) Collector capacitance (f = 1MHz; I_ = I =0; V = 10V) 125 125 125 pF Ji e Lb

Switching times (in line deflection circuit) (L = lO^H) t (typ) Fall time f I =4.5A: L, j, = 1. 8A 0. 0. US C B(end)

I = 3.0A; I„, „ = 1. 3A 0.7 us C B(end) t (typ) Storage time g I =4.5A; L, = 1. 8A 10 10 lis C B(end),,

I =3.0A; L, _,, = 1. 3A 10 MS C B(end)

Milliard BU207 Page 4 HIGH VOLTAGE BU207 SILICON TRANSISTORS BU208 BU209

J — :; BU20 rft '' T_k £95*C

'c (A)

ICMrlax d= HOI

\ - Lr L\ k^ H" p .: \ '' ~1us Lr V^ X \ s. vs , —2¥ Icmax ^ V P -10 tot max 1 SJI s r S = : -50 - =

" ^200 ' ^500 _vfV> J :: , -r : -- /vs t6» V 4?6 \ +V - ^5

'' 1 -de

"I 5 7 2 5 7 3 4 10 VCE IV) 10

Safe Operating Area with the transistor forward biased.

I Region of permissible d. c. operation.

II Permissible extension for repetitive pulse operation.

Ill Repetitive pulse operation in this region is allowable, provided Rn„ <100J2; t <20/js; 5 <0.25. DC* P

Milliard BU207 Page 5 D5K0 1" 3 T T 1 '°

,

= : T <95"C 5 mb V (A)

2 10

7

IcMnlax d=0.01 : 10 | I 7 ; S?r : i V -E -T" ill^\A S3 \ vsj

•Crnox ^ : -- ^N i ~l P / s » -10 tot max s V S* , . ^20

: /50 =: 7 S 5 , i /100 _- " : /200 * . ^500

,1ms j in-' —V El.^*v£ 5 *V X ; /2 z 4?S V A> 3 "-j h : 4.

i m-2

5

3 to- 1 __ 5 7 2 5 7 3 4 10 V (V) 10 CE

Safe Operating Area with the transistor forward biased.

I Region of permissible d. c. operation.

II Permissible extension for repetitive pulse operation. Ill Repetitive pulse operation in this region is allowable,

provided R^ <100S2; t <20>xs; 6 <0.25. BE - p -

Milliard BU207 Page 6 .

HIGH VOLTAGE BU207 SILICON TRANSISTORS BU208 BU209

J 10 BU209 :: :|!_=4+ "I Tmh <95°Cw

(A)

'cMnlax d=0.01

\i: »p" -E

' ~2 ^ f 'Cmax

P k —10 tot nfKW \IlV J ;|/20 = =

; /,\oo --

i /200

>f k

V ' ,-500

: ;: /2 :

\^i%.\ , ./ 1 - 5 t* " /

i : /?.

„|

5 7 2 5 7 3 10 V (V) 10' CE

Safe Operating Area with the transistor forward biased.

I Region of permissible d. c. operation.

II Permissible extension for repetitive pulse operation.

Ill Repetitive pulse operation in this region is allowable, provided R„„ ~<100J2; t <20ms; 6 ~<0.25. BE p

Milliard BU207 Page 7 D$U2 2 10,U 7 JU] (°C/W) **

10 7

2 d=1.()0 _. 0.75 0.50 7 0.33 5 0.20

io-' 0.05

5 0.02

S0.0K.*' 10" 2

57 2 S7 2 S7 57 2 57 2 57 -2 10"3 1 2 3 10 IO" 10 10in tpdns)i.i i 10in3

10'

VCE =5V Tj = 25*C

Typ

5 7 10" UA) 10

Mullard BU207 Page 8 HIGH VOLTAGE BU207 SILICON TRANSISTORS BU208 BU209

750 1250 'c 'c , '2 - b 1b lj.it •c vC£sat T,.2i •c "CEsot (mV) (mV)

500 1000

L- -- 'Typ ,

(

250 750

Typ/

500 5 7 2 5 7 I„(A) 0.1 1 IC (A) 10 0.1

Mullard BU207 Page 9 T

JUNCTION TRANSISTORS OC28 OC29wwa* OC35 OC36

QUICK REFERENCE DATA

Power junction transistors of the p-n-p alloy type intended for use in medium and high voltage and high current switching applications. Matched pairs of each type are available under the type number 2-OC OC28 OC29 OC35 OC36 V Cb max. (I E = OA) -80 -60 -60 -80 V V CE max. (Ie = 0.5A) -60 -48 -48 -60 V V C E max. (I E = 6.0A) -60 -32 -32 -32 V h FE (lc = 1.0A) 20-55 45-130 25-75 30-110

Unless otherwise shown, data is applicable to all types

ABSOLUTE MAXIMUM RATINGS

The equipment designer must ensure that no transistor exceeds these ratings. In arriving at the actual operating conditions, variations in supply voltages, component tolerances and ambient temperatures must also be taken into account.

Collector voltage OC28 OC29 OC35 OC36 VCB max. (I E = 0A) -80 -60 -60 -80 V VCE max. (I E = 0.5A) -60 -48 -48 -60 V VCE max. (I E = 6.0A) -60 -32 -32 -32 V

Collector current Icm max. 10 A t'c(AV) max. 8.0 A

Emitter current Iem max. 12 A flE(AV) max. 9.0 A

Reverse emitter-base voltage

VEB max. (I c = 0A) -40 -20 -20 -40 V

Base current Ibm max. 2.0 A |Ib(av) max. 1.0 A

Total Dissipation at Tcase =£ 45°C 30 W

Azof- n M max— c ase 45 C P —'—- T^'casecase > 45°C t „t max. = "j - case

tAveraged over any 20ms period.

Milliard MAY 1967 OC28 Page D1 OC28 JUNCTION TRANSISTORS Series

Temperature ratings 75 °C Ts tg max. -55 °C T8tg min. Tj max. (Continuous operation) 90 °C JTj max. (Intermittent operation total duration 200 hours) 100 °C 1.5 8j-case max. "C/W metal washer 8Case-he»t sink max. (when mounted with 0.127mm thick and with mica washer) 0.5 °c/w

^Likelihood of full performance of a circuit at this temperature is also dependent on the type of application.

CHARACTERISTICS at Tease = 25°C Typical production spread Common base Min. Typ. Max. Collector leakage current Icbo — 100 u.A (Vcb = -500mV, l E = 0mA)

(Vcb = -14V, l E = 0mA, Tease = 100°C) — — 20 mA

(Vcb = -*0V, l B = 0mA, 8.5 30 mA Tc„e = 100°C) OC29, OC35 — (Vcb = -80V, Ie = 0mA Tee = 100°C) OC28, OC36 — 12 30 mA Emitter cut-off voltage

(Vcb = -48V, l E = 0mA, Tease = 100°C) Veb — — -500 mV

Common emitter Collector knee voltage at -1.0 lc = 6A (see Fig. 1) VCE(i -0.5

VCE (knee)

Fig. i

Milliard OC28 Page D2 JUNCTION TRANSISTORS 0C28 Series

OC2S OC29 OC35 OCM

Base current Ib min. max. min. max. min. max. min. max.

(VCB = 0V,I E = 1A) 17.5 50 7.2 21.5 13 38 9 33 mA

(VCB = OV, l E = 6A) 190 375 73 165 130 285 90 285 mA

Base input voltage Vbe

(VCB = 0V, l B = 1A) < — 800

(VCB = 0V, l E = 6A) -0.6 -1.( -1.6 -0.4 -1.4 — -1.6 V

Current amplification factor Hfe

(VCE = -14V, l c = 30mA) 20 -

(VCE = -1V, l c = 1A) 20 55 45 130 25 75 30 110

(VCE = -IV, lc = 6A) 15 30 35 80 20 45 20 65

BASIC PARAMETERS

Cut-off frequency

(Vcb = -6V, l E = 300mA) fhfb — 2S0 — kc/s

Collector depletion capacitance

(Vcb = -12V, l E = 0mA) Ctc — 160 — pF

Emitter depletion capacitance

(VEB = -6V, l E = 0mA) — 165 — pF

Time constant, current feed w1

(VCE = -AS, l CM = 1A) — 45 70 (V -4V, 6A) CE = Icm = — 30 50 V*

Desaturation time constant

(Vce = 0V, l BM = 50mA) Ts — 30 50

Milliard OC28 Page D3 0C28 JUNCTION TRANSISTORS Series

Typical operation in on-off power switching circuit

€?

D.C. supply voltage Vcc 14 28 V A A

Load resistance Rl 14 2.3 28 4.7 peak collector current 'car 1.0 6.0 1.0 6.0 A

OC29 OC35 OC29 OC35 OC28 OC36 OC28 OC36 'Turn On' base current 1b 35 55 260 400 70 50 480 400 mA 'Reverse' base current Ibr 8.7 13.7 65 100 17.5 12.5 120 100 mA

Switching times Rise time tr 20 20 20 20 us Storage time ts 15 15 15 15 US Fall time tf 40 35 40 35 Us

hpE Ib B I I Rise time tr = l0gelna h IB - ICM FE | | w 1 | |

ICM I I | Fall time tf = + h Ibr >4 pe | 1 J Ibr . I'bI + | | Storage time ts = Ts lOge, .

I Ibr + I hpB

Milliard OC28 Page 04 —

JUNCTION TRANSISTORS 0C28 Series

CHARACTERISTICS OF MATCHED PAIR (measured at T case = 25°C)

Ratio of the current amplification factors of the two transistors

at Veil = OV, lc = 300mA 1 .2 : 1

Vch = 0V, l c = 6A 1.2:1

Difference between the base-emitter voltages of the two transistors

at Vch = -14V, l c = 30mA <35 mV Vcn= 0V, lc = 6A <300 mV

OPERATING NOTES

1. Dissipation and heat sink considerations

The maximum total dissipation P t< ,t max. = (Vcf.x lc) + (V| !K x l>i). is given by the relationship:

Tj max.-Taml) Pt„t max. Om + Oi+G,,

is Where m + 0j+0 h equal to Oj aml) . The various components of Oj „,„!, are illustrated below:

Junction temperature

0j-oaKe= 1.5°C/W

,, Case temperature

*6i = 0.5°C/W

fOj = 0.2X/W

Chassis (heot sink) temperature

| Ambient temperature mm

Fig. 3

*When mounted with a metal washer 0.127mm thick and a mica washer, or with a mica washer only and silicone grease, Oj = 0.5°C/W. This value applies when the transistor is bolted down evenly on a flat heat sink. The metal washer is advantageous in taking up any irregularities in the heat sink surfaces.

fWhen mounted directly on the chassis with a thin film of silicone grease between 1 the contacting surfaces, 0i = 0.2 C/W. This value applies when the transistor is bolted down evenly on a flat heat sink.

0i, depends on the cooling conditions under which the transistor is used, i.e., dimensions, position and surface conditions of heat sink, etc. An air- cooled heat sink (7in.x7in.x1/16in. blackened aluminium) will have a value of h = 2.2"C/W.

Mullard OC28 Page D5 OC28 JUNCTION TRANSISTORS Series

collector dissipation and ambient tempera- (It, can be determined for a given ture by measuring the case temperature.

h : 6i°C/W

The following example illustrates the temperatures which occur at various U„ 2.2°C/W. points on the transistor at pc = 10W, Tj = 90°C, =

= 90°C 'J Tease = 90-(10x1.S) = 75°C

Theat sink = 75-(10xO.S) = 70°C Tamb = 70-(10x2.2) = 48°C

The suitability of any design can be checked by measuring, with a thermo- couple, the case temperature of the transistor operating at the selected collector dissipation and maximum ambient temperature. The point de- fined by the case temperature and the total dissipation must lie within the shaded area shown on the graph on page C10. If the point lies outside the shaded area the design is inadmissible and the dissipation must be reduced or the heatsink improved. The selected total dissipation should be the maximum attained by any transistor in the design being checked.

2. Transistors may be soldered directly into the circuit but the heat conducted to the junction should be kept to a minimum by the use of a thermal shunt.

for 3. Transistors may be dip soldered at a solder temperature of 240°C a maximum of 10 seconds up to a point 2mm from the seal.

4. Care must be taken to ensure good thermal contact between the transistor and heat sink. Burrs or thickening at the edges of the four holes must be removed and the transistor bolted down on a plane surface.

MECHANICAL DATA Dimensions - see page D8. / 0.66 oz Average weight \18.6 g

ACCESSORIES

Accessories must be specifically ordered. Accessory Code No. Notes 2 insulating bushes 56201a Obtainable in packs for

1 mica washer 56201b 10 or 100 transistors.

1 metal washer 56214

Milliard OC28 Page D6 1

JUNCTION TRANSISTORS 0C28 Series

Transistor

-1I6-9+0-25 7-0 4-1+0-1 •) 3-15 max.

Metal washer U-5-0 ±0-2 4-2 10-2 0-127 &S -(0- j -(StZ & T : 4> T^- f

1-85 "to- 6-0 -H -30-1- — 6-0 Insulating bush 10-2 ±02 0-2

3-5 4.5

— 7-5 —

3-90i0-05 —i 3-10*0-05 l»4»4l All dimensions in mm

Mullard 0C28 Page 07 —

JUNCTION TRANSISTORS OC28 Series

(A) ._ - T B -?4n m A 111! _, mm

r_ __| [_ i

L—--——"" l_ ( _^ — L— -=— ""

L_ i

—^" """"" 4 -L-4—— — 1 j

L | 1 _\

1— '

' 1 1 h U _ lAOrrsA ,_^_ . -===4--J- 1 , b--===4^ , , L i_ i

[ __^ _4_ i r0lllA -f- j— -,— --j- 3 -

i

-f- Ti =t==:==i- i——= 100mA :

_!_ | —^ 80mA

2 - — _, „_____—

| ,

—*— ! >— H 40mA -H-- hi LU1 11 -*— "- —— — ~]

— j.,

°- ± -10 -20 -30 VCE (V)

OUTPUT CHARACTERISTIC FOR OC28. COMMON EMITTER

Milliard OC28 Page C1 0C28 JUNCTION TRANSISTORS Series

OC2 9390 - X (A) III I B =l00r Common emittc

1 1 1 1 1 1 1 1 I X Tj =45"C 90 mA 5- "

60mA

r

50mA

40m*

r_r - 30mA 2 -

20nlA --

- 1 10mA

O -10 -20 -30 VCE (V)

OUTPUT CHARACTERISTIC FOR OC29. COMMON EMITTER

Milliard 0C28 Page C2 JUNCTION TRANSISTORS OC28 Series

TITITIT^ OC35 9388 I B = 200mA (A) [III Common emitter

1 1 1 1 1 1 1 1 1 1

180mA Tj =45°C

5 _ 160mA

140mA

4 120mA

100 mA

M 80mA

60mA

40mA

1 - 20mA

-

-10 -20 -30 VCE (V)

OUTPUT CHARACTERISTIC FOR OC35. COMMON EMITTER

Milliard OC28 Page C3 r xL + — t

0C28 JUNCTION TRANSISTORS Series

—•—[ 1 4. i_]_ 1 XX i XT J L^_ 0C36 J2 X 1- i - X X T' c -+ ^"TX Ml! - I. = "50 (A) — __^ 1* ...

""I ! i. ! i i "T~ 1 i I40rr i i i i i i i i i (— _^ ,_ t.lj 1. ;^ 1345°c —! — 1 I 1 III i -J--^—J-— -- 130 ! 1 —4— "n~" ^X ^|X"X:

j ii I 120mA -- _l_|_ "R i ; , -)H (—- |_ Ml! XI |1 - .XtX-Xt ! X I A -J_i , U-f-4- i ~r i— l_l _a X -t- " —t—— r i | 1 "ti -r-H-l- 1 4-t-r- " -U X i _+ i i ~T— :-r X - X_X- Xit" J 1 _l — | Mi, 1 \ X~~ ~" ~+T^ -

-— i 1 4 a .. 1 M | ^

' 1 1 1 - -- - —1—i- Il^rit ~rn ^

' 1 331,.- ""•" _L_J_l 4_

! j ; 1 . .. 1 ' ^- « A —i HX li _; ;_^^- — :

\ 1 —1 ; xt~ 1"

--j— j 3d

1 i ' I I'lr

[ X —J i ! i

1

__Xj 1 _x Xi— L- ^ r r^T^ _|__j X

! 1 1 ,— 1 rf"~ 30mA -j— j i^- iin- H——

!

i | -+4- L -j-XtX j_ —— f 1— j —lS^x — — t en— -+4- ^x^E ^XX-d - x i ~\—\— J— 4-4- l— l I r -A— |-M- ~H~H j- <_ _i_ | , 1 1 1 j _j XXt 4— -4- -4- it: in dx "it: 1 _L -10 -20 -30 VCE (V)

OUTPUT CHARACTERISTIC FOR OC36. COMMON EMITTER

Milliard 0C28 Page C4 1 ' ' — r

JUNCTION TRANSISTORS OC28 Series

1 i | > £ fe Jr) UJ -1 &<-On 3?^- "i°rD •9nJ v s o in -- o U u ; — L. o «-» i in — w [ a I J5 >( 'l. 'i_ » a 4-» (J in CO - £_ o ' CM | > x:u ~~ g II ott r o B o o - o Q. CM

]

1

~~

1

1 . , \-

1 1 ! ; . 1 1 OO O OOQQC M £ CM — i- t -

j

i 1 < - E f_ en - n

\ ^_ j '<" -f , i ' [„..._ -^ , 1 —

1

. 1

! °n

i -4- [-4- r ! l/> f-- ; --O CM - 1 : E 1^1 CO 2 — CM U . ^v U t^if- *S o w i. O o 1 i u ^ — ; u '5. O

|S ; 8> -1 1 --O

i

1 ?C**** i "-ct VI i i ! ; Jc ( ( 1 )

i

i i

'

! i

j

i

'

! :

* !— at . o i

(0 ^ CM <3

TRANSFER AND INPUT CHARACTERISTICS. COMMON EMITTER

Milliard 0C28 Page C5 0C28 JUNCTION TRANSISTORS Series

Veb OC28 max Ml (mV) VCE = -60V

500

400

300

2 5 5 75 TjCC)

VEB OC29.OC35.OC36 max Mill (mV) VCE =-48V 500

400

300 25 50 75 TjCC) VARIATION OF MAXIMUM EMITTER-BASE CUT-OFF VOLTAGE WITH JUNCTION TEMPERATURE

Mullard OC28 Page C6 JUNCTION TRANSISTORS 0C28 Series

1 xI*.c B3672 (A) H

10"*qpn« Permissible area of all o£ p Ssi sf h 1 Til ~T operation under nditions of base ss is n k | j 1 ¥s $1 iiil |j ^ 111 wit \] S ^J

+ For operation In this region the circuit must be capable of providing reverse m$i

:' M & :£4*» SiSp / ssp I iBifiS ~F

,

" /

'/

l- j / -4— /1

Sifc

ssiiffi $$§" / / ] f L f

1 | j 1 i "i ^ / &: it { /' , ^ V 1 / ... | , / .„i „ 1 i -M w -- - ll l/ ] k * -._. -~ -j- a r ^-f II 1. :s: s HiMm h „jiH 1 1 1 -2 -4 -60 -80 VCE

Mullard OC28 Page C7 0C28 JUNCTION TRANSISTORS Series

c OC35X~Zm B3673 ( A ) .

.

1 1 ! 1 III! 1 II

^'PpU operation under an

onvo . 1 1 l[ I | T jl 1 1 1 1 / f Km > U * 1\ jf

1 nil 3 i 1 I y

t "j»jt k L Tl * SL

t " £ [ nB *" * f it "* |S

'". ","" "r ", t'J'; " ;*B *hft rirrult mu»t *• rapflhla | / i .1 -|4 -H *** p vu 'd »>a, r»s**rw

T" * "T I ^B t 1 f | '^^^l^H * 1 * ^B f ftv

"r*! ^B l' § *\e\ T *r"1 ftv j.u * t "llw ftflL \\ ITY ftv^B ft ft ^B it I"! ^B

i T ftK ^BL

o i . Btak -20 -40 -60 -80 WV > COLLECTOR CURRENT PLOTTED AGAINST ABSOLUTE MAXIMUM COLLECTOR-EMITTER VOLTAGE. OC29, OC35

Milliard OC28 Page C8 H

JUNCTION TRANSISTORS OC28 Series

T oriA B3674 /A*" " - - -P (A J - !

.

% II 1 -"**"*k -r-- Permissible area of f^fi* — Ion under all ,1 ' conditions of base —

^\ " TTT/TTH4-/ +

L I * 1 1 1

' i^'l 1 '" "' V 1 11 k

' k^_L 1 V 1 ' *K . _L

m^

""^fc ^^H

"^^L th? rlrrntt mn«t ha capable ^L r»j providing ra\/ap*o AAt

' B Hi,M ^A ^H HL ^B. ^B^^k ^^^^B^

a, I BFnH ' -20 -40 -60 -80 VcglV)

COLLECTOR CURRENT PLOTTED AGAINST ABSOLUTE MAXIMUM COLLECTOR-EMITTER VOLTAGE. OC36

Mullard OC28 Page C9 0C28 JUNCTION TRANSISTORS Series

• • 3

si O CO

is

ss si

O <0

in *&

CD CM U O :ik:S jESi* O

j

: ii» s~P;

Sfij: sai ,

w:>.

1

- " . o CM ".'lii' ".+'?

:

.,':| :..';

«:''" 1

: :i i !s::i :

:ijS sis?;:' o

*; x ~ Q O -O O o 8 5 n cm a. e ~

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST CASE TEMPERATURE

Milliard OC28 PageCIO JUNCTION TRANSISTORS OC28 Series

( m A)

-

^ J-- : yy

" 10 J** /^C?/^ - + ' -S* S «P 4- -" f ^r r + -*''" 7> y ^v - *' ^4lAc^J_ s ~ = __ >_' / ^_j_ 'a ? / /' >yfi

// /* ^ > 2 Z * j 2 r > V r y y A £- £- / ? ? / / ^

/^ '' // '' 1 O . ' / r ? ' Z 2 ? z 7 >^

7 ; : : 7

' " 0-01 1 1 1 1 25 45 65 85 TjCO

VARIATION OF Icbo WITH JUNCTION TEMPERATURE. OC28, OC36

Mullard 0C28 PageC11 0C28 JUNCTION TRANSISTORS Series

I„ n 0C29.0C35

ImAj -

-

"

.--\ <& - * r -i \ - : «J •><° <* O J * -Jo - / - - .*'

- f \& - V o Ve>+ - '(,' VKiM, VA ;

*cJ> %e> :

-

-

-

-

/ '

-

;

-

j •

• j. ?

^ ./ / /

:

0-01

25 4!5 65 85 Tj CO

VARIATION OF l CBo WITH JUNCTION TEMPERATURE. OC29, OC35

Milliard OC28 Page C12 JUNCTION TRANSISTORS 0C28 Series

- ITT^ - - W - m ' " Ul

" - CD

- 0C -

"

:

- ... - ' . K -

- >o

" - CO

- ~

:

- C i - X 1 9 g J 00 " E I »o

o » E CO in -^ - a: i-

:

.

-

- -z

- »o -

'

-

_

o: x ~ o O O o o ui o > 00 (0 If)

MAXIMUM PERMISSIBLE COLLECTOR-EMITTER VOLTAGE PLOTTED AGAINST RATIO OF Rb/Re

- Mullard OC28 Paged 3 0C28 JUNCTION TRANSISTORS Series

1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 a | CM—

CO " — UJ " "a:

- CO

-

o L \ o

. :r^ , 3^

V - ^ — (V)

- > :- o

O o ' 1 ^ :,^ co - _ g 1 CM — "- oy i- Sc rH - -T-p- E " \ UJ k"

:

-L. o k L - : .

Z! 1 —— I „,

- 1 r) -

Hlli ^_L j_L_L i_i_ j o cc ~ o 5 «- uj < m o O O o o in o m u E ^ w

TYPICAL VARIATION OF l CER WITH RATIO OF RB/R E

Mullard 0C28 Page C14 SILICON N-P-N PLANAR TRANSISTOR 2NI6I3

Silicon n-p-n double diffused planar transistor designed for a wide variety of applications including d. c. amplifiers, high speed switching and high speed amplifiers.

QUICK REFERENCE DATA

V max. (I = 0) +75 V CB E V max. +30 V CE

I max. 500 mA ° = 800 mW P maX - (T 25 C) tot amb WcM^^'W^ 40 - 120 typ. (I = 50mA, V = + 10V, f = 20Mc/s) 60 Mc/s f T c CE

OUTLINE AND DIMENSIONS

Conforming to J. E.D.E.C. TO-5

[B2390|

Collector connected to envelope

Millim utres Millimetres

Min. iMom. Max. Min. Nom Max.

A 8.64 8.9 9.4 F 38 -

B 7.75 8.15 8.50 G - 0.45

C 6.10 6.35 6.60 *H - 0.4

D - 5.08 - J 0.74 0.85 1.01

E 0.71 0.79 0.86 Thickness of 1(seating

Milliard MAY 1974 2Nl613Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

TV max. +75 V CB

maX - (R £10fl) +50 V TV CER BK max. +7.0 V tVEB

max. (I = 0) +30 V tVCEO B

I max - 500 mA ca

= tP. , max. T 25°C 3.0 W tot case

T = 100°C 1.7 W case

= 25°C 0.8 W amb

Thermal

-65 tT . min. C stg

200* T , max. °C stg o. tT. (operating ran ge) -65 to +200

*See Soldering and Wiring Recommendation No. 4.

THERMAL CHARACTERISTIC

fR . 58.3 degC/W th(j-case),.,.

Mullard 2N1613Page 2 SILICON IM-P-N PLANAR TRANSISTOR 2NI6I3

ELECTRICAL CHARACTERISTICS (T =25 C unless otherwise stated) amb Min. Max.

Collector cut-off current tl CBO V = 60VlI = 10 nA CB E

T = 10 |jA amb 150°C Emitter cut-off current tl.EBO 10 nA

Collector-base breakdown tv.BR(CBO) voltage

I = 100mA +75 c Emitter-base breakdown TV.BR(EBO) voltage

I = 100mA, i = +7.0 e c IV Collector-emitter voltage CER(sat) R„„ £10fl, I = 10mA +50 JdE C (See note 1)

IV Collector-emitter saturation CE(sat) voltage

I =15mA, I = 150mA +1.5 B C (See note 1)

TV Base-emitter saturation voltage BE (sat)

L=15mA, I = 150mA

(see note 1) +1.3

Large signal forward thFE current transfer ratio

T =150mA, V =10V 40 120 C Cbj (See note 1) I = 500mA, V =10V 20

(See note 1)

I = 10mA, V = 10V 35 c CE (See note 1)

I = 10mA, V =10V, c CE

T , =-55°C, (See note 1) 20 amb

Milliard 2N1613Page 3 Min. Max.

t , + 1 + t Switching time

I = 50mA, V (on)= + 1.0V, c BE - VT,„(off)=+1.0V, (See Fig. 1) 30

th. Small signal forward fe current transfer ratio

I = 1.0mA, V = 5.0V 30 100 c CE I = 5.0mA, V = 10V 35 150 c CE Input impedance lb

I = X.0mA, V = 5.0V 24 35 a c CB

I = 5.0mA, V = 10V 1.0 8.0 a c CB Voltage feedback ratio rb -4 I = 1.0mA, V = 5.0V 3.0 X10 c CB -4 I = 5.0mA, V = 10V - 3.0 X10 c CB Output admittance ob

I = 1.0mA, V = 5.0V 0.1 0.5 /jmhos c CB

I = 5.0mA, V =10V 0.1 1.0 Hmhos c CB th. High frequency current fe transfer ratio

I = 50mA, V =10V, c CE f = 20Mc/s 3.0

Output capacitance ob I = 0mA V = 10V 25 pF C ' CB Input capacitance lb

I = 0mA, V = 0.5V 80 pF c EB tN.F. Noise figure

I = 0.3mA, V =10V, c CE f = 1000c/s, R =510fl,

1 cycle bandwidth - 12 dB

tJ.E.D.E.C. Registered Data.

NOTE

1. Measured under pulsed conditions to prevent excessive dissipation P.W. =300fiS, duty cycle £1%.

Milliard 2N1613 Page 4 SILICON N-P-N 7NI6I3 PLANAR TRANSISTOR *"""''

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.

2. Transistors may be dip-soldered at a solder temperature of 245 C for a maximum soldering time of 5 seconds. The case temperature during solderingmustnotatanytimeexceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes.

3. Care should be taken not to bend the leads nearer than 1. 5mm from the seal.

4. After storage at temperatures greater than 125 C it may be necessary to take precautions in order to ensure adequate solderability of the leads.

Milliard 2N 161 3 Page 5 SWITCHING CHARACTERISTIC MEASUREMENT CIRCUIT -50V +20V |B4065| o

1-Ok.n -4oa

b6 O 47kA< Sampling oscilliscope A O- r—11-4 10 nF —^0 >^>f Ceramic K disc 10kn5W ioon. ioon; 50V I1N3064

///// /////

15ns +1 20V

-1 18V- wave form at A' wave form at'B' from pulse generator (<1ns rise time)

«1ns fall time) 10 /

Milliard 2N1613Page6 SILICON N-P-N PLANAR TRANSISTOR 2NI6I3

- o m

o JO 4 z CM o< /

i ,o,*l ~^ / n^ / r 5* / »? / / / ' ^ » * ^1 c

/ / / / ; y /*

1 ° o or c5

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

Mullard 2N1613 Page 7 < o o o O o O o CD 1- IT)

L±J

in

- -

UJ >*

in

> CJ o V)

in *0 C o o o o o JJ < o o o m o o

TYPICAL TRANSFER, MUTUAL AND INPUT CHARACTERISTICS

Multard 2N1613Page8 SILICON N-P-N PLANAR TRANSISTOR 2NI6I3

iO

o UJ

ID

< E o n < E o < 1 F o ro < ii ro U - E 10 m o CM < z __ < E E o ii o I 10 ii) It

'

I

L

' \ \ - \ ^ '

-

1 1

u o o o o o ^ o o o o o ! If) CM

TYPICAL OUTPUT CHARACTERISTIC

Muliard 2N 1613 Page 9 i r — >" —

„t===^=z=fj^==b=^==±tz==r==n=j======4======^

Ci " .- " * i£ • ^ '' *il£ I i _L_ '/ / i

i \/ / /' M

ztzt iT o 1 o L in J -j 2 -h- - Ip it Ip Intotwlf pi zp„

— j—1 »-^ -_ * ^ . \ i-^ y i —

!

i i i i _i_ T I y

: ±E 3^ * \E\ I * I , -L- — ; — ^rr-Ar—-V— — \ \ \ 1 , n

, 1 \ 1 i_\ \ i jV

1 _[_. \ V i j _|_ L J g g L h , j L 1 U \ JL--+—

-. i_±:t —"^"ittT —A~A~ T\ m-J—:* i 1 '" , \ ] 1 1 - ^^ ,^ !_ |_ __^ _|_ J_i_^. L _1_ _J_ U ) \ I

-

, - , i | J. V V- 4- X

1 Jl , ^yj\44; z$z : qz EjE_:n=E[E ^zjz^E-ipPA-J-i >

" "» t L \ \

—1— -4- \ H V l\ V V \ A \ \ \ I

: 1 i !__, , i h-r- 1 1 j- 1 1 ^#PitJ±iiHt-1 " m

:

i i 1 1 1 1 1 i o o m m o s

TYPICAL LARGE SIGNAL FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT WITH JUNCTION TEMPERATURE AS PARAMETER

Mullard 2N1613Page 10 SILICON N-P-N 2NI6I3 PLANAR TRANSISTOR

m o <» m

< E < o < E m e o ii - o o u en II

1

1 I

\ \ \ I \ \ > m o 1

ii 1 z Ul CM u \ > V

I \

L 1 , A \\ a

o o in m

TYPICAL LARGE SIGNAL FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST JUNCTION TEMPERATURE WITH COLLECTOR CURRENT AS PARAMETER

Mullard 2Nl613Page 11 r— ' ' ' ' ! ' — 1 ' ' ' CE(sat) t (V) I I II i i i r B= l0 Tj = 150°C 70 W

60

50

= 100°C -

4

30

= 25°C

20

= -40°C

1-0

, 1 1 , , | , i I I i i , , 10 100 1000 I c(mA)

TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT WITH JUNCTION TEMPERATURE AS PARAMETER

Muilard 2N1613Page 12 SILICON N-P-N PLANAR TRANSISTOR 2NI6I3

- - I CBO - 2N1613 B4053 - MM - tpA) 7 - V =60V - - CB - 5 - -

- 3 -

^A : 10 -

- 7 » **b - - 5 -

- 3 -

-

. 0-1

- -

- -

7 - -

- - 5 - -

- - 3 -

-

, 001 -

- -

7 -

- 5 -

- 3 -

- 0001 25 50 75 100 125 150 Tj CO

SPREAD OF COLLECTOR CUT-OFF CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard 2N1613Page 13 ^ - < - E *o - -

~

-

-

! _

-

-

-

-

> o - o U o m O 5 II eg CM i 2 ii UJ Ol - JE \ \ \ -

-

-

-

-

-

-

-

-

o in

TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT

Milliard 2N1613Page 14 SILICON PLANAR N-P-N TRANSISTOR 2NI7II

Silicon n-p-n double diffused planar transistor designed for a wide variety of applications including d.c. and wideband amplifiers.

QUICK REFERENCE DATA = +75 V maX - (I 0) V CBO E +50 V maX - (R S1° fi) V CER BE 1.0 A J CM maX -

P, , max. (T =25°C) 800 mW tot amb - h „ (I„,= 150mA, V == +10V) 100 300 FE v CM CE

OUTLINE AND DIMENSIONS

Conforming to J. E . D . E . C . TO -5

- A- Millimetres

-B- Min. Nom. Max

A 8.64 8.9 9.4

B 7.75 8.15 8.5

C 6.1 6.35 6.6 D - 5.08 -

E 0.71 0.79 0.86

F 38 - - G - 0.45 - H - 0.4 -

J 0.74 0.85 1.01

Collector connected to envelope

Milliard MAY 1966 2N1711 Page 1 RATINGS

limiting values of operation according to the absolute maximum system.

Electrical = +75 V n,"- (I 0) V t CBO E +50 V

= +7.0 tV maX - (I V EBO C ° ) V m3X = 0) +30 V CEO - ^B 1.0 A nCM maX - tP max. T =25°C 3.0 W tot case T =100°C 1.7 W case T = 25°C 800 mW amb Temperature -65 °C tT . min. stg 200* °C T , max. stg tT. (operating range) 65 to +200 °C

*See Soldering and Wiring Recommendation No. 4.

THERMAL CHARACTERISTICS 58.3 degC/W j-case te. 219 degC/W j-amb

CHARACTERISTICS (T , =25 C unless otherwise stated) ELECTRICAL amb Min. Max.

Collector cut-off current tl CBO V = 6 °V 10 nA CB - V V = 60V T = 15°°C 10 MA CB ' V°' amb

Emitter cut-off current fl EBO V, = 5.0V, I =0 5.0 nA EB

tv Collector -base breakdown BR(CBO) voltage

I = 100fxA, I = +75 c E

Emitter -base breakdown tvBR(EBO) voltage

I = 100 A, I = +7.0 E M c tv Collector -emitter sustaining CER(sust) voltage (See note 1) II ^10fi, I_, = 100mA +50 BE C

Mullard 2N1711 Page 2 SILICON PLANAR 2NI7M N-P-N TRANSISTOR

Min. Max. fV Collector -emitter saturation CE(sat) voitage (See note 1) - I =15mA, I = 150mA +1.5 B C

fV Base-emitter saturation BE(sat) voitage (See note 1) - I = 15mA, I = 150mA +1.3 B C

Large signal forward •fh FE current transfer ratio I = 500mA, Vn =10V 40

(See note 1)

I = V = 10V 100 300 150mA, CE (See note 1)

I =10mA, V =10V 75 C Oili (See note 1) I = 10mA,V = 10V, c CE T =-55°C 35 amb = 0.1mA, V = 10V 35 I c CE

I = 0.01mA, V =10V 20

Small Signal characteristics

fh Small signal forward current transfer ratio

I = 1.0mA, V = 5.0V, c CE f = 1.0kc/s 50 200

I = 5.0mA, V = 10V, c CE f = 1.0kc/s 70 300

fh Input impedance lb I = 1.0mA, V =5.0V, c CB f = 1.0kc/s 24 34

I = 5.0mA, V = 10V, c CB f=1.0kc/s 4.0 8.

fh* Voltage feedback ratio I = 1.0mA, V = 5.0V, c CB - x f = 1.0kc/s 5-0 10

I = 5.0mA, V = 10V, c CB ^ - X10 f = 1.0kc/s 5-0

Mullard 2N1711 Page 3 . . .

Min Max

fh Output admittance ob I = 1.0mA, V = 5.0V, c CB f = 1.0kc/s 0.1 0.5 uraha

I = 5.0mA, V = 10V, c CB f = 1.0kc/s 0.1 1.0 nmho

fh Small signal forward current transfer ratio

I = 50mA, V = 10V, c CE f = 20Mc/s 3.5

tc Output capacitance - I =0, V =10V 25 pF C CB

fc. Input capacitance - I =0, V„ =0.5V 80 pF

tNF Noise figure I = 0.3mA,_V = 10V, c CE f = 1.0kc/s, R =510fi, - 1 cycle bandwidth 8.0 dB tj.E.D.E.C. registered data NOTE

1. Measured under pulsed conditions to prevent excessive dissipation pulse duration = 300(js, duty cycle ^1%.

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt

2. Transistors may be dip -soldered at a solder temperature of 245 C for a

maximum soldering time of 5 seconds . The case temperature during dip -soldering must not at any time exceed tha maximum storage tem- perature. These recommendations apply to a transistor mounted flush on a board having punched -through holes, or spaced at least 1.5mm above a board having plated -through holes.

the 3 . Care should be taken not to bend the leads nearer than 1 . 5mm from seal.

4. If devices are stored above 100 C before incorporation into equipment, some deterioration of the external surface is likely to occur which may the make soldering into the circuit difficult . Under these circumstances leads should be returned using a suitable activated flux.

Milliard 2N1711 Page 4 SILICON N-P-N EPITAXIAL PLANAR TRANSISTOR 2N2297

Silicon n-p-n epitaxial planar transistor intended for large signal h. f . and

v. h. i . amplifier applications.

QUICK REFERENCE DATA

= V maX - (1 0) +80 V CB E V max. +35 V CE

I max. 1.0 A

P^ max. (T = 25°C) 800 mW tott amb

h (I = 150mA V = +10V) 40-120 FE CM ' CE f min. a -50mA, V f+10V, f == 20Mc/s) 60 Mc/s T c CE

OUTLINE AND DIMENSIONS

Conforming to J.E.D.E.C. TO-5

Collector connected to envelope

Millimetres Millimetres

Min. Nom. Max. Min. Nom. Max.

A 8.64 8.9 9.4 F 38

B 7.75 8.15 8.50 G 0.45

C 6.10 6.35 6.60 *H 0.4

D 5.08 J 0.74 0.85 1.01

E 0.71 0.79 0. 86 *Thickness of locating tab.

Mullard JULY 1965 2N2297 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

tV max. = +80 V CB 0,3 0) +35 V

tV max. = 0) +7.0 V EB C

tl max. 1.0 A

tP ^ max. T = 25°C 5.0 W tot case

T =100°C 2.8 W case

T , =25°C 0.8 W amb

Thermal

Tt , min. -65 stg

200* T , max.

TT. max. (operating) 200

See Soldering and Wiring Recommendation No. 4.

THERMAL CHARACTERISTICS

tDerating factor at T = 25 C 28.6 mW/degC

T =25°C 4.6 mW/degC amb

Milliard 2N2297 Page 2 SILICON N-P-N EPITAXIAL PLANAR TRANSISTOR 2N2297

ELECTRICAL CHARACTERISTICS (T . = 25 C unless otherwise stated) amb Min. Max.

CBO Collector cut-oft current = + =0 V 60V ' I 10 nA CB B'

T = 150 10 amb HA Emitter cut-off current *ebo V„ = 5.0V, I = 10 nA EB c TV CEO(sust.) Collector-emitter sustaining voltage

I = 30mA (See note 1) 35

tv Collector-base breakdown (BR)CBO voltage

I = 100/*A, Ig-0 80 C tv Emitter-base breakdown (BR)EBO voltage

I^lOOjiA, I = 7.0 c tv, Collector-emitter saturation CE(sat) voltage

I = 150mA, I^lSmA 0.2 V

I = 1.0A, L=100mA 1.0 V

(See notes 1 and 2)

tv. Base-emitter saturation BE (sat) voltage

I =1.0A, L=100mA 1.6

(See notes 1 and 2)

th Large signal forward FE current transfer ratio

I = 150mA, V = 10V 40 120 c CE (See note 1)

I = 10mA, V =10V 30 c CE (See note 1)

I .l.M 1 7 .W 15 (J (a (See note 1)

Milliard 2N2297 Page 3 Min. Max. tfT Transition frequency I = 50mA, V = + 10V, c CE f = 20Mc/s 60 - Mc/s

Output capacitance ob V = 10V 12 pF CB ' h°° Open-circuit input capacitance lb = I V = °- 5V 80 pF C ' EB

tr, , c Collector-base time constant b c I = 10mA, V = 10V, c CB f=4.0Mc/s 800 ps

tJ.E.D.E.C. Registered Data.

NOTES

1. Measured under pulsed conditions to prevent excessive dissipation. P.W. *300ns, duty cycle =U%.

2. Measured at a point on the lead £12. 7mm (0.5in) from the seating plane of the transistor

SOLDERING AND WIRING RECOMMENDATIONS

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.

2. Transistors may be dip-soldered at a solder temperature of 245 C for a maximum soldering time of 5 seconds. The case temperature during

solderingmustnotat anytime exceed the maximum storage temperature . These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes.

3. Care should be taken not to bend the leads nearer than 1. 5mm from the seal.

4. After storage at temperatures greater than 125°C it may be necessary to take precautions in order to ensure adequate solderability of the leads.

Mullard 2N2297 Page 4 . i

SILICON N-P-N EPITAXIAL PLANAR TRANSISTOR 2N2297

I 3 ! :_[ j i 2N2297 tot ] -h ]

! max : ; i

! (W) -!• ) - : v 1 ! , J - ;

6'0 i

i

i - i

— |

!^^_ \ .

;

1 •4'0 r\ i Infinite heatsink 1 --

, ; i

i - - L, e =o

~~

' \

\

' A +

i - *-

i \~ - XL— 1 • '; "Xi

1 i : i ! ln j _ J ! f'ee ni» "t

1 i ru_u_ , : in— ~f~ " 1 :.. i T T_ i

] i \ ! 1 1 rm iii! 100 150 200 50 WC >

' ! I I - - (mA) c - ! (mA) MM - ' v -iov CE 30

[

ill I T--25 C t - — 25

20 1000 :' ! i !i f r /i 750 /1 15 '

500 10 / I 1 1

250 1 I 1 ( 25 50 10 20 0-5 10 1-5 I (mA) V (V) V (V> B BE BE MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE. TYPICAL TRANSFER, MUTUAL AND INPUT CHARACTERISTICS

Milliard 2N2297 Page 5 hFF 2N2297 bj»D/ Tj«23*C

vCE .iov 50

40

30

20

10

1 , , , , ' 1 1 J. ij ii iii' , ..ii

i i ? " » i t i 0-1 10 10 100 1000 I c (mA)

h-- _ 2N2297 J L^' I ^ H

.<*y* v .iov »#iu CE * „,^\C* ~^" ? t »^\p-

i Ji""

1-0A

1 _j — r* " -

' BO _ __ 20 _ -75 -50 -25 25 50 75 100 125 150 yci

TYPICAL LARGE SIGNAL FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT TYPICAL LARGE SIGNAL FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard 2N2297 Page 6 I1— — - 1 ' ,

SILICON N-P-N EPITAXIAL PLANAR TRANSISTOR 2N2297

- -'- - - : - - -" :: - ::: 0> - —

-' - — — - — , __ — - —s v^ — ^ ------'< - > s N - O 0) — (0 ::- CM -h 4 1 CM - 2 - II 01 - m + > *N.

' -14--

-H

1

1 j

J •--

' 1 i " ' I" ' " |'i" L- 1 [I ' L^ 1" ' P" r* in ^ «* » l» n r- o o o 3 6 5 o 6 6

I

, 1 1 — 0) CO - " — -" s^ " -- :T £- - - —

--- .____ — <&S "---- *^v - - Sl -- — - N __> CD - » — i — 01 - . •;:; 1— ^ i * - «i +< z - ™ V S^ —

i — _^._S ^—

-- , -

_ -- . . - - . . —

' lii l_i_i-i—i—

' Irrrri: » ' r | r* r •t o o o 3« co <5 o uj 3 6 COLLECTOR CUT-OFF CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE EMITTER CUT-OFF CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE

Milliard 2N2297 Page 7 V

I c (mA) Mill I

B r j < ,. :t (r I > ±/ / ^' :r t -_,*-,£ /' _ __ I i ,Z ,' nr : 4 * - / J t ' i i £' j ?J < »* C -• . t ^ _:£,< < „<; ± / i' „* ** A- "• t i 2 -<.'< ,<

.' <' : .- .< «' ; .«' i _ ,? ,»' _: ,,e;:__ _ _ _ - -«' "„«•- _,.' ,•' -_J_ _ __ £___„. p- B „4^

t _._ __,.«-- - = = -£ BBB----' •— ;;:-.- i n jjjjjfflwiiTiTi fir i 2

10 2-0 (V) >fc E

f T (Mc/s) T =25*C

150

= 100 : V-,.CE 25V Vv"V. = 10V 50 «6V " =1V

. . i i , , , , i i i i I I LI 1 1 5 7 3 5 7 3 5 7 10 100 I (mA)

TYPICAL OUTPUT CHARACTERISTICS. Tj=25C TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT. COLLECTOR-EMITTER VOLTAGE AS PARAMETER

Milliard 2N2297 Page 8 SILICON N-P-N EPITAXIAL 2N2297 PLANAR TRANSISTOR

/ L _ a****»„„,« CE(sat) jr 2 49'. (V) _j i I I I I

1 I MM /X *C E

,&o«*> ®*^rfT - **

, ip __.__-„ __,. ^ "" ...-""Tvoo^^ 0-75 , IC »10A ..»•-=

0*25 h _L ---««

II! I j M -75 -50 -25 25 50 75 100 125 150 175 TjCC)

Mill i 2N229i B39" BEtsat) I .10 \ MIL. (V) C if: I_ / 1- -10 and 2 1'5 - - i B oocImA m m "T 1-25 I «15C >5C imA

i i i 10 X -Lli-

0-75 — -H .7

0'5

t:

0-25

-75 -50 -25 25 50 75 100 125 150 175" TjCC) TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE. COLLECTOR AND BASE CURRENTS AS PARAMETERS TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE. COLLECTOR AND BASE CURRENTS AS PARAMETERS

Mullard 2N2297 Page 9 ;

1 1 , , i . . 1 ! 1 1 1 ' VcE(sat) ' 2N2297 B3974 (VJ 1 1 W10 10

1

__ T.*15(>"C J 0-75 o'c. •c. ~» 0-5 o'c

0-25

10 100 (mA) I c

1 1 , , , , , 1 1 1 1 T III V (sat) ' BE 2N22V/ B3975

1 1 'c'V10 20

1-5

Tj« 40'C -

- . 10 »25*C V V = 100*C.

= 15 O'C' 5

10 100 I (mA)

TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT, WITH JUNCTION TEMPERATURE AS PARAMETER. I c/lB = 10. TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT, WITH JUNCTION TEMPERATURE AS PARAMETER. I c/lB = 10.

Milliard 2N2297 Page 10 H , *

SILICON N-P-N EPITAXIAL PLANAR TRANSISTOR 2N2297

CE(sat) (V) = 2 Tj = rv^ 150 *C S 1-0 - 100'C,, 25*C^

0-75 ~ -40*C,

0-5

0-25

, , , , , , , I , B3976 , , J. _L 111

10 100 I (mA) c

B3977 1 BE(sat) (V) = 2<5 J: c /iB 1-5

1-25 / 2 -i f t '$ z 4

i r ~ ^ ^5 1-0 — -40*C x • Tj= <^ ^ / .^< ^ x . —-: ^ = 25 c -^z>-^^-*^T -H -- - ~^~-~" 0-75 — =100 ——J — - — ^ , — -—I

: = 15 re

, , . , , , i 0-5 , , , , , i , , , , i i ,

10 100 I (mA) TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT, WITH JUNCTION TEMPERATURE AS PARAMETER. I = CAB 20. TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT, WITH JUNCTION TEMPERATURE AS " = PARAMETER. I c/lg 20.

Milliard 2N2297Page 11 TYPICAL VARIATION OF h PARAMETERS WITH COLLECTOR CURRENT

Mullard 2N2297 Page 12 SILICON N-P-N EPITAXIAL 2N2297 PLANAR TRANSISTOR

MM! C

1 M M

h ie ^m~~~ — * —

150

r V "i

r ^ ._ 5 S 5 ^ \ . h 1 "iiiE^;-::"""""'---^^""- 6 h *s„ I ^xld * e

1 Li 1. 1 h„jjmho| X 50 10 15 V (V) CE

TYPICAL VARIATION OF h PARAMETERS WITH COLLECTOR-EMITTER VOLTAGE

Milliard 2N2297 Page 13 1111

a 0)m CO

o x: 2 E C X 5. it _ •> _ t_ o if c c — ±:r t t :t 1 i -PCii , r t > < I 0) (0 E 1 CM II o 1 1 CM 111 _i z ii 1 u I 1 CM rr i 1 \i k-i 1 1 ~" i 1 1u w ii n it ii i ii L [" i " i t \ I" i 1 i j \\

1 o o 8 o

TYPICAL VARIATION OF h PARAMETERS WITH JUNCTION TEMPERATURE

Milliard 2N2297 Page 14 SILICON N-P-N EPITAXIAL 2N2297 PLANAR TRANSISTOR

CM _ o

cfl

< E < m E 0) o CM "cm m CM CD Z H I CM u CO H H

o o o o

TYPICAL VARIATION OF STORAGE TIME WITH JUNCTION TEMPERATURE

Milliard 2N2297 Page 15 111 1 — z — J — . j. (0 z -

in

. 10

"

:

r

in

-

» un) uo!)os!|iqD)s

-

, j 1 ?

o' O " f "° 'i =

s *

1 o5; .

.. * -S 2 J, .„ » i

0) , w « ° 2 CM

I- 1 iH d mo-" 1 - 1 111

- 1 Xn 1 >> * „ 1 \\\ 1 \\\ 1\\\ tl H T o

r i -

-

-

L - o in o»\,-\ 6 o> a . _ J' r^ <•» in »n f- m j iv m n r~ m m o O ~9 | o O 3S0D CD ( _ fg)33UD}S{S3J |DlUJ3lf) )U3|SUDJ1

TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS PLOTTED AGAINST PULSE DURATION

Milliard 2N2297 Page 16 .

SILICON PLANAR 2N2369A EPITAXIAL N-P-N TRANSISTOR

Silicon planar epitaxial n-p-n transistor primarily intended for high-speed saturated switching and high frequency amplifier applications. TO-18 construction with collector connected to envelope.

QUICK REFERENCE DATA

V maX - 40 V CBO 15 V mSX - V CEO 500 mA I„„,CM max. ° = 360 Px x max. (T 25 C) mW tot amb T. max. 200 °C = = h mln - (I 10lnA>V 1 - OV) 40-120 FE C CE f min.(I = 10mA, f = 100MHz) 500 MHz T c = = 13 ns t max. (I l -l =WmA) s c B BM

OUTLINE AND DIMENSIONS

Conforming to J.E.D.E.C. TO-18 -A- illimetres "1 Min. Nom. Max. A - 4.8 B - 5.33

C 12.7 D 0.43 - E 1.0 - JL-c F 1.05 - ^r G 2.54 - H 5.3 5.55 5.8 V Connections 1 Emitter

2. Base

3. Collector connected to envelope

Milliard SEPTEMBER 1966 2N2369A Page 1 . .

tRATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX - 40 CBO V

V maX - 40 V CES = v max - (I ^ - 01 to 10mA) 15 V CEO„™ C

V maX - 4. 5 EBO V T maX (10,LtS pulse 500 mA CM " > I max. 200 mA C

P, , max. T , =25°C 360 mW tot amb T =25°C 200 mW case T =100°C 680 mW case Temperature

T ^ min. -65 °C stg

T , max. 200 °C stg T max. 200 °c J fTHERMAL CHARACTERISTICS

Derating factors T , ^25 C 2. 06 mW/degC amb T a25°C 6. 85 mW/degC case tELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise stated) h

Min . Max ^nn Collector cut-off current

- T , 30 amb =150°C nA

I Collector -emitter cut-off current V =20V V " °- 4 A CE ' BE=° "

-I Base current V = = ° " 4 20V - V °- A CE BE ^

V Collector -base breakdown (rJK)CBO ., voltage - I =10nA, I =0 40 V C E

V Collector -emitter breakdown

(BKloEo -, . voltage - I = 10mA, V =0 40 V c be

f J.E.D.E.C. registered data

Mullard 2N2369A Page 2 .

SILICON PLANAR 2N2369A*•«*«**"« EPITAXIAL N-P-N TRANSISTOR

Min . Max

V Emitter -base breakdown BR EBO < > voltage

I = 10 A, I = 4.5 E M c

V * Collector -emitter sustaining CEO(sust) x voltage,,

I = 10mA, I =0 15 C B

h Large signal forward current FE transfer ratio 120 I = 10mA, V = 1.0V 40 c CE 1 =10mA, V = 0.35V, CE T = -55°C 20 amb

T =30mA, V =0.4V 30 C Oil*

I = 100mA, V =1.0V 20

V Collector -emitter saturation CE(sat) voltage

T =10mA, I =1. 0mA 0.20 C B

I = 10mA, I = 1.0mA, C B 0.30 V T , = 125°C amb

=30mA, I =3. OmA 0.25 V I C B 1 = 100mA, I = 10mA 0.50 V

Base -emitter saturation BE (sat) voltage = 1.0mA 0.70 0.85 I 10mA, V I = 10mA, 1.0mA, C V 0.59 T , =125°C amb = 1.0mA I 10mA, V =-55 1.02 V T , °c amb

= 1.15 V I =30mA, V 3. 0mA 1.60 V T = 100mA 'b = 10mA

Transition frequency fT V 10V l = 10mA, CE = ' c f=100MHz 500 - MHz

Measured under pulsed conditions to avoid excessive dissipation, pulse width = 300(is duty cycle <2%.

Mullard 2N2369A Page 3 H

Min. Max.

Collector capacitance tc V^„ = 5.0V, I =1 =0, CB E e f = 140kHz 4.0 pF

Storage time (see fig.l.) I„=I„ = -!„„, = 10mA 13 C B BM

Turn -on time (see fig. 2.) T =10mA, L =3. 0mA 12 C B

Turn-off time (see fig. 2.) off I =10mA, I =3. 0mA C B !„,=!.BM 5mA 18 SOLDERING RECOMMENDATION

tMax. T, , 1/16" from case for 60 seconds is 300°C. lead

tJ.E.D.E.C. registered data STORAGE TIME TEST CIRCUIT

| VWv f 1| |B6231| VWV @ 89 on 0-1uF ikn 0-1uF ? soon f^\ © -n- >9in 50on<

,2-5nF 2-5nF. >56.0 I \

DH "— r lOuF iOH F o+ I0V

6V- -IC/o Pulse waveform - at point "A"

-i -4V- I _>

Vin Rise time less Vout than Ins , 1 _IO /._ J. tp> 300 ns

,, Duty cycle<2 /<,

Xnput and output waveforms Fig.l

Mullard 2N2369A Page 4 SILICON PLANAR 2N2369A EPITAXIAL N-P-N TRANSISTOR

t AND t „ TEST CIRCUIT on off

0-1pF V,

|B6230| -VWr| 1| 'WW-® R4 R5 © Rl «r :5on >R2

2-3nF|| |2-3nF 5nF 5nF ,R3 Hl- HI— II— HI— 0-1uF

fTtrt °r -10'/. Vin Rise time less

than I ns -io°/. - tp > 300 ns i I f Duty cycle < 2%, T -90°(. V„„. "out V,out __X--90°M

Input and output waveforms Fig. 2

Circuit conditions:

t on *off v R R R R V V. V V. cc V 2 3 4 5 BB in BB in

(V) (kS) (S, (V) (V) (V) (V)

3.0 3.3 50 220 -3.0 15 12 -15

Milliard 2N2369A Page 5 '

P-N-P SILICON PLANAR 2N2904 EPITAXIAL TRANSISTORS 2N2904A

P -N -P silicon planar epitaxial medium power transistors designed primarily for high-speed saturated switching and driver applications for industrial

QUICK REFERENCE DATA 2N2904 2N2904A

- V maX - 60 V CBO -V max. (-I < 100mA) 40 60 V CEQ c -I max. 600 mA

P ^ max. (T . =25°C) 600 mW tot amb T. max. 200 °C

= 150mA, -V = 10V) 40-120 VE M C CE f min. (-1 = 50mA, f = 100MHz) 200 MHz

t max. (-1 =150mA, s Co " I = +I = 15mA 80 ns B BM )

Unless otherwise stated data is applicable to both types OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-3/SB3-3A J.E.D.E.C. TO-5 Millimetres

A Min. Nom. Max. B r— — A 8.64 8.90 9.40

B 7.75 8.15 8.50 \ C C 6.10 6.35 6.60 I 1 i— - - t D 5.08 H |J F E 0.71 0.79 0.86

G F 38 - - w i 1 G - 0.45 - H - 0.4 -

J 0.74 0.85 1.0

Collector connected to envelope

Milliard NOVEMBER 1966 2N2 904 -Page Dl . . .

RATINGS

limiting values of operation according to the absolute maximum system.

Electrical

t-V max. 60 ' CBO T-V max. (-I = to 100mA) 2N2904 40 V CEO c 2N2904A 60 V

t-V1 max. 5.0 V EBO t-I max. 600 mA cn o P^ . max. (T = 25 C) 600 mW tot amb fTemperature

T . min. -«5 stg T max. 200 stgx T. max. 200 J THERMAL CHARACTERISTIC

e. 292 degC/W j-amb tELECTRICAL CHARACTERISTICS (T =25°C unless otherwise stated) Min Max

Collector cut-off current CBO = -V„ T, 50V, I =0 2N2904 20 nA CB ' E 2N2904A 10 nA

-V„ =50V, I =0, CB E ' T 2N2904 20 amb =150°C HA 2N2904A 10 MA

CEX Collector-emitter cut-off current -V = 30V, +V =0.5V 50 nA CE BE

XBEX Base current -V = 30V, = 0.5V 50 nA CE WBE

-V it>t,\ /-it./-. Collector -base breakdown tan.) L/iJU . x voltage

-I = 10nA, I = 60 c E

* Collector -emitter breakdown (BR) CEO voltage -I_ = 10mA, I„ = 2N2904 40 V V 2N2904A 60 V

*Pulse condition, pulse width ^300fis, duty cycle ^2%.

fJ.E.D.E.C. registered data.

Mullard 2N2904-PageD2 P-N-P SILICON PLANAR 2N2904 EPITAXIAL TRANSISTORS 2N2904A

Mln, Max. Emitter -base breakdown (BR)EBO voltage -l = 10nA, I bO - E c 5.0 V -V * Collector -emitter saturation voltage CE(sat) -I = 150mA, -L =15mA . 0.4 V

-I = 500mA. -I = 50mA - C B 1.6 V -V. Base -emitter saturation voltage BE(sat) -I = 150mA, -I = 15mA - 1.3 V

-I = 500mA, -I = 50mA - c 2.6 V FE Static forward current transfer ratio -I =0.1mA, -V =10V 2N2904 20 - U ^ 2N2904A 40

-I = 1.0mA, -V = 10V 2N2904 25 - c CE 2N2904A 40

-I = 10mA, -V = 10V 2N2904 35 c CE 2N2904A 40 _

*-I =150mA, -V_, =10V 40 120 Lf Kyhi *-I = 500mA, -V_ =10V 2N2904 20 - L> CE 2N2904A 40

Common base, open circuit ob output capacitance -V = 10V, I = 0, f=100kHz CB E 8.0 pF Common base, open circuit "lb input capacitance V = 2.0V, I = 0,f = 100kHz 30 pF BE c Transition frequency -V = 20V, -I = 50mA, CE c f=100MHz 200 MHz

*Pulse condition, pulse width =s300(ts, duty cycle £2%.

Mullard 2N2904-PageD3 , J

Switching characteristics Max.

Turn-on (see Fig.l)

-V = 30V, -I = 150mA -I = 15mA CC cs > B

t Turn -on delay time 10 ns

t Rise time 40 na r

t Turn-on time (t , + 1 ) 45 ns on * d r

Turn-off (see Fig. 2) -v =6V =150n,A =16mA cc - *cs - V*BM- t Storage time 80 ns

t Fall time 30 ns

Turn-off time (t + 1 100 ns off v s r

TEST CIRCUITS

-30V

2 00C1

z =5on pr.f.- 150p.ps To oscilloscope t s=2ns t r< 5ns Input r 1kn. Z,n=10Mn. Vv/W- -16V

50X1 -200 ns

IB6694|

Fig.l

Test circuit for determining delay, rise and turn -on time

Milliard 2N2904-PageD4 1

P-N-P SILICON PLANAR 2N2904 TRANSISTORS EPITAXIAL 2N2904A

+15V,

'IkJl <37A

Input p°f.=150pps „To oscilloscope t r <; 2 ns t r ^ 5ns Z = 10Mn VAV in -30V 1N916 »-200ns 50A

IB66S1

Fig. 2

Test circuit for determining storage, fall and turn-off time WAVEFORMS

Input

toff

Output

IB6655I Fig. 3

- Milliard 2N2904-Page D5 P-N-P SILICON PLANAR 2N2904 EPITAXIAL TRANSISTORS 2N2904A

)

± :

CD * tn cm «-

c ( V T> M II CM Z UJ II M

(J < o o o ^ £ CO ^ cm

**• o u< o 8

TYPICAL TRANSFER, MUTUAL AND INPUT CHARACTERISTICS

Milliard 2N2904-PageCl TYPICAL TRANSFER, MUTUAL AND INPUT CHARACTERISTICS

Mullard 2N2904-Page C2 P-N-P SILICON PLANAR 2N2904 EPITAXIAL TRANSISTORS 2N2904A

•; IT ir !( LU T

- - o < i u o r in CM z ii

< oe

II H

~jw I 1

1 1

^ o o o u < o o o « E (0 » cu

TYPICAL OUTPUT CHARACTERISTICS

Milliard 2N2904-PageC3 m — - -______"::: :~ if- " — :: _ _; _

__ _ — --- -<•-- ? f - - £ oE o ZxZp~~~ t) 4 SL ~ L IT m ft ft \ |ft ft vm ft ft

I ft rf ft ft ft £ 1 ft I 1 O 1 1 1 ^K V 1 l 111ft ft ft ft ft ft ft ft ft ft 1 ft m ft 1 ft ft 1 1 ft ft 1 1 ft I 1 [ft ftj 1 1

ft ft ft 1 ft B 1 < [' < [ 1 » ft V e V- 1 ft 1 o; n _____ o ___i: _ It __ t_ ---*--___r__ _ ! * _ *Ut I I t •— 7 » ft 1 L ft M f\|i "" \ ft 1 ft ft 1 ft 1 ft

i l -L ft ft 1 «T ft ft 1 1 r* ft ft 1 1 1 C [ft \ tv (ft ft 1 111 ft 1 CDft ft ft ft I—iTft jt ft )i 1 ' » 1 1 % ft |*j 1 11 " ft I ft \ ft ft \ ft ft ft ft ft ft ft ft 1 \ ft ft ft ft 6 ft ft ft 1 ft j —Ift ft ft !_ ft ft 1 l \ ft. 1 1

ft. ft ft ft L ft ft -*, ft I \_ it i

L ft \ ft 1 \ \ l ft 1 L ft L ft 1 L ' ft J ft h ft _i— L- ft 1 * ( k_ T__ ^ V 1 ^" __Ph 5 ^ - *s ni i ^^ '^ j. r ^> k-i^-i < o o 8 o o #1 (0 CM

TYPICAL OUTPUT CHARACTERISTICS

Milliard 2N2904-PageC4 P-N-P SILICON PLANAR 2N2905 EPITAXIAL TRANSISTORS 2N2905A

P-N-P silicon planar epitaxial medium power transistors designed primarily for high-speed saturated switching and driver applications for industrial service. QUICK REFERENCE DATA 2N2905 2N2905A

" 60 V V maX - CBO - 60 V V maX - 40 CEO -I max. 600 mA 600 mW P,. t max. (T . =25°C) tot amb T. max. 200 °C = = h (-I 150mA -V 10V) 100-300 FE C ' CE f min. (-I = 50mA, f = 100MHz) 200 MHz T c t max. (-1^ = 150mA, g = "V +I BM 15mA) 80 ns

Unless otherwise stated data is applicable to both types

OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-3/SB3-3A J.E.D.E.C. TO-5

Milli metres

- A- Min. Typ. Max. -B- A 9.10 - 9.39 B 8.2 - 8.50 C 6.15 - 6.60 D - 5.08 - G*7txi E 0.71 - 0.86 Fl - - 0.51

F2 12.7 - -

F3 38.1 - 41.3 Gl - - 1.01

G2 0.41 - 0.48 G3 - - 0.53 H - 0.4 -

Collector connected to envelope J 0.74 1.01

liarHU MAY 1967 2N2905 -Page.l .

tRATINGS

Limiting values of operation according to the absolute maximum system

Electrical

- V maX - 60 CBO " v max =otolMmA> 2N2905 40 V CEO - Hc 2N2905A 60 V

max. 5.0 V -V„.EBO -I max. 600 mA c o V ^ max. (T . = 25 C) 600 mW tot amb ' Temperature T min. -65 °C stgx

T t max. 200 °C stg T. max. 200 °C J tTHERMAL CHARACTERISTIC

e. , 290 degC/W j-amb

fELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise stated) amb Min. Max.

current CBO Collector cut-off -V = 5°V 2N2905 - 20 nA CB > h"° 2N2905A - 10 nA

- = =0 V 50V I ' CB ' E T = 150°C 2N2905 - 20 MA amb 2N2905A - 10 pA

CEX Collector-emitter cut-off current -V =30V. +V =0.5V 50 nA CE ' BE

BEX Base current -V =30V >+V =0.5V 50 nA CE BE

Collector-base breakdown (BR) CBO voltage = = o 60 -I c 10mA, i£

-V *Collector-emitter breakdown ' ' voltage

-I = 10mA, I =0 2N2905 40 V c B 2N2905A 60 V

tJ.E.D.E.C. registered data

*Pulse condition, pulse width S300/JS, duty cycle s2%.

Mullard 2N2905-Page2 P-N-P SILICON PLANAR 2N2905 EPITAXIAL TRANSISTORS 2N2905A

Min. Max.

Emitter-base breakdown voltage (BR)EBO - -I = 10MA, I -0 5.0 V E c

Collector-emitter saturation voltage CE(sat) - -I = 150mA, -I = 15mA 0.4 V C B -I = 500mA, -I = 50mA - 1.6 V c a

-V. *Base-emitter saturation voltage BE (sat) - -I = 150mA, -I = 15mA 1.3 V C o -I = 500mA, -I = 50mA - 2.6 V C D

forward current transfer FE Static ratio -I = 0.1mA, -V =10V 2N2905 35 C C 2N2905A 75

-I = 1.0mA, -V =10V 2N2905 50 C 2N2905A 100

-I = 10mA, -V =10V 2N2905 75 2N2905A 100

*-I = 150mA, -V_ =10V 100 300

= 500mA, -V =10V 2N2905 30 *-IC °h 2N2905A 50

Common base, open circuit "ob output capacitance

-V = 10V, I = 0,f = 100kHz 8.0 pF CB E

Common base, open circuit ib input capacitance +V_ =2.0V, I =0, f = 100kHz 30 pF Br. O

Transition frequency -V„, = 20V, -I =50mA, f = 100MHz 200 MHz CE O

Pulse conditions, pulse width = 300(iA, duty cycle S2%.

Milliard 2N2905-Page 3 Switching characteristics Max.

Turn-on (see fig.l)

-V = 30V, -I = 150mA, -I = 15mA CC cg B

t Turn-on delay time 10 ns

t Rise time 40 ns r

t Turn-on time (t , +t 45 ns on d r')

Turn-off (see fig . 2)

-V = 6.0V, -I = 150mA, -I = +I = 15mA CC cs fi BM Storage time 80 ns s Fall time 30 ns f

Turn-off time (t +t.) 100 ns off s f

TEST CIRCUITS

30V

20on

z =50n o To oscilloscope pi-.f.= 150p.ps. lr« 5ns t r < 2ns 1kfl Vs/W- -16V son -200 ns

IB6694I

Fig.l

Test circuit for determining delay, rise and turn-on time

Milliard 2N2 905 -Page 4 P-N-P SILICON PLANAR 2N2905 EPITAXIAL TRANSISTORS 2N2905A

M5Vf

Hkn <37A

Input p.rf.=150pp.s ..To oscilloscopa

t r < 5ns = 10Mn -WW Z in -30V 1N916 •-200 ns 50 A

[B66311

Fig. 2

Test circuit for determining storage, fall and turn-off time

WAVEFORMS

Input

Output

1B6655I

Fig. 3

Milliard 2N2905-Page 5 P-N-P SILICON PLANAR 2N2906 EPITAXIAL TRANSISTORS 2N2906A

P-N-P silicon planar epitaxial medium power transistors designed primarily for high-speed saturated switching and driver applications for industrial

QUICK REFERENCE DATA

2N2906 2N2906A

- V maX - SO V CRO 60 V -VCEO max. <-!<,< 100mA) 40 -I max. 600 mA c P max. (T = 25 C) 400 mW tott amb T. max. 200 °C

h^.(-I = 150mA,-V = 10V) 40-120 c CE f min. (-1 =50mA,f=100MHz) 200 MHz

t max. (-1= 150mA, s Co

- i +i =18bA 80 ns b° bm > Unless otherwise stated data is applicable to both types OUTLINE AND DIMENSIONS

Conforms to J.E.D.E.C. TO-18 B.S. 3934 SO-12A/SB3-6A Millimetres

Min. Typ. Max.

A 4.53 - 4.8 B 4.66 - 5.33 CI - - 0.51

C2 12.7 -

C3 12.7 - 15 Dl - - 1.01

D2 0.41 - 0.48 D3 - - 0.53

E 0.84 - 1.17

F 0.92 - 1.16

G - 2.54

Viewed from underside H 5.31 5.84

Connections 1. Emitter 3 . Collector connected to envelope 2. Base

Milliard JANUARY 1968 2N2906-Page 1 tRATINGS

Limiting values of operation according to the absolute maximum system.

Electrical -V„ max. 60 CBO,„ -V max. (-I =0 to 100mA) 2N2906 40 V CEo c 2N2906A 60 V

- V max " 5.0 V EBO -I max. 600 mA

P max, (T , =25°C) 400 mW tott amb Temperature T min. -65 °C stg± T max. 200 °C stg T max. 200 °C i tTHERMAL CHARACTERISTIC 0.44 degC/mW j-amb

CHARACTERISTICS (T = 25"C unless otherwise stated) tELECTRICAL amb Min. Max.

Collector cut-off current CBO - - V = 5 °V I = 2N2906 20 nA CB ' E 2N2906A - 10 nA

-V =50V = °> CB ' h T = 150°C 2N2906 - 20 HA amb 2N2906A - 10 fxA

CEX Collector-emitter cut-off current -V„=30V, +V„ =0.5V 50 nA CE BE

Base current BEX -V = 30V, +V = 0.5V 50 nA CE BE breakdown BR CBO Collector-base < > volta,ge -I =10mA, I =0 60 C E

-v.. *Collector-emitter breakdown (BR)CEO voltage -I^, = 10mA, = 2N2906 40 V 1^B 2N2906A 60 V

*Pulse condition, pulse width^300/js, duty cycle^2%.

tJ.E.D.E.C. registered data.

Milliard 2N2 906 -Page 2 P-N-P SILICON PLANAR 2N2906 EPITAXIAL TRANSISTORS 2N2906A

Mln. Max.

Emitter -base breakdown voltage (BR)EBO = - -I E 10fiA, 1^0 5.0 V Collector -emitter saturation voltage 'CE(sat) -I = 150mA, -I = 15mA - 0.4 V o b -I = 500mA, -I = 50mA - 1.6 B V *Base-eniitter saturation voltage BE (sat) -I = 150mA, -I = 15mA - 1.3 V -\C B -i.._,= 500mA, -I =50mA - 2.6 V \j b forward FE Static current transfer ratio -I = 0.1mA, -V = 10V 2N2906 20 c CE 2N2906A 40

-I = 1.0mA, "V = 10V 2N2906 25 c CE 2N2906A 40

-I =10mA, -V = 10V 2N2906 35 c CE 2N2906A 40

-I = 150mA, -V = 10V 40 120 c CE -I = 500mA, -V =10V 2N2906 20 C Or* 2N2906A 40

Common base, open circuit ob output capacitance

-V_, =10V, I =0, f = 100kHz 3.0 pF CB cj C Common base, open circuit ib input capacitance = = VT1 „ 2.0V, I =0,f 100kHz 30 pF Transition frequency

-V 20V, -I =50mA, CE

f = 100MHz 200 MHz

*Pulse condition, pulse width S300(js, duty cycle ^2%.

Milliard 2N2 906 -Page 3 Switching characteristics Max.

Turn -on (see Fig.l)

-V = 30V, -I = 150mA -I = 15mA CC (S ) B

Turn -on delay time 10 ns

Rise time 40 ns

Turn -on time (t , +t 45 ns v d r )

Turn-off (see Fig. 2) - = -v =6V < ° 1WmA I =fl 1SmA cc ' a ' B BM t Storage time 80 ns

. s

t . Fall time 30 ns

t„ Turn-off time (t + t.) 100 ns off st

TEST CIRCUITS

30V

200O

z =5on To oscilloscope pr.f.= 150p.ps. 5ns t r $ 2ns r$ Input IkA 2 =10Ma WW jn -16V son -200ns

Fig.l

Test circuit for determining delay, rise and turn-on time

Milliard 2N2906-Page 4 2

P-N-P SILICON PLANAR 2N2906 EPITAXIAL TRANSISTORS 2N2906A

+ 15V/ V6V

'IkA k 37n

Input p.rf.=150pp.s .To oscilloscope t $ 2 ns r V < 3ns Ikfi 2 in = 10Mn "WW ' -30V 1N916 •-200 ns son

IB669II

Fig.

Test circuit for determining storage, fall and turn-off time WAVEFORMS

Input

I"*—toff

Output

IfiSSSiJ

Mullard 2N2906-Page5 P-N-P SILICON PLANAR 2K2907 EPITAXIAL TRANSISTORS 2N2907A

P-N-P silicon planar epitaxial medium power transistors designed primarily for high-speed saturated switching and driver applications for industrial service. QUICK REFERENCE DATA 2N2907 2N2907A

- V maX - .. 60. V CBO -V max. (-I < 100mA) 40 60 V CEO c -I max. 600 mA

P A max. (T =25°C) 400 mW tot amb T. max. 200 °C 100-300

f min. (-1 = 50mA, f=100MHz) 200 MHz

t max. (-1= 150mA, S Go 80 ns B BM '

Unless otherwise stated data is applicable to both types OUTLINE AND DIMENSIONS

Conforms to J.E.D.E.C. TO-18 B.S. 3934 SO-12A/SB3-6A

Millimetres

Min. Typ. Max.

A 4.53 4.8 B 4.66 5.33 -D1 CI 0.51 -D2 12.7 C2 C2 C3 12.7 15 Dl 1.01 D2 0.41 0.48 W D3 0.5> E 0.84 1.17 ^45 F 0.92 1.16 G 2.54

Viewed from underside H 5.31 5.84 Connections 1. Emitter 3. Collector connected to envelope -2^ Base

Milliard JANUARY 1968 2N2907-Page 1 .

tRATINGS

Limiting values of operation according to the absolute maximum system

Electrical

max. 60 -VCBO -V max. (-I = to 100mA) 2N2907 40 V CEQ c 2N2907A 60 V 5.0 V

-I max. 600 mA c o

P. . max. (T . =25 C 400 mW tot amb Temperature

T min. -65 °C stgx

T . max. 200 °C stg T max. 200 °C fTHERMAL CHARACTERISTIC

e. 0.44 degC/mW j-amb o fELECTRICAL CHARACTERISTICS (T - 25 C unless otherwise stated) amb Min. Max.

CBO Collector cut-off current -V =50V 2N2907 20 nA CB ' V 2N2907A 10 nA - = = V 50V I ' CB ' E T =15°° 20 amb C 2N2907 V* 2N2907A 10 MA

CEX Collector-emitter cut-off current -V = 30V, +V = 0.5V 50 CE BE nA

JBEX Base current -V„ =30V, +V„ =0.5V 50 nA CE BE

-V Collector-base breakdown (BR)CBO voltage

-i -iomA. i =o 60 c e

-V *Collector-emitter breakdown (BR)CEO yoltage -I = 10mA, I =0 2N2907 40 V c B 2N2907A 60 V

Pulse condition, pulse widths300^s, duty cycle£2%.

tJ.E.D.E.C. registered data

Milliard 2N2907-Page 2 P-N-P SILICON PLANAR 2N2907 EPITAXIAL TRANSISTORS 2N2907A

Min. Max.

-V Emitter-base breakdown voltage (BR)EBO _! 10mA> , 5.0

Collector-emitter saturation voltage CE(sat) -I = 150mA, -I = 15mA 0.4 V C D -I = 500mA, -I = 50mA 1.6 V

*Base-emitter saturation voltage BE (sat) -I = 150mA, -I = 15mA 1.3 V C D -I = 500mA, -I = 50mA 2.6 V C D

Static forward current transfer FE ratio -I = 0.1mA, -V =10V 2N2907 35 C C 2N2907A 75

-I =1.0mA, -V =10V 2N2907 50 C ° 2N2907A 100

-I = 10mA, -V =10V 2N2907 75 C C 2N2907A 100

*-I = 150mA, -V = 10V 100 300 c C£ *-I = 500mA, -V =10V 2N2907 30 C 2N2907A 50

Common base, open circuit "ob output capacitance -V_, =10V, I =0,f = 100kHz .0 pF Cfi £i

Common base, open circuit ib input capacitance

+V„ =2.0V, I =0, f = 100kHz 30 pF BE C

Transition frequency -V„, = 20V, -I = 50mA, f = 100MHz 200 MHz CE C

*Pulse conditions, pulse width = 300>jA, duty cycle ^2%.

Milliard 2N2 907 -Page 3 Switching characteristics Max.

Turn-on (see fig . 1)

-V = 30V, -I = 150mA, -I = 15mA CC cg B t Turn-on delay time 10 ns

t Rise time 40 ns

t Turn-on time (t. +t 45 ns on )

Turn-off (see fig. 2)

-V = 6.0V, -I = 150mA, -I = +I = 15mA cc cs B BM

t Storage time 80 ns s

t Fall time 30 ns

t „ Turn-off time (t +t.) 100 ns off s r

TEST CIRCUITS

-30v

2oon

z =son To oscilloscope pr.f.= 150p.p.s. tr < 5 ns t r $ 2ns ikn. VvAAr -16V

50X1 -200 ns

IB6694I

Fig.l

Test circuit for determining delay, rise and turn-on time

Milliard 2N2907-Page 4 1

P-N-P SILICON PLANAR 2N2907 EPITAXIAL TRANSISTORS 2N2907A

+ 15V f

z =soa ut In P pnf.=150p.p.s To oscilloscope

t r ^ 5ns = Z in 10Mn

-30V

..-200ns

IB6651

Fig. 2

Test circuit for determining storage, fall and turn-off time

WAVEFORMS

Input

Output

IB6655I

Fig. 3

Mullard 2N2 907 -Page 5 . .

N-P-N SILICON PLANAR TRANSISTOR 2N3053

N-P-N silicon planar transistor designed for medium speed, saturated and nonsaturated switching applications for industrial service. QUICK REFERENCE DATA

V maX - 60 V C30

V maX - 40 V CEO

I max. 700 mA u

P, , max. (T =25 C) 5.0 W tot case T. max. 200 °c

h a - 160mA, V = 10V) 50-250 pE c CE

f min. (I = 50mA, V = 10V, f = 20MHz) 100 MHz T c CE OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-3/SB3-3A J.E.D.E.C. TO-5

Millimetres Min Nom Max.

A 9. 10 9.39

B 8.20 8.50 C 6.15 6.60 D 5.08

E 0.71 0.86 ? s1 -|- |~t F2 Fl 0.51 F2 12.7

F3 38.1 41.3 GL 1.01

G2 0.41 0.48 G3 0.53 H 0.4

J 0.74 1.01

Collector connected to case

Mullard OCTOBER 1967 2N3053 Page 1 . . .

tRATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V maX " 60 V CBO * V max 40 V CEO

V maX - 5.0 V EBO

I max 700 mA C = 25 C) 5.0 W P max. ( tot v case

Temperature o T min. -65 C stg o T max. 200 C stg T. max. 200 °C J = *For I =0 to 100mA (pulsed), pulse duration = 300ns , duty factor l.E

to 700mA for shorter pulses. tTHERMAL CHARACTERISTIC

6 (above 25 C) 35 degC/W j-case f ELECTRICAL CHARACTERISTICS (T =25°C) Min. Max.

cut-off CEX Collector-emitter current - =1 V = 60V, V - 5V 0.25 mA CE BE

-I Base current BEX - = V = 60V, V 1 - 5V 0.25 fiA CE BE

Collector-base breakdown (BR)CBO voltage

I = 100 A, I = 60 C M E

Emitter-base breakdown voltage (BR)EBO I = 100nA, i = o 5.0 E c

**Collector-emitter breakdown voltage

V I = 100uA, I = 40 V (BR)CEO c B = V I 100mA. R 10S2 50 V (BR)CER C = BE

**Pulse test, pulse width = 300us, duty factor = 1 . 8% tJ.E.D.E.C. registered data.

Milliard 2N3053 Page 2 N-P-N SILICON 2N3053 PLANAR TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd)

Min. Max.

V Collector-emitter saturation CE(sat) voltage

I = 150mA, I = 15mA 1.4 C B V. Base-emitter saturation voltage BE(sat) I = 150mA, I = 15mA 1.7 C B

Base-emitter voltage BE I =150mA, V =2.5V 1.7 C CL

Static forward current FE transfer ratio

I = 150mA, V = 2.5V 25 c CE **I= 150mA, V_, =10V 50 250 C CE

Transition frequency

I =50mA, V„ =10V, f = 20MHz 100 MHz C CE

Output capacitance ob V =10V, I =0, f= 140kHz 15 pF CB C

Input capacitance V =0.5V, 1=0, f=140kllz 80 pF EB ' E

= - 1 i **Pulse test, pulse width 300fjs, duty factor .

Milliard 2N3053 Page 3 N-P-N SILICON DIFFUSED 2N3055 POWER TRANSISTOR

N-P-N silicon diffused power transistor, intended for high quality amp- lifiers, power supplies, inverters and similar industrial applications. QUICK REFERENCE DATA

V m3X - 100 V CBO V maX R = 10°^ 70 V CER - ( BE

I max. 15 A c

P, „ max. (T , ^25°C) 115 W tot mb T. max. 200 °C

=4 =4 20-70 h ff - 0A V " OV) FE C ' CE f min. = 1.0A,V =4. OV, f= 1.0MHz) 0.8 MHz T ac CE

OUTLINE AND DIMENSIONS

Conforming to B.S. 3934 SO-5B/SB2-2 J.E.D.E.C. TO-3

26.6 max -

~1U.D

39.S 20.3 max J;

••-10.9- .11. 11 Atl dimensions in mm 0S81t

Collector connected to envelope

Accessories available: 56239A (insulating bush), 56201B (mica washer), 56214 (lead washer)

Milliard MAY 1974 2N3055 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical V max. 100 V CBO„ V maX R = 100S$ 70 V CER -< BE

V m3X - 7.0 V EBO

I max. 15 A

I max. 7.0 A

P max. (T ,^25 C) 115 W tot mb Temperature

T range 65 to +200 °C stg T max. 200 °C J THERMAL CHARACTERISTIC

R, 1.5 degC/W 'th(j-mb)

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated) Min. Max.

Collector cut-off current V = 30V 0.7 mA CEO CE ' V v =ioov, = 1.5V 5.0 mA ^EX CE BE - = v =ioov, V 1 - 5V ' CEX CE BE T =150°C 10 mA J

Emitter cut-off current EBO : I =0 5.0 mA EB 7.0V,

Collector-emitter sustaining voltage

I = 0.2A. I =0 60 V CEO(sust) C B

/ I = 0.2A! R = 100S! 70 V CER(sust) C BE

V Base-emitter voltage BE I = 4 -°A V = 4 -° V l.t C ' CE

Collector-emitter saturation CE(sat) voltage

I =4.0A, I = 0.4A 1.1 V C Bo

T =10A, I =3.3A 4.0 V C O

Milliard 2N3055 Page 2 N-P-N SILICON DIFFUSED IN3055 POWER TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd)

Mm, Max.

Static forward current KvFE transfer ratio = = 20 70 I 4 - 0A V 4 -°V C ' CE

Transition frequency fT V = 4 -° V V^' CE f=1.0MHz 0.8 - MHz

h Small signal forward fef current transfer ratio

I = 1.0A, V = 4.0V C CE f=1.0kHz 15

Milliard 2N3«S5 Page 3 SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

The 2N3553, 2N3375, and 2N3632 are silicon power transistors. The 2N3553 and 2N3375 are designed for v.h.f./u.h.f. application and the 2N3632 for v.h.f. application in industrial and military transmitting equipment. QUICK REFERENCE DATA 2N3553 2N3375 2N3632 Vcbo max. 65 65 65 V Vceo max. 40 40 40 V Icm max. 1.0 1.5 3.0 A

Ptot max. (Tmb < 25°C) 7.0 11.6 23 W Tj max. (operating) 200 200 200 °C

fr typ. 500 500 400 MHz Output power at Vcb = 28V, common emitter — — Pout min. (Pln = 0.25 W, f = 175MHz ) 2.5 W

Pout min. (P,„ = LOW, f = 100MHz) _ 7.5 — W

Pout min. (Pln = LOW, f = 400MHz) — 3.0 — W

Pout min. (Pin = 3.5W, f = 175MHz) — — 13.5 W

OUTLINE AND DIMENSIONS For details see page D4.

2N3553 Conforms to J.E.D.E.C. TO-39, B.S. 3934 SO-3/SB3-3B 2N3375 and 2N3632 Conform to J.E.D.E.C. TO-60

Milliard OCTOBER 1967 2N3375 Page D1 RATINGS Limiting values of operation according to the absolute maximum system. Electrical 2 N 3553 2 N 3375 2 N 3632 Vcbo max. 65 65 65 V Vceo max. 40 40 40 V VE no max. 4.0 4.0 4.0 V Ic max. 0.35 0.5 1.0 A lent max. 1.0 1.5 3.0 A *Ptot max.( Tmb s= 2S°C) 7.0 11.6 23 W Temperature

Tstg min. -65 °c Tstg max. + 200 °c Tj max. (operating) + 200 °c *See safe operation area curves on pages CI and C2

THERMAL CHARACTERISTICS Oj-ml) 25 15 7.5 degC/W 0.6 0.6 degC/W Omb-h (mounted with top clamping washer of accessory 56218) 1.0 — — degC/W 9mb-h (mounted with top clamping washer of accessory 56218 and a Boron nitride washer for electrical insulation) 1.2 — degC/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C) V(br)cbo min. Collector-base breakdown voltage

Ic = 250nA, l E = 65 65 65 Collector-emitter breakdown voltage

V(brjcex min.** I c = to 200mA, VEB = 1.5V, RB = 33H 65 65 65 V

V(bk)ceo min.** Ic = to 200mA, l B = 40 40 40 V V(br)ebo min. Emitter-base breakdown voltage Ie = 250(xA, Ic = 4.0 4.0 4.0 V Iceo max. Collector cut-off current

VCE = 30V, l B = 100 100 250 HA hFE Large signal forward current transfer ratio Ic = 125mA, VCE = 5.0V min. 15 15 — max. 200 200 Ic = 250mA, VCE = 5.0V min. 10 10 10 max. 100 100 150 Ic = 1000mA, VCE = 5.0V min. — — 5 max. 110

**Pulsed through an inductor (25mH); S = 0.5; f = 50Hz.

Milliard 2N3375 Page 02 SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

ELECTRICAL CHARACTERISTICS (Tj = 2S°C) 2 N 3553 2 N 3375 2 N 3632 VnE Base-Emitter Voltage (max.) 1.5 V I c = 250mA, VCE = SV — 1.5 V l c = 500mA, VCE = 5V — 1.5 V l c = 1000mA, VCE = 5V

Collector-emitter saturation voltage (max.) V Ic = 250mA, 1 1, = 50mA 1.0

lc = 500mA, In = 100mA 1.0 V 1.0 V l c = 1000mA, l„ = 200mA

fT typ. Transition frequency

VCE = 28V, lc = 125mA 500 00 MHz = 500mA 400 MHz

Ctc Collector capacitance

Vcb = 28V, l E = l„ = 0, f = 1MHz (max.) 10 10 20 PF

Cc Collector-case capacitance (max.) 6.0 6.0 PF

Rc(hie) Real part of input impedance

f = 200MHz, l c = 125mA, VCE = 28V (max.) 20 20 — a

f = 200MHz, lc = 250mA, VCE = 28V (max.) 20 n

R.F. Performance

in un-neutralised common emitter amplifier VCE = 28V Power Power Type Freq. out in Circuit No, 2N3553 175MHz 2.5W <0.25W < 180mA >50% fig 2 2N3375 100MHz 7.5W <1.0W <410mA >65% figl 2N3375 400MHz >3.0W LOW 270mA >40% fig 3 2N3632 175MHz >13.5W 3.5W 690mA >70% fig 2

The transistors can withstand'an output V.S.W.R. of 3 : 1 varied through

all phases for the conditions mentioned i n the above table.

Milliard 2N3375 Page D3 OUTLINE AND DIMENSIONS FOR 2N3S53 Conforms to J.E.D.E.C. TO-39 B.S.3934 SO-3/SB3-3B Mill metres Min. Nom. Max

A 8.64 8.9 9.4

B 7.75 8.15 8.5

C 6.1 6.36 6.6 D - 5.08 -

E 0.71 0.79 0.8( F 13 - -

H - 0.4 -

J 0.74 0.85 1.0

Collector connected to case

OUTLINE AND DIMENSIONS FOR 2N3375, 2N3432 Conforms to TO-60

Millimetres Nom. A 11.10 B 3.18 C 6.86

D 8.38 *Di 10.92

D2 5.08

L 3.81

T 0.97

-»D2-

Mullard 2N3375 Page D4 SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

SOLDERING AND WIRING RECOMMENDATIONS (2N3553)

1. When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.

2. Transistors may be dip-soldered at a solder temperature of 245°C for a maximum soldering time of 5 seconds. The case temperature during soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes.

3. Care should be taken not to bend the leads nearer than 1.5mm from the seal.

4. If devices are stored at temperatures above 100°C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated, flux.

NOTES (2N3375, 2N3632)

1. A heatsink thermal resistance of 3degC/W is recommended for operation in ambient temperature up to 65°C. CAUTION

This device incorporates Beryllium Oxide, the dust of which is toxic. The device is entirely safe provided that it is not dismantled. Care should be taken to ensure that all those who may handle, use or dispose of this device are aware of its nature and of the necessary safety precautions. In particular, it should never be thrown out with general industrial or domestic waste. DISPOSAL SERVICE Devices requiring disposal may be returned to Mullard Service Department. They must be separately and securely packed and clearly identified. If any are damaged or broken they MUST NOT be sent through the post. In this case advice is available from the Service Department.

Service Department, Mullard Limited, New Road, Mitcham, Surrey.

Mullard 2N3375 Pase D5 COMMON EMITTER TEST CIRCUIT 100MHz 2N3375

Fig. 1

Ci = 3,5-61 ,5pF air trimmer,

C 3 = 3,5-61 ,SpF air trimmer,

C 3 = 10nF polyester,

C 4 = 4-29pF air trimmer,

C 5 = 4-29pF air trimmer,

C 6 = 330pF ceramic,

C 7 = 10r)F polyester.

Li = 2 turns of 1.5mm closely wound enamelled Cu wire, int. diam. 10mm, leads: 2x10mm.

L 2 = Ferroxcube choke coil, Z (at 100MHz) = 7000 + 20%. L3 = 23 turns of 0.7mm closely wound enamelled Cu wire, int. diam. 6mm.

L4 = 5 turns of 1.5mm closely wound enamelled Cu wire, int. diam. 12mm, leads: 2x 10mm. Ri = 1.35D carbon. R2 = 10Q carbon.

Mullard 2N3375 Page D6 SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

COMMON EMITTER TEST CIRCUIT 175MHz 2N3SS3, 2N3632

2N3553

Fig. 2 CI air trimmer. C 2 L= 4-29pF §J

C 5 = 10nF polyester.

C 6 = 100pF ceramic.

Li = 1 turn of 1mm Cu wire, int. diam. 10mm; Leads: 2 x 10mm.

L 2 = Ferroxcube choke coil. Z (at 175MHz) = 550(2+20%.

L.i =15 turns of 0.7mm closely wound enamelled Cu wire, int. diam 4mm.

L4 = 3 turns of 1.5mm closely wound enamelled Cu wire, int. diam 12mm, Leads: 2x 20mm. R = 0-2(2 for 2N3632 and R = 0(2 for 2N3553.

Emitter of the 2N3632 is connected to case as short as possible. The length of the external emitter wire of the 2N3553 is 1.6mm.

Mullard 2N3375 Page D7 COMMON EMITTER TEST CIRCUIT 400MHz 2N3375

2N3375 C4 C1 L4 LI -T5N5tF- 'WSP -fi- -ft- :l3

:£C2 :?C3 gL2 1C8 I -JC5 R1 C6 C7 —hff- -ji-

Vcc. 6 +

Fig. 3

Ci = 0.7-6.7pF ceramic trimmer,

C2 = 0.7-6.7pF ceramic trimmer,

C3 = 0.5-3.5 P F ceramic trimmer,

C4 = 3-1 9pF air trimmer,

C5 = 3-1 9pF air trimmer, Q = 15pF ceramic,

C 7 = 1SpF ceramic,

C 8 = 4700pF ceramic.

Li = 20mm straight Cu wire diam. 1.5mm, spaced 8mm from chassis.

L.2 = 17 turns of 0.5mm closely wound enamelled Cu wire, int. diam. 3mm.

La = 7 turns of 0.5mm closely wound enamelled Cu wire, int. diam. 3mm. L4 = 1 turn of 1.5mm Cu wire, int. diam. 10mm, leads: 2x5mm.

R = 0-5Q.

Emitter connected to case as short as possible.

Milliard 2N3375 Page D8 —

SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

FREQUENCY DOUBLER TEST CIRCUIT 87.5MHz-175MHz 2N3553

C3 CI 2N3553 L4 -'WM^ o ff fiiWir-r L3

:C2 i|L2 =C5 =c6i;!ri =c =C8 j£C4

"T 9 R2 I

Vcc.

Fig. 4 Ci Q = 4-29pF air trimmer. c 3

c4 : 3.5-61.SpF air trimmer.

c 6 : 56pF ceramic.

C 6 : 680pF ceramic.

C, : 1S0P F ceramic. c8 100pF ceramic.

c9 : 10nF polyester. = Li 5 turns of 1mm Cu wire, winding pitch 1.5mm, int. diam. 6mm, Leads: 2 x 12mm.

U = Ferroxcube choke coil, Z (at 87.5MHz) = 7S0Q + 20%. L3 = 15 turns of 0.7mm closely wound enamelled Cu wire, int. diam. 4mm.

L4 = 6 turns of 1mm Cu wire, winding pitch 1.5mm, int. diam. 6mm, leads: 2x12mm. Ri = 0-50a

R 2 = 10Q carbon.

Milliard 2N3375 Page D9 PARAMETRIC FREQUENCY TREBLER TEST CIRCUIT 156.7MHz-470MH 2N3553 lz ce cecs

'i Vcc. + *Tuned to second harmonic frequency.

Fig. 5

C8 = 1pF ceramic, C 9 = 12pF ceramic §1 4-29pF air trimmer. \ feed through. Cio = 100pF ceramic./ SJ Cn = 1000pF ceramic. c 5 Ci2= 15nF polyester. C 6 4-10.4pF air trimmer. Ri = 2.20 carbon. carbon. C 7 R 2 = 10Q U = 35mm straight Cu wire, diam. 1mm, spaced 5.5mm from chassis.

L 2 = Ferroxcube choke coil, Z (at 156,7MHz) = 600fi±20%.

L 3 = 18mm straight Cu wire, diam. 1mm, spaced 5.5mm from chassis. int. 3.5mm. L4 = 7 turns of 0.5mm closely wound enamelled Cu wire, diam. 8.5mm, L 5 = 3 turns of 1mm Cu wire, winding pitch 1.7mm, int. diam. leads: 2 x 10mm.

L 6 = 2 turns of 1mm Cu wire, winding pitch 1.7mm, int. diam. 7mm, leads: 2x10mm.

Lv = 40mm straight Cu wire, diam. 1.5mm spaced 5.5mm from chassis.

L 8 = 1 turn of 1mm Cu wire, int. diam. 7mm, leads: 2x5mm.

Performance Typical performance at a supply voltage of 28V.

Po Pi G lc n

(W) (W) (dB) (mA) <%) 1.5 0.27 7.5 125 43 2.0 0.39 7.1 156 46

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

Mullard 2N3375 PageDIO SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

maximum allowable to- 2N3553

^ot versus mounting base ( emp.h (W) Tr .isa U J_ S£0 nlcn ! - " a j /upi "- (A) , ,

i

n^

5 T~ j -

- Rnt^r-Ht-P 1 L s t h - — - V _:i s * v Tl ^ \ I) V -f 100 Tmb (°C) 200 50 VCE (V) 100

maximum allowable to- 2 N 3375 tal power dissipation TJX+- 'tot mounting base temp. j_T versus : _~_~ (W) C - - Ll. IAJ s*ealso 1 - adjacent graph

10

_.

5

Ptot=Pd.c.»Pi-P \ ^ - VC - s Ir ^ it 100 Tmb (»C) 200 50 VCE (V) 100

Mullard 2N3375 Page C1 maximum allowable tc - 2N3632 li. III versus mounting base temp (A) fw) A adjacent yaph~

i r - r j\ot-° tern o \V _l__ ^r ______-3 ^ S„_

! 100 Tmb CO 200 50 VCE (V) 100

EXPLANATION OF AREAS OF SAFE OPERATION

Region I Operation is allowed under all base-emitter conditions, provided no limiting values are exceeded (d.c. and a.c. operation).

Region II Operating is allowed under all base-emitter conditions with fre- quencies ^ 1MHz, provided no limiting values are exceeded.

Care must be taken to reduce the d.c. adjustment to region I before removing the a.c. signal. This may be achieved by an appropriate bias in class A, B or C.

Region III Operating during switching-off in this region is allowed, provided the transistor is cut-off with -VBb =S 1.5V and Rbe ~2- 33Q, lc =S 400mA and the transient energy does not exceed 2mWs.

Milliard 2N3375 Page C2 SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

V r=28V "+- VCE =28V r 'mb-"^- imD-«~*- "~^~ - qr --n P - - p

|

I

-i. 10 -5 - 10 L w 1 P vv A ' At"C -U/bW^^^r"

v IS i 2 •~^ i S \ r c iVMvN N 0.5W / ky N - A i_ s 5 s s i ^ ^N

. c _ \ |j c S sJ ^w ^"'ta. 3 l. j S N "* *"* ^ \ sr^ 5 ^ ^ ^ S ^5 s i v|V \ A ^ "^»» ^ S k IV taJ^ ^S'-^n ^'"SP \ sJ V r^iorilr/f* S TV VL -^TyKtt -]a^'^0,<'^^ -BGnfrZOrL5* - n ^ p «

TYPICAL OUTPUT POWER PLOTTED AGAINST FREQUENCY

v :E =28V H Tmb =25°C _ ----tXT _4- - t ypical values n rn (W) „_

\ ^ V'i

^ ^ — 10 3W- W rs^^ /v' s Si, .1.5 vV

1 W

l

1 ill 100 200 300 f(MHz) 20 40 VCB (V) 60

TYPICAL OUTPUT POWER PLOT- TYPICAL COLLECTOR CAPACIT- TED AGAINST FREQUENCY ANCE PLOTTED AGAINST COL- LECTOR-BASE VOLTAGE

Milliard 2N3375 Page C3 | :

I 'J- + 1 I

T - -*- i- - -+- :; in t t-L . : 'CEsat 4-3Tj = 25°C--:=:t ™:::::::::

(mV) _;__;_ 3:---—— _ _^_::: ::_.

-+_- ? -£ + t^ ~"V«&

,«. 1T«^#TT --^ p

::::::^'^L*|ffv: ::|::: ::+:::

- - ;t; - ^-4; : ^ :: : -;^ : l : rI: ::: o:r: t

200 400Ic(mA) 600 125 Tj (°C) 175

TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE

-tVCE=5V t ti:t:J:(:::::i2N3553i: ,„„ :Vi=25 °ct^if =::::::; 2N3375t 800 --JfrrrTt-- ::::: :: - : +t=t ::::::

! I ! I lt~:it::=4±::t-i!X: L -H-

:.'. 1mA) iLrLzpzfc ,:.:_:_t .;: . :± :]±t:

- -*-—+-—.. _-- 1 •-- +— -j-n-- 4__ f~~t i +" J +-t + 4^- -f'- tj--" + ---4;— i-hl-J-

--k"t'-|^--t--^- , -T+- ¥-•^+4+- ^-t-V— "f~ 1 -!---*-«

_i__i | (_ j— ,_ - ~_: z it j"T"t~T ::±~£ ;E:::S;::?— :::r-^-:±ff n HiHllltm- LiflliilllT ftt+fH -1

0.5 1 0.5 1 Vgg (V) vBE (v)

TYPICAL COLLECTOR CURRENT PLOTTED AGAINST BASE- EMITTER VOLTAGE

Milliard 2N3375 Page C4 — - / —

SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

base c urrent versus — -- — 2N3553 collec tor current 2 N 3375 ir *fcE=5 Tj = 25 >C *v &,' j&t'* M) / A / / / / / mn — *'- Vt i ^—Y 7 / y / -,L y / / t / ' /

|

10 _ 0.1 I B (mA) 100

- — z-.^r-E^f= 2N36 32 :.: ::: & - * Kncip current k t ffl^ -' •^ or (mA) • V / V V / CE=5 / Tj = 25°C 4-- 7* t / t / ! / 100 -/ y V i / — / s /

- -—

]

10 i 1 10 100 I B (mA) 1000

COLLECTOR CURRENT PLOTTED AGAINST BASE CURRENT

Milliard 2N3375 Page C5 1000 Ic (mA) 400I c (mA)600

TYPICAL LARGE SIGNAL FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT

4 V (V) 6 4 VCE (V) 6 CE

COLLECTOR CURRENT PLOTTED AGAINST COLLECTOR- EMITTER VOLTAGE WITH BASE CURRENT AS A PARA- METER

Milliard 2N3375 Page C6 "

SILICON V.H.F. N-P-N 2N3375 POWER TRANSISTORS 2N3553 2N3632

600 typical values 2N3553 c" " Tj=25 v. 2N3375 f Tj=25°C ~ *T T :~:r~ zr (MHz) (MHz) :iii=:!5 isrl/rc;7RV i ~~zi I ; rr" 5;Si|r t A* * 14V W- 5 VfcE=?8V . 7l/J_ 400 ™ ™ -r— — ^ 5 -5 5 H "P P*^ i j s * " 3-

200

_

100 200 300 400 100 200 300 400 ICA) TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT WITH COLLECTOR-EMITTER VOLT- AGE AS A PARAMETER

b VCE =28V p

I fW) I 'T j (MHz) ~

°0 50 20 Vce(V) 4

TYPICAL TRANSITION FRE- OUTPUT POWER PLOTTED QUENCY PLOTTED AGAINST AGAINST COLLECTOR-EMITTER JUNCTION TEMPERATURE VOLTAGE WITH INPUT POWER AS A PARAMETER

Milliard 2N3375 Page C7 i : -

typical values ------2N3375 typical values ZN3632 TIT z Ht 8:":::::-:::-t - --; !$£;; r ' P :::::::±::^:-:- o ± : : :^:E:P"£$£: — "" (W) "I":±'"t:4:"t::t: - ~ 1 i .J T i *i _:_-l:_±±:±-±: \*i!::

- II! i* ' w ~~}Zl-"?~w£l"

\-STj ""±B^""±i:"'^:

=^:: : ::::! = g::::;;«! ::F :: - +-

-...j —44---+ ~:±r :

~± : °6 °0 10 20 (V) 30 10 20 V (V)30 \fc E CE

OUTPUT POWER PLOTTED AGAINST COLLECTOR-EMITTER VOLTAGE WITH INPUT POWER AS A PARAMETER

' 12 -%E = 750mV adjusted with Ri P -h.ru/ V =28V -- - * = 26V 'o CC CC (dB) T. — (°/o) *s?p

_ V3

-y - J ^—— - -4" H- '.- I" — - --" 1, —

j

oL [111 6 50 Pj(mV) 100 250 750 -VBE (mV) 1250

POWER GAIN, POWER OUTPUT, AND EFFICIENCY CURVES PLOTTED AGAINST INPUT POWER AND BASE-EMITTER VOLTAGE FOR DOUBLER CIRCUIT ON PAGE D9

Milliard 2N3375 Page C8 N-P-N SILICON DIFFUSED 2N3442 POWER TRANSISTORS 2N4347

N-P-N silicon diffused power transistors intended for use in a wide variety of linear power applications in audio amplifiers, converters, voltage regulators, power supplies, etc. QUICK REFERENCE DATA 2N3442 2N4347

140 maX - 160 V VCBO 120 maX - 140 V VCEO

I max. 10 5 A

P .max. (T <25°C) 117 100 W tott mb - T. max. 200 200 °C

h min.,I = 3A, V = 4V 20-70 - FE c CE V = 4V - 20-70 V^' CE

Unless otherwise stated data are applicable to both types

OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-5B/SB2-2 J.E.D.E.C. TO-3

-» 8,63 max *- -^ -•-1.6 1A, u -° -i

,

2C ,3 max \

1 t

13 •-10.9 -»t ^11. . All dimensions in mm D5811

Collector connected to envelope

Accessories available: 56239A (insulating bush), 56201B (mica washer), 56214 (lead washer)

Milliard MAY 1974 2N3442-Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical 2N3442 2N4347

ISO 140 V

maX - 140 12Q VCEO V = V nU,X - (R 100B) 150 130 V CER BE ^bo"1**- 7.0 7.0 V I max. 10 5.0 A 'cm™*- 15 10 A

I max. 7.0 3.0 A B

P, , max. (T . <25°C) 117 100 W tot mb — Temperature

T -65 to +200 stg* T. max. 200 J THERMAL CHARACTERISTICS

R, Thermal resistance, junction to ' th(j-mb) mounting-base 1.5 1.75 degC/W

Thermal resistance, mounting- th(mb-h) base to heatslnk 0.5 degC/W

Thermal resistance, mounting- th(mb-h) base to heatsink with accessories 56201, 56214 0.75 degC/W

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Typ. Max.

Collector-base cut-off current CBO = = I V 14°V 50 1000 IXA E ' CB

CEX Collector-emitter cut-off current -V = 1.5V, V = 2N3442 5.0 1000 BE CE 140V MA

= 1.5V, V„ =140V, T =150°C 2N3442 0.1 10 mA BE CE mb - -V. = 1.5V, V„ =120V 2N3442 1.0 BE MA 2N4347 5.0 2000 MA

-V = 1.5V, V, =120V, T = 150 C 2N4347 0.1 10 mA BE CE mb

Emitter cut-off current EBO = I V =7V 1.0 5000 MA C ' EB

Mullard 2N3442-Page 2 5

N-P-N SILICON DIFFUSED 2N3442 POWER TRANSISTORS 2N4347

ELECTRICAL CHARACTERISTICS (contd.) Min. Typ. Max. V „__ Collector-emitter breakdown voltage (BR)CER j =Q 1A] R =100P. 2N3442 150 V C 2N4347 130 V

Collector-emitter sustaining voltage

1=0, I =0.2 to 3.0A 2N3442 140 V CEO(sust) B U 2N4347 120 V

-V = 1 . 5V, I = . 1 to 1 . 5A 2N3442 160 V CEX(sust) BE 2N4347 140 V 25mH + 30VO—/""»~«'v-\_ O vert.

Ohor.

Base-emitter voltage (tp = 10ms) BE = = - I 2 -°A V 4 " 0V 2N4347 0.95 2.0 V C ' CE = = - l 3 -°A V 4 -° V 2N3442 1.15 1.7 V C ' CE = = - I 6 - 0A V 4 -°V 2N4347 1.55 4.0 V C ' CE = = - I 10A V 4 -°V 2N3442 2.8 5.7 V C ' CE

Collector-emitter saturation CE(sat) voltage (t =10ms) p

I =2.0A, I =0.2A 2N4347 1.0 V C B I =3.0A, T =0.3A 2N3442 1.0 V c a I =5.0A, I =1.0A 2N4347 5.0 V C 13 I- = 10A, I =2.0A 2N3442 5.0 V c a

Static forward current transfer "FE ratio (t =10ms) p = 2 - V 4 -°V 2N4347 20 35 70 'C' *' CE = = l 3 -°A V 4 -°V 2N3442 20 25 70 C > CE = = I 6 - 0A V 4 -°V 2N4347 7 . 15 C ' CE = = l 1 °A V 4 -°V 2N3442 7.5 10 C ' CE Small signal current gain fe = = I 2 - 0A V 4 -°V C ' CE f = 40kHz 2N3442 2.0 9.5

f = 1.0kHz 2N3442 12 18 72

Milliard 2N3442-Page 3 D2130 300 10 =q P-, =i— i— r=i =Mk*-~ i i i i ' ~ V !rn VcE= CEO max 1 I E =Ie =0 *CEX V2?" x$•&,* -V =1.5V "\ BE — (pF) (mA) y f=1MHz s AP max,- v L 1 I \ 200 ^ r tj T

1 V H ^ 10 ^ s^ s. ""-.^ 100 ^*-5s^ typ -^ 10"2

-in-3 50 Vcb'V) 100 100 200 Ti (°C) 300

Milliard 2N3442-Page 4 -

N-P-N SILICON DIFFUSED 2N3442 POWER TRANSISTORS 2N4347

i ----- II || 1 Mill "th(j-mb) 2N4347.4 (deg C/W) nTTTl 2N3442

\\ J,

~T"

II \\ jT] Tjt j T T t t jt t t

1 t -4— -I - -- 4- 44- - — '? f- - Ht l-f'l 1 1 i

1 1 --- ... i— - - - + rtt- — 1 •tit Ml tit-- -r +— 'ii -4- 'J ih

'

i ii iil ; 10"' 10"J 10"' 10"' 10 t(s) 10 2

D2132 D2133

| j

j I \ V = 4V typical curves \ CE Tj =25°C Tj = 25°C \ lr f=0.5MHz

(A) *T (MHz) * 1A 10 V/ 08V; Vyp 06A

0.5 0.4 A

1 0.3A 5 y t j

- _ 0.1 A 4 s 50 mA b "20mA I 7

r n I 2 VCE (V) 4 2.5 5 I c (A) 7.5

Mullard 2N3442-Page 5 1 1 1 2N3442 VCE = 4V Tj =25°C 2N3442 I C =3A 10 1.5 VCE = 4V '1 1 \ / typ 1 /max Vbe Ir j / "BE ' (A) / / (V) ( / typ^ I 1

i / / ' / ' 2N4347 5 /

/> A 1 i max Vbe ' /

, / /

/ / /

J / 1 7 t t '/ t/ n t 0.5 2.5 5 VBE (V) 7.5 -100 100 Tj <°C) 200

D2136

I =3A I =3A C 200 C I B = 0.3A VCE = 4V

'cE (sat) Ib (V) (mA) 'typ

typ

0.5 100

n -100 100 T, (°C) 200 -100 100 Ti(°C) 200

Milliard 2N3442-Page 6 N-P-N SILICON DIFFUSED 2N3442 POWER TRANSISTORS 2N4347

100

VCE = 4V typical curves

50 Tj=150°C " \25°C

--

10" I c (A) 10

10

Ic (A)

typical curves

VC E = 4 V

Tj- tS" C '^^15 D°C

10" 10 2 3 10 I B (mA) 10

Mullard 2N3442-Page 7 • V — .

m3 D2uo

2HZUI+: b = 25°C

Ic A)

m 2

non-repe titive pul sed opera tion

n region Ir I CM "" , 1 '

k N J I c (d.c.) n > k--S 3 - m —^ -s ^ > r" T^S ;-?= j -b 3 : Vv S S.-S s \ - S =-1110: s -<-s ^ ^ - «- ^-100 i O

- Ptot max :d - c> s*x.

1

„ / - econdJ s, \ b reakdownia.c.)'"! r Y -m

irr1 1 10 10^ VCE (V)

Region of permissible operation under all base-emitter conditions and at all fre- quencies, including d.c. Permissible extension for repetitive pulsed operation and non-repetitive pulsed operation. For sinusoidal operation care must be taken to reduce the d.c. adjust-

ment to region I before removing the a.c. signal. This may be achieved by an appropriate bias in class A, B or C. III Operation during switching off in this region is allowed, provided the transistor < is cut-off with -VgE £1-5; I^M 1 • 5A IV Operation during switching off is allowed provided the transistor is cut-off with

-V < 1 . 5V and the transient energy does not exceed 30mWs

Mullard 2N3442-Page 8 r . — . — .

N-P-N SILICON DIFFUSED 2N3442 POWER TRANSISTORS 2N4347

3 m — ., ....,_ ——M 2N43 47 |- nb=25°C

Ic A)

m 2

non- repetitive puisea in region I

*CM f -t = 10us- m -N p — 1 ^Nh4^;N#=l -30 iu -*-' W' -50 — k > s V -100 t^.- ,-> _ V >-^. -1ms 3 -100 tot max(d.c) J^

I

1 *_

1 B .* x J y<\ \

i C reakdownid C.J > tzI iz r I

1 10 10^ Vce(V)

conditions and at all fre- I Region of permissible operation under all base-emitter

quencies , including d . c non-repetitive pulsed II Permissible extension for repetitive pulsed operation and to the d.c adjust- operation. For sinusoidal operation care must be taken reduce . be achieved by an ment to region I before removing the a.c. signal. This may appropriate bias in class A, B or C the transistor III Operation during switching off in this region is allowed, provided is cut-off with -Vbe <1.5V; Iqm <1.5A. with IV Operation during switching off is allowed provided the transistor is cut-off not exceed 30mWs -V„„ < 1 . 5V and the transient energy does BE

Mullard 2N3442-Page 9 N-P-N SILICON V.H.F. 2N3553 POWER TRANSISTORS 2N3632

For details see data sheet for type 2N3375

Mullard JULY 1972 2N3553 Page 1 N-CHANNEL SILICON FIELD-EFFECT TRANSISTOR 2N3823

N-channel, depletion-type, silicon planar epitaxial field-effect transistor

intended for v.h.f . amplifier and mixer applications in industrial service. QUICK REFERENCE DATA

V max. 30 V Dg - V maX - 30 V GSS "dss^ds^'W* 4 "° - 20 mA

Px , max. (T , ^25°C) 300 mW tot amb C max. (V„ =15V, V =0, f=1.0MHz) 2.0 pF rss DS GS ' min. (V = 15V, V =0, f=200MHz) 3.2 mmho |yfo | Dg QS Nmax. (V =15V,V =0, DS GS f=100MHz, R =1.0kty 2.5 dB

OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-12A/SB4-3 J.E.D.E.C. TO-72

Millimetres

Min. Nom. Max. A 4.53 - 4.8 B 4.66 - 5.33 CI - - 0.51 D1 C2 12.7 - - D2 C3 12.7 - 15 C2 Dl - - 1.01 Y- c C3 s D2 0.41 - 0.48 D3 - 0.53 -D3 E 0.84 1.17 F 0.92 - 1.16 G - 2.54 - H 5.31 - 5.84

Viewed from underside Connections

All electrodes are electrically 1 . Source 2. Drain insulated from the case 3. Gate 4. Case

Milliard JUNE 1968 2N3823 Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical V max. 30 V Dg V max. 30 V DQ - =1 = 30 V m"-<-I - '*' V > V GSS G' DS

I max. 10 mA G o P, max. (T ^25 C) 300 mW tot amb Temperature

T , range -65 to +200 °C stg T. max. 200 °C 3 THERMAL CHARACTERISTICS R 0.59 degC/mW th(j-amb)

ELECTRICAL CHARACTERISTICS (T 25 C unless otherwise stated)

The fourth lead (case) is connected to the source for all measurements Mn. Max.

Static

_I Gate cut-off current GSS -V = 20V V 0.5 nA GS * DS=° ° - = =0 =150 0.5 V 20V > V > T C HA GS DS amb

Zero-gate-voltage drain current DSS * V =15V V 4.0 20 mA DS ' GS=°

-V Gate-source breakdown voltage (BR)GSS -I =1.0 A, V =0 30 G M Dg

Gate-source voltage GS V =15V, I =400^A 1.0 7.5 Dg D

Gate-source cut-off voltage GS(off) V =15V 8.0 DS ' V ^

*Pulse measurements, pulse width = 100ms, duty cycle^l0%.

Milliard 2N3823 Page 2 N-CHANNEL SILICON 2N3823 FIELD-EFFECT TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd)

Small signal y-parameters

source, =15V V =0 Common v ' r)S os

*f=1.0kHz ilin. Max. 6.5 y Transfer admittance 3.5 mmho

| fs| - 35 fjmho y Output admittance l os| £=1.0MHz C Feedback capacitance - 2.0 pF rss - C. Input capacitance 6.0 pF iss

f= 200MHz

y Transfer admittance 3.2 mmho

| fsl Input conductance - 800 nmho

Output conductance - 200 umho g.OS

Noise

N Spot noise figure f=100MHz, R =1.0kfl, 2.5 dB ' DS " " GS = *Pulse measurements, pulse width 100ms , duty cycleS10%.

Milliard 2N3823 Page 3 N-P-N SILICON PLANAR 2N3866W EPITAXIAL U.H.F. TRANSISTOR

N-P-N silicon planar epitaxial transistor primarily intended for use in the output, driver and pre-driver stages of class A, Bor C amplifiers, frequency

multipliers and oscillators of v.h.f . and u.h.f . equipment. Encapsulated in a metal TO-39 envelope with the collector connected to the case. QUICK REFERENCE DATA

V maX - 55 V CER

V maX - 30 V CEO I max. 400 mA

P max. (T S25 C) 5.0 W tot case T. max. 200 C J

f typ. (I = 25mA, y^isv, f-lOOMHz) 700 MHz T c P typ. (P.<100mW, V„ =28V, f=400MHz) 1.0 W I (->& Vmin. (P =1.0W, V„ =28V, f = 400MHz) 45 % Kskt

OUTLIME AJNU DIMENSIONS

Conforms to B.S. 3934 SO-3/SB3-3B J.E.D.E.C. TO-39 Millimetres

Min. Typ. Max.

A 9.10 - 9.40

B 8.2 - 8.5 C 6.15 - 6.60 D - 5.08 - E 0.71 - 0.86 Fl - - 0.51

F2 12.7 - -

F3 12.7 - 15 Gl - - 1.01 G2 0.41 - 0.48 G3 - - 0.53 H - 0.4 -

J 0.74 - 1.01

Collector connected to case

Milliard APRIL 1968 2N3866 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical V_ max. 55 V CBO max. (R. = 10fi) 55 V CER BE V„__ max. 30 V CEO V„„„ max. 3.5 V EBO

I max. 400 mA

I 400 mA CM„ max.

P. . max. (T ^25°C) 5.0 W tot case Temperature

T ^ min. -65 °C stg

T ^ max. 200 °C stg T. max. 200 °c J THERMAL CHARACTERISTICS

R In free air 200 degC/W 'th(j-amb) 35 degC/W th(j-case) Mounted with a top clamping R'th(case-h) washer of accessory 56218 1.0 degC/W

Mounted with a top clampling R'th(case-h) washer of accessory 56218 and a boron nitride washer for electrical insulation 1.2 degC/W

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

CEO Collector cut-off current V = 28V 20 MA CE ' V Collector-base breakdown (BR)CBO voltage

I = 100 A, I = 55 C M E

Collector-emitter breakdown voltages I =5. 0mA, R„ =10£2 55 V (BR) CER

I = 5.0mA, 1=0 30 V (BR) CEO Cn B

Collector-base breakdown (BR) EBO voltage

I =100/xA, = 3.5 E I c

Milliard 2N3866 Page 2 N-P-N SILICON PLANAR 4n,w,g2N38A6 EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd)

Min. Typ. Max.

Collector-emitter saturation CE(sat) voltage

I = 100mA, I = 20mA 1.0 c a

Static forward current FE transfer ratio

I = 50mA, V = 5.0V 10 200 c CE

I = 360mA, V = 5.0V 5 c ce

Transition frequency

I = 25mA, V = 15V, c CE f=100MHz 700 MHz

Collector capacitance tc

V =28V ' CB ' W f=1.0MHz 3.0 PF

Typical r.f. performance V„ =28V, T =25°C CE case

f Frequency 100 250 400* MHz

p. Input power 50 100 < 100 mW 1

r Collector current <107 <107 <79 mA c p Output power 1.8 1.5 1.0 W

V Efficiency >60 >50 >45 %

*The transistor can withstand a load mismatch having a v.s.w.r. of 3, varied through all phases for conditions as given above (see also test circuit)

Milliard 2N3866 Page 3 °

Common emitter test olroult (£=400MHz)

nmxp—t— # Rs =son

IHwwn

-V 28V EE= Components = C V C s 4 to 29pF air trimmers S = 12pF c = 4 to 14pF air trimmer fi C = 12nF 7 R = 5 60 1 R = 10S2 2 L = 2 turns of 1mm Cu wire, int. dia. 6mm, winding pitch 3mm

L = ferroxcube choke coil (Z = 450S2 at 250MHz)

= of wire, int. dia. 3.5mm (lOOnH) L , L 6 turns 0.5mm en. Cu

L = 2 turns of 1mm Cu wire, int. dia. 7mm, winding pitch 2.5mm, leads 2 x 15mm

Milliard 2N3866 Page 4 [

" N-P-N SILICON PLANAR ?N1ftAA EPITAXIAL U.H.F. TRANSISTOR Aiuow

3 I +~+ - I tot 2N3866 L " "' (\AM MTJZ Ml!1 — Pt^t = Prir *n "fo 1 bVh

: *>

". i 1 ft ~~ i , It _| S SP^M 1 > 4-0, i v,^ -i- s sMf/>, \ -,l. '-- °-^ >S." h v ; Qf>> 1 rv ; 1 K s f- ' i s T H*VP i ! : I "*?, ; 1 \TP„ 1 1

" i ». 1 s*'H, 2 •^O^' 1 Tx.- On a 50 cm heatsink - >-/|« N rS ^ (eg. chassis) with a boron nitride washer *«j s

. T \ s | \/\ V ^ Permissible areas of ODeration —J*^ V " ^V.: i - —

' 1 1 1 1 1 0" III IT i II MT 1 ! 1 1 1 1 Ml Mill 50 100 150 200 Tamb CC)

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

2N3866 Mii | B8492 (mA) --L-LJ- *a ! : L - Operation is allowed under all base- - M emitter conditions with f ^ 1 MHz 400 provided no limiting values are exceeded. I ! Ir i T"

in --< Operation is allo\ved during swftc n'na off provided the transistor is cut-off i

1 with -V ^1-5 V, R »33n. end 200 BB BE kl the transient energy ^ 0*125mWs

_|_ ! 1

I | ^^ " -r-r M i\ i all base-emitter conditions provided no limiting values 4-L ] - ^ 1

are exceeded. , t

in 1 1 - I

i I"

! I 1 1 i tr~ 20 40 60 VC£ (V) AREAS OF SAFE OPERATION

*II Care must be taken to reduce the steady state current to region I before

removing the a . c . signal . This may be achieved by appropriate bias in class A, B or C.

Milliard 2N3866 Page 5 1

800 f(MHz)

TYPICAL VARIATION OF OUTPUT POWER WITH FREQUENCY AND INPUT POWER

«. „„„«U B8494 *-tc 2N3866 2N3866|l ii l_

(MHZ) I l I I I l 1 1 1 I 1 1 1

1 1 1 1 1 1

Tj = 25°C I]T| =25*C i e =i8 =o f .1-0 MHZ

800 j^ mm ^^ jj ^ j S \ *yP- f 'r \ \ > _ — \ 600

**» t ^P-

400 O 10 20 VCB (V) O 50 100 150 I c (mA)

Collector capacitance versus Transition frequency versus collector-base voltage collector current

Mullard 2N3866 Page 6 N-CHANNEL SILICON FIELD-EFFECT TRANSISTOR 2N3966

Silicon n-channel planar epitaxial junction field-effect transistor intended for low power switching applications, e.g., in multiplexing systems.

QUICK REFERENCE DATA

±V max. Drain-source voltage Dg 30 V " V maX - Gate-source voltage GSO 30 V

P t ^ max. Total power dissipation (T < 25°C) 300 mW tot amb I min. Drain current (V^ =20V, V_„ = 2.0 Dgs Do Go 0) mA -V Gate-source cut-off voltage (P)GS VlOnA.VufTlOV) 4 to 6 V -C max. Feedback capacitance rs = (V °' V =7V ' f=1MHZ 1.5 pF DS GS ) r„„, max. Drain-source 'on' resistance DS(on) (V =0,I = 0,f = lkHz) a GS D 220 OUTLINE AND DIMENSIONS

Conforms to B.S.3934 SO-12A/SB4-3 Insulated electrodes J.E.D.E.C. TO-72 }

0.48 max _* 4.8 © max

5.3 -12.7 mm

A(( dimensions in mm

*shield lead (connected to case)

Accessories available: 56246, 56263

Milliard MAY 1971 2N3966 Page 1 RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

±V maX - Drain-source voltage 30 V DS

max . Drain-gate voltage (open source) 30 V DGO - V maX ' Gate-source voltage (open drain) 30 V GSO

I max. Gate current 10 mA G P max. Total power dissipation (T < 25°C) 300 mW tot Temperature

T Storage temperature -55 to +200 stgt T max. Junction temperature 200 J THERMAL CHARACTERISTIC R Thermal resistance from junction th(j-amb) to ambient 0.59 C/mW

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)

Min. Max.

Gate cut-off current GSS - = = 0.1 V 20V V ° nA GS ' DS

DGO Drain current V = 20V, I =0 0.1 nA DG 8 U V = 2 ° V T = 150 C 0.2 /jA DG ' V " amb Drain current DSS = V 20V V = ° 2.0 DS ' GS

Gate-source breakdown voltage (BR)GS -I =1.0»«A,V =0 30 G DS

Gate-source voltage (P)GS = =1 4.0 6.0 I 10nA ' V ° V D DS

Drain-source voltage DS I = 1.0mA, V = 0.25 D Gg

Mullard 2N3966 Page 2 : :

N-CHANNEL SILICON 2N3966 FIELD-EFFECT TRANSISTOR

ELECTRICAL CHARACTERISTICS (contd.) Min. Max.

Drain cut-off current

= 1 ° -V 1.0 nA V V ' =7V DS GS

V„ =10V, -V„ =7V, T , =150°C 2.0 HA DS GS amb

Drain-source 'on' resistance DS(on) = V = f lkHZ 220 GS °' V'

Input capacitance

V,=20V, V = 0, f=lMHz 6.0 pF DS GS

Feedback capacitance = = 1.5 V = °< V 7V f 1MHZ pF DS GS '

Switching times

V = 1.5V, I , = 1.0mA DD D(on) V =0, -V =6.0V GS(on) ' GS(off)

Delay time 20

t Rise time 100 r

Turn-off time 100 'off

Test circuit Input and output waveforms o- 1.5V ? ,25kn 3£ -ov

V/Z D2954

Pulse generator Oscilloscope

t r < 1 .0 ns t r < 10 ns 5 MS2 tf < 1.0 ns R4 > t = 1.0 us Cj < 10 pF p d < 0.5 = Rs 50 a

Milliard 2N3966 Page 3 N-CHANNEL SILICON 2N4091 TRANSISTORS FIELD-EFFECT 2N4092 2N4093

Silicon n -channel, depletion type, junction field -- effect transistors intended for low power sw tching applications. QUICK REFERENCE DATA 2N4091 2N4092 2N4093

V maX - Drain-source voltage 40 40 40 V ± DS dissipation P. . max. Total power tot (T < 25°C) 1.8 1.8 1.8 W case-

1111 - Drain current W" = = 30 15 8.0 mA

r max - Drain-source 'on' resistance n„m i v f=lkHz 30 50 80 a v-°- Gff °- > -C max. Feedback capacitance = 0, -V = 20V, f-lMHz) 5.0 5.0 5.0 pF (VDg QS

t .. max. Turn-off time (V _=0, V^ = 3V) off = = 40 - - ns {^ 6. 6mA, -V GSM 12V) (1^4. OmA, -V ^8V) - 60 - ns GSM = 2. 5mA, -V ^6V, - - 80 ns (^ GSM

Unless otherwise stated data are applicable to all types OUTLINE AND DIMENSIONS ' Conforms to BS 3934 SO-12A/SB3-6A Gate connected to case J.E.D.E.C. TO-18 m

Alt dimensions in mm

Accessories supplied on request: 56246, 56263

Milliard MAY 1971 2N4091-Page 1 )

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical V max. Drain-source voltage 40 V ± DS

maX " Drain-gate voltage (open source) 40 V VDGO - 40 V maX - Gate-source voltage (open drain) V GSO

I max. Forward gate current (d. c. 10 mA G power dissipation P, , max. Total tot (T < 25°C) 1.8 W case- Temperature

Storage temperature -65 to +200 stg T. max. Junction temperature 200

THERMAL CHARACTERISTIC

R, Thermal resistance from junction th(j-c) to case in free air 0.1 C/mW

CHARACTERISTICS (T 25 C unless otherwise stated) ELECTRICAL amb Min. Typ. Max.

Drain current GO V 20V 0.2 nA W ' v° =2 ° T =150 0.4 fiA V V ' C DG > V amb Source current SGO V = 20V, 0.2 nA SG V Drain cut-off current *D V =20V, -V = 12V 2N4091 0.2 nA DS ' GS = V =20V -V = 8V 2N4092 0.2 nA DS > GS

= V 20V -V = 6V 2N4093 0.2 nA DS^ ' GS

= V =20V -V = 12V, DS ' GS 0.4 T , =150°C 2N4091 M A amb

V = 20V -V = 8V, DS ' GS

T , =150°C 2N4092 0.4 MA amb V = 2 ° V V == 6V, DS ' - GS 0.4 T , =150°C 2N4093 HA amb

Mullard 2N4091-Page 2 N-CHANNEL SILICON 2N4091 FIELD-EFFECT TRANSISTORS 2N4092 2N4093

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max.

Gate-source breakdown voltage (BR)GSS -I =1.0 A, V = 40 G M Dg

Drain current (measured under *DSS pulsed conditions, t^<300fis, d<0.03) P- V = 20V, V =0 2N4091 30 - mA DS ' GS 2N4092 15 - mA 2N4093 8.0 - mA

Gate-source voltage GS I^lmA, V =20V 2N4091 5.0 _ 10 V DS 2N4092 2.0 - 7.0 V 2N4093 1.0 - 5.0 V

Drain-source 'on' voltage DS(on) 6mA, V ^0 2N4091 - - 0.2 V 1^6. Gg 4.0mA, V = 2N4092 - - 0.2 V 1^ Gg - - I = 2.5mA, V =0 2N4093 0.2 V D Gg

Drain-source 'on' resistance DS(on) L^lmA, V .O 2N4091 . 30 a Gg 2N4092 - - 50 S2

2N4093 - - 80 S2

= 0, f^lkHz 2N4091 - - 30 Q 1^0, VQS 2N4092 - - 50 £2 2N4093 - - 80 a

y-parameters (common source)

= = V 2 ° V V °' f=1MHZ DS ' GS

C. Input capacitance 16 pF is

Feedback capacitance 5.0 pF

Milliard 2N4091-Page 3 )

ELECTRICAL CHARACTERISTICS (contd.

Switching times

= 3.0V. V = DD Gg 2N4091 2N4092 2N4093

6.6 4 2.5 mA *D 12 8 6.0 V GSM Delay time max. 15 15 20 ns *d

t Rise time max. 10 20 40 ns r Vf Turn -off time max. 40 60 80 ns

Test circuit Input and output waveforms

"DD 1

1 v xu.y^ ° ° Vi0—C£

W7/ D2892

R = ^ a

Puis e generator Oscilloscope:

t < Ins t < 0.4ns r r < Ins R > 9.8MS2 s l

t = 1/ns Z. < 1.7pF p d = 0.1

R = 50S2 s

Mullard 2N4091-Page 4 N-P-N SILICON DIFFUSED INAIdT POWER TRANSISTORTBAWCICT^D AHIJII

For details see data sheet for type 2N3442

Mullard JULY 1972 2N4347 Page 1 N-CHANNEL SILICON 2N4391 FIELD-EFFECT TRANSISTORS 2N4392 2N4393

Silicon n- channel, depletion type, junction field - effect transistors intended for low power chopper or switching applications. QUICK REFERENCE DATA 2N4391 2N4392 2N4393

+V max. Drain-source voltage 40 40 40 V DS

P. . max. Total power dissipation tot (T < 25°C) 1.8 1.8 1.8 W case-

min - Drain current W = = (V 20V V °> 50 25 5.0 mA DS ' GS -V Gate-source cut-off voltage (P)GS 4 to 10 2 to 5 5 to 3 V

Drain-source 'on' resistance DS(on) = = V f lkHZ > 30 60 100 a V ' GS ' -C max. Feedback capacitance rs = = f = - (V -V 12V 1MHZ > 3.5 pF DS °' GS ' = - = °' "V =7V f 1MHZ) 3.5 pF ^03 GS ' = - °' -V 5V f=1MHZ > 3.5 pF ^08= GS '

t ,. max. Turn-off time (V_, =0, V^ =10V) off = 12mA -V 12V > 20 ns V ' GSM = 6mA -V 7V) 35 ns V - GSM = 3mA -V 5V) 50 ns V ' GSM

Unless otherwise stated data are applicable to all types OUTLINE AND DIMENSIONS Conforms to BS 3934 SO-12A/SB3-6A Gate connected to case J.E.D.E. C. TO-18

1.16 max 0.48 max

=tt= 4.8 © max

5.3 max -12.7 min

All dimensions in mm

Accessories supplied on request: 56246, 56263

Milliard MAY 1971 2N4391-Page 1 RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical V max. Drain-source voltage 40 V ± Ds V maX - Drain-gate voltage (open source) 40 VDGO - drain) 40 V V maX - Gate-source voltage (open GSO I max. Gate current 50 mA G dissipation P, . max. Total power tot (T < 25°C) 1.8 W case - Temperature

Storage temperature -65 to +200 stg T max. Junction temperature 200 J THERMAL CHARACTERISTIC R Thermal resistance from junction th(j-c) to case in free air 0.1 C/mW

CHARACTERISTICS (T = 25 C unless otherwise stated) ELECTRICAL amb Min. Typ. Max.

Gate cut-off current GSS -V 20V V = 0.1 nA GS= ' DS °

-V„ =20V, V_^ =0, T ==150°C 0.2 ftA GS DS amb

Drain cut-off current hxSX V =2° V '-V =12V 2N4391 0.1 nA DS GS V = 2 °V V = 7V 2N4392 0.1 nA DS ' - GS V =2°V -V =5V 2N4393 0.1 nA DS > GS - = V = 20V, V = 12V DS GS J = 15o' c 2N4391 0.2 /xA amb V = 20V, -V == 7V, DS GS u = 150' c 2N4392 0.2 IJ.A amb V = 20V, -V == 5V, DS GS = 150 °C 2N4393 0.2 IJ.A amb

Drain current (pulse measurement, DSS t =100ns, d = 0.01) vP = - 20V V = ° 2N4391 50 150 mA DS ' GS - V = 2 °V V 2N4392 25 75 mA DS ' GS=° = - V 20V V = ° 2N4393 5.0 30 mA DS ' GS

Milliard 2N4391-Page 2 N-CHANNEL SILICON 2N4391 TRANSISTORS FIELD-EFFECT 2N4392 2N4393

ELECTRICAL CHARACTERISTICS (contd.)

Min. Typ. Max.

-V Gate-source breakdown voltage (BR)GSS -i = iM, v = o 40 G DS

Gate-source 'on' voltage GS(on) 1.0

Gate-source cut-off voltage (P)GS I^lnA, V = 2N4391 4. 10 V DS 2N4392 2. 5.0 V 2N4393 0. 5 3.0 V

Drain-source 'on' voltage DS(on) - I = 12mA V = ° 2N4391 0.4 V D ' GS 6 V ° 2N4392 - 0.4 V V "^' GS = 3mA V 2N4393 - 0.4 V V ' GS=°

Drain-source 'on' resistance DS(on) I^lmA, V = 2N4391 . 30 a GS 2N4392 - 60 fi 2N4393 - 100 a

V f = lkHz 2N4391 - 30 a V°' GS = °' 60 a 2N4393 _ 100 a

y-parameters (common source)

C. Input capacitance V = 20V V = f = 1MHZ 14 pF DS ' GS '

Feedback capacitance " = = V 12V V °' f=1MHZ 2N4391 3.5 pF GS ' DS -V = 7V V = f = 1MHz 2N4392 3.5 pF GS ' DS ' -V = 5V V = f = 1MHz 2N4393 3.5 pF GS > DS '

Milliard 2N4391-Page 3 :

ELECTRICAL CHARACTERISTICS (contd.)

Switching times

aov, v =o DD GS 2N4391 2N4392 2N4393

12 6. 3.0 mA h)- V 12 7. 5.0 V GSM Rise time max. 5.0 5 5.0 ns

Turn-on time max. 15 15 15 ns

Fall time max. 15 20 30 ns

Turn-off time max. 20 35 50 ns off

Test circuit Input and output waveforms

R = — - 510

Pulse generator Oscilloscope: = t < 0.5ns R. 50fl r l

t < 0.5ns f

t = lOOus P d = 0.01

Milliard 2N4391-Page 4 N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR 2N4427

N-P-N silicon planar epitaxial transistor primarily intended for use in the output, driver and pre-driver stages of class A, B or C amplifiers , frequency multipliers and oscillators of v.h.f. and u.h.f . equipment. Encapsulated in a metal TO-39 envelope with the collector connected to the case. QUICK REFERENCE DATA

V maX - CER 40 V

V maX - CEO 20 V I max. 400 mA P^ max. (T S25°C) tot case 3.5 W T. max. 200 °C J f *yp. (I = 25mA, V = f = T c CE 10V, 100MHz) 700 MHz P typ.(P.<100mW, V = 12V, f=175MHz) Q CE 1.0 W nmin. (P =1.0W, V = 12V, f=175MHz) o CE 50 % OUTLINE AND DIMENSIONS

Conforms to B.S. 3934 SO-3/SB3-3B J.E.D.E.C. TO-39

Millimetres

Min. Typ. Max.

A 9.10 - 9.40

B 8.2 - 8.5

C 6.15 - 6.60

D - 5.08

E 0.71 - 0.86

Fl - - 0.51 F2 12.7

F3 12.7 - 15

Gl - - 1.01

G2 0.41 - 0.48

G3 0.53

H 0.4

J 0.74 - 1.01 Collector connected to case

Milliard

APRIL 1968 2N4427 Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

maX - 40 V VCBO max. (R. = 10fi) 40 V CER BE

V maX " 20 V CEO

m3X - 2.0 VEBO V I max. 400 mA 400 mA

P^ . max. (T S25°C) 3.5 W tot case

Temperature

T . min. -65 °C stg T max. 200 °C stgt T. max. 200 °C J THERMAL CHARACTERISTICS

In free air 200 degC/W th(j-amb) R 35 degC/W *th(j-case)1 R„ Mounted with a top clamping ' th(case-h) washer of accessory 56218 1.0 degC/W

R, Mounted with a top clamping 'th(case-h) washer of accessory 56218 and a boron nitride washer for electrical insulation 1.2 degC/W

ELECTRICAL CHARACTERISTICS (T. = 25 C unless otherwise stated)

Min. Typ. Max.

CEO Collector cut-off current V = 12V 20 MA CE ' V Collector-base breakdown (BR)CBO voltage

I = 100uA, I = 40 c E

Collector-emitter breakdown voltages

I = 5.0mA, R„ =10S2 40 V (BR)CER

I =5.0mA, I =0 20 V ^(BRJCEO O B Collector-base breakdown (BR)EBO voltage

I = 100fiA, I = 2.0 E c

Mullard 2N4427 Page 2 N-P-N SILICON PLANAR AH-rtx#IHAAll EPITAXIAL U.H.F. TRANSISTOR

ELECTRICAL CHARACTERISTICS (cont'd)

Mill. Typ. Max.

V„_,. .. Collector-emitter saturation CE(sat) voltage,. I =100mA, I =20mA - - 0.5 V C B

h Static forward current transfer ratio

I = 100mA, V„ =5.0V 10 - 200

I =360mA, V„ =5.0V 5 - - C Or.

f Transition frequency

I = 25mA, V = 10V, c CE f=100MHz - 700 - MHz

C Collector capacitance V = 12V, I =1 =0, ' CB E e ' f=1.0MHz - - 4.0 pF

Typical r.f . performance V =12V, T =25°C CE case

f Frequency 175* 470 MHz

P. Input power <100 100 mW

I Collector current <167 67 mA P Output power 1.0 0.4 W o

r; Efficiency >50 50 %

*The transistor can withstand a load mismatch having a v.s.w.r. of 3, varied through all phases for conditions as given above (see also test circuit)

Milliard 2N4427 Page 3 = Common emitter test circuit ( f 175MHz )

RL- 50i\ £

VCC =+12V

Components = C , C , C , C . 4 to 29pF air trimmers 1 2 3 4 L = 2 turns of 1mm Cu wire, int. dia. 6mm, winding pitch 2mm, leads 2 x 10mm

L = ferroxcube choke coil (Z = 550Q at 175MHz)

L = 2 turns of 1mm Cu wire, int. dia. 5mm, winding pitch 2mm, leads 2 x 10mm

L = 3 turns of 1.5mm Cu wire, int. dia. 10mm, winding pitch 2mm, leads 2 x 15mm

The length of the external emitter wire of the 2N4427 is 1.6mm

Milliard 2N4427 Page 4 M

N-P-N SILICON PLANAR EPITAXIAL U.H.F. TRANSISTOR 2N4427

ptot TTTT xrim: BS495 51 3 2N4427 4 4 (W) f& ::l : TtfM4 6-0 3 fi R Ptot=Pdc *Pi ro U B:'° rHi

^3 , lilt , -M44 Tfr Mtf ^rrtitttt t-fr 31 H rtttr mx ItjT 4 -+ 44- 1-4- tnt-i 31% fi- ^ntt-t mt tTtt TM1 rrH 4-0 ±tt ^ m inn ll txc 2 R th(j-amb)= 50 de 9 C/W On a 50 cm heatslnkjT-l (e.g. chassis) with a boron nitride washer

20

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

Ir 2N4427 B8496 (mA)

400 l v Operation is allowed under all base ' emitter conditions with 1 1MHz I- > \ provided no limiting values are exceeded. \}

. ^ > L i- \ m Operation is aiiowed during switching 200 V. off, provided the is > v transistor cut-off * with -Vg B 41-5v, ReE » 32*1 and the transient energy ^ 0-125 mws Operation is allowed under all base-emitter conditions provided no limiting values are exceeded.

1 20 40 60 VCE (V) AREAS OF SAFE OPERATION

*II Care must be taken to reduce the steady state current to region I before removing the a.c. signal. This may be achieved by appropriate bias in class A. B or C.

Mullard 2N4427 Page 5 l

_i r B84B7 2N4427 -4— (W) ^T I I I [ | ^T_ [ J ~r 1-5 Ml _j VCE = 12V Tcase =25'C

Pj=100mW

I 1-0 ~ I

I

I

= 50mW = 75m\A 1

:£_~T~~ r OS = 40mW J

I s \ s

i

i

i ~Tj I _|_

' I ^r —~j_lj— "^ -U ) ^ I ZL 100 200 300 400 f(MHz)

TYPICAL VARIATION OF OUTPUT POWER WITH FREQUENCY AND INPUT POWER

VCB (V) 150 I c (mA)

Collector capacitance versus Transition frequency versus collector-base voltage collector current

Milliard 2N4427 Page 6 . . .

N-CHANNEL SILICON 2N4856 FIELD-EFFECT TRANSISTORS 2N4861

Silicon n-channel, depletion type, junction field-effect transistors intended for low power chopper or switching applications

QUICK REFERENCE DATA

±V max. Drain-source voltage 2N4856 to 40 Ds 2N4858 V 2N4859 to 2N4861 30 V

P. , max. Total power dissipation tot (T , <25°C) 360 amb — mW 2N4856 2N4857 2N4858 2N4859 2N4860 2N4861

I min. Drain current DSS = = 50 20 8 mA DS ' GS -V Gate-source cut-off voltage (P)GS f lkHZ> 25 40 60 a D ' GS -C max Feedback capacitance rs (V = 0, -V =10V, f=lMHz) 8 8 8 pF DS QS t max Turn-off time off 1 v =0 ^dd' ™- gs > i = 20mA) -v =iov 25 - - ns D GSM = = - - I 1 ° mA - V 6V 50 ns D ' GSM = = - - I SmA - V 4V 100 ns D ' GSM

Unless otherwise stated data are applicable to all types OUTLINE AND DIMENSIONS Conforms to B.S. 3934 SO-12A/SB3-6A Gate connected to the case J.E.D.E.C. TO-18 ©

All dimensions in mm

Accessories supplied on request : 56246; 56263

Milliard MAY 1971 2N4856-Page 1 .

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical 2N4856 2N4859

2N4857 2N4860

2N4858 2N4861

30 V ±V max. Drain-source voltage 40 DS max. Drain-gate voltage (open source) 40 30 V VDGO voltage (open drain) 40 30 V V max . Gate-source GSO max. Gate current (d.c. 50 mA IG power dissipation P, , max Total tot 360 mW (T , < 25°C) v amb — Temperature T Storage temperature -65 to +200 stg Junction temperature 200

J THERMAL CHARACTERISTICS R Thermal resistance from junction th(j-amb) tQ ambient ln free air 0.49 C/mW

CHARACTERISTICS T = 25° c unless otherwise stated) ELECTRICAL ( amb Min. Max.

Gate cut-off current " GSS -V = 20V, V = 2N4856 to 2N4858 0. nA GS Dg 0. nA - V = 15V V = ° 2N4859 to 2N4861 GS ' DS

: = 0. - = 20V V = °' T 150°C 2N4856 to 2N4858 HA V ' GS DS amb 0. -V =15V, V =0, T = 150°C 2N4859 to 2N4861 IJ.A GS DS ' amb

Drain cut-off current DSX V =15V - V =1 ° V 0. 25 nA DS ' GS T = 15 °° C 0. 5 MA V =15V '-V =10V ' DS GS amb

Drain current (pulse measurement, DSS t = 100ms, d<0.1) P 50 mA V =15V V = ° 2N4856, 2N4859 DS ' GS 2N4857, 2N4860 20 100 mA

2N4858, 2N4861 ' 8.0 mA

Mullard 2N4856-Page 2 N-CHANNEL SILICON 2N4856 FIELD-EFFECT TRANSISTORS to 2N4861

ELECTRICAL CHARACTERISTICS (contd.)

Min. Max.

-V Gate-source breakdown voltage (BR)GSS -v^-w 2N4856 to 2N4858 40 V 2N4859 to 2N4861 30 V

Gate-source cut-off voltage (P)GS I = °- 5nA V =15V 2N4856, 2N4859 4.0 10 V D ' DS 2N4857, 2N4860 2.0 6.0 V 2N4858, 2N4861 0.8 4.0 V

Drain-source 'on' voltage DS(on) I = 20mA, V = 2N4856, 2N4859 0.75 D Gg V I =10mA = ° ' V 2N4857, 2N4860 0.50 D GS V = i 5mA> v =o 2N4858, 2N4861 D GS 0.50 V

Drain-source 'on' resistance DS(on) I = = ' V ' f=lkHz 2N4856, 2N4859 D GS 25 2N4857, 2N4860 40

2N4858, 2N4861 60 y-parameters (common source) - = = V =10V1 ° V V °' f=1MHz GS ' DS

Input capacitance 18 is PF

-C Feedback capacitance 8.0 pF

Milliard 2N4856-Page 3 :

ELECTRICAL CHARACTERISTICS (contd.)

Switching times V =1 °V V = ° DD ' GS 2N4856 2N4857 2N4858 2N4859 2N4860 2N4861

! 10 5.0 mA n = 20 10 6.0 4.0 V VGSM

Delay time max. 6.0 6.0 10 ns *d t Rise time max. 3.0 4.0 10 ns r

Turn-off time max. 25 50 100 ns 'off

Test circuit Input and output waveforms

Vdd I

K> V° v'o Q~, T, 50A

W/ wZ

2N4856 2N4857 2N4859 2N4859 2N4860 2N4861

R = 464 953 1910 a

Pulse generator: Oscilloscope:

t = 200 ns t < . 75 ns P r — t < 1 ns R. —> 1 MS2 r — i

t < 1 ns C. < 2.5 pF

d = 0.02 Zn = 50 a

Milliard 2N4856-Page 4 ACCESSORIES

82

ACCESSORIES FOR TRANSISTORS

Section 1 Cooling Clips PART NUMBER FOR USE ON OUTLINES PAGE J.E.D.E.C. BS 3934

56200" TO-1 SO-21/SB3-10 3 56207* TO-7 SO-23/SB4-4 4 56209* TO-1 SO-21/SB3-10 5 56226 TO-1 SO-21/SB3-10 6 56227 TO-1 SO-21/SB3-10 7 56263 TO-1 SO-12A/SB3-6A 1 TO-71 SO-12A/SB8-1B > 8 TO-72 SO-12A/SB4-3 J 56265 TO-5 SO-3/SB3-3A TO-1 SO-3/SB4-1 1 9 TO-33 SO-3/SB4-1 r TO-39 SO-3/SB3-3B J

"These devices are supplied on a maintenance basis only, they are not recommended for current design

Section 2 Mounting Accessories PART NUMBER DESCRIPTION FOR USE ON OUTLINES PAGE 56201A Insulating bush TO-3 3.15mm (thick or medium with 56300) 10 56201 B Mica washer TO-3 all 10 56239A Insulating bush TO-3 1.6mm (medium) 16 56336A Insulating bush (2kV) TO-3 3.15mm (thick) 17 56336B Mica washer (2kV) TO-3 all 17 56214 Lead washer TO-3 all 10 56300 Steel spacer TO-3 0.9 or 1 .6mm (thin or medium) 11

56218 Top and bottom TO-5, TO-39 (and TO-1 2, clamping washer and TO-33 for non-insulated Mylar washer mounting) 12

56245 Insulated distance disc TO-5, TO-1 2, TO-33, TO-39 13 56246 Insulated distance disc TO-1 8, TO-72 13 56301 B Mica washer TO-1 26 14-15 56326 Flat metal washer TO-1 26 14--15 56325 Mica washer TO-220 18 56338 Insulating bush TO-220 18 56239A Insulating bush — SO-55 (BS 3934) 16 56239B Mica washer — SO-55 (BS 3934) 16

Milliard AUGUST 1974 Accessories— Page 1 GENERAL EXPLANATORY ACCESSORIES FOR NOTES TRANSISTORS

All information on thermal resistance of the accessories combined with flat heatsinks is valid for square heatsinks of blackened aluminium.

For a few variations the thermal resistance may be derived as follows: a. Rectangular heatsinks (sides a and 2a)

When mounted with long side horizontal, multiply by 0.95.

When mounted with short side horizontal, multiply by 1 .1 0. b Unblackened or thicker heatsinks

Multiply by the factor B given below as a function of the heatsink size A.

Milliard Accessories— Page 2 1

ACCESSORIES FOR TRANSISTORS 56200

COOLING CLIP

MECHANICAL DATA (Dimensions in mm)

19.5 -»-( dCO

7.5 w

Clip material: brass, nickel plated

THERMAL CHARACTERISTICS

Rtiiicase-iinin Thermal resistance case to ambient, cooling clip only 100 degC/W with heatsink see graph OOZi ff th c-af71.5mm Al; blackened IdcgC/WI itfrft t"T i ~~:l~ 100 tF*- 1- J £--- Jfir

20 Afcm2 )^ on* side

MOUNTING INSTRUCTIONS Torque on nut for good heat transfer: 5kg cm

M3 bolt

washer cooling fin

" «o ' » " lock washer azD

Mullard Accessories-— Page 3 ACCESSORIES FOR 56207 TRANSISTORS

COOLING CLIP

MECHANICAL DATA (Dimensions in mm)

7.5

Clip material: aluminium, blackened

THERMAL CHARACTERISTICS

Riii ic-ase-a nib) Thermal resistance case to ambient, cooling clip only 60 degC/W with heatsink see graph

"thc-a 1.5mm Al; blackened Ideg C/WI 100 15 4:5 ia: 55 -nt.tt if

20 A(cm2 )40 one side

MOUNTING INSTRUCTIONS

Torque on M3 bolts for good heat transfer: 5kg cm

Milliard Accessories— Page 4 ACCESSORIES FOR TRANSISTORS 56209

COOLING CLIP

MECHANICAL DATA (Dimensions in mm)

5.5 hi 15

MM

Clip material: brass, nickel plated

THERMAL CHARACTERICTIC

RiMvuv-imit) Thermal resistance case to ambient, cooling clip only 75 degC/W

Milliard Accessories—Page 5 n

ACCESSORIES FOR 56226 TRANSISTORS

COOLING CLIP MECHANICAL DATA (Dimensions in mm) 5g5 Clip material: brass, nickel plated o

28

>

12 THERMAL CHARACTERISTICS

Rtincasc a m bi Thermal resistance case to ambient. cooling clip only 100 degC/W with heatsink see graph "thc-a 1.5 mn1 Al; slack* ned [dcgC/W ) 100

The thermal resistance values apply to each transistor, provided the two transistors have been mounted so that the heat flow from each one is equal. 20 A(cm 2 )40 one side

MOUNTING INSTRUCTIONS Torque on nut for good heat transfer: 5kg cm. I—"""! ¥ M3 bolt washer cooling fin

^^Wvww-w.wi imTOmm'M h»atsink

i .n . i lock washer

rr~ nut

Milliard Accessories— Page 6 ACCESSORIES FOR TRANSISTORS 56227

COOLING CLIP

MECHANICAL DATA (Dimensions in mm)

"

lin oi

3.3

0.3 f

17 Clip material: brass, nickel plated

THERMAL CHARACTERISTICS

RtiMcasc-amb) Thermal resistance case to ambient, cooling clip only 100 degC/W with heatsink see graph

"thc-o 1.5mm Al ; blackened (degC/WI 100

so

20 Afcm^AO one side

MOUNTING INSTRUCTIONS

Torque on nut for good heat transfer: 5kg cm

M3 bolt

washer

1 i 1 m h =i cooling fin

lWSm>sWW,w,w,l IV.WAW^ww.w^ heatsink "* lock washer

D03 < ( T T) nut

Milliard Accessories — Page 7 ACCESSORIES FOR 56263 TRANSISTORS

COOLING CLIP

MECHANICAL DATA (Dimensions in mm)

12.5 .

1745^T

Clip material: copper, tin plated

THERMAL CHARACTERISTIC degC/W RtiKi-ue-amb) Thermal resistance caso to ambient 100

Milliard Accessories—Page 8 ACCESSORIES FOR TRANSISTORS 56265

COOLING CLIP

MECHANICAL DATA (Dimensions in mm) 25.1

i !

i

l i CO i i

i 1 o

1

a

Clip material: aluminium, blackened 12.5 7.5

15

THERMAL CHARACTERISTICS - P037 "thc-ofi Rth(caso-amb) Thermal resistance case to ambient, cooling clip only with heatsink

80 degC/W see graph

20 Afcm))60 om«Mt

MOUNTING INSTRUCTIONS

M3 bolt a) fl b) IT washer o

a cooling fin - hole 7.5 to 7.7 mm KW.1 M.W A\vwm kwm £7 heatsink lock washer nut Torque on nut for good heat transfer: 5kg cm.

Milliard Accessories— Page 9 A B 56201A ACCESSORIES FOR 56201B TRANSISTORS 56214

MOUNTING ACCESSORIES FOR TO-3 OUTLINE

MECHANICAL DATA (Dimensions in mm) n i 4.5 3.5 A WL

7.5

Insulating bush Mica washer 56201 56201

THERMAL CHARACTERISTIC

RtiHmb -id Thermal resistance

mounting-base to heatsink 1 degC/W 56214 Lead washer MECHANICAL DATA (Dimensions in mm)

THERMAL CHARACTERISTIC

Rth( mb-li) Thermal resistance mounting-base to heatsink, with mica washer and lead washer 0-75 degC/W TEMPERATURE

I max Max. allowable temperature 150 °C

Milliard Accessories—Page 10 A

ACCESSORIES FOR TRANSISTORS 56300

MOUNTING ACCESSORIES FOR TO-3 OUTLINE

56300 Steel spacer

<-o —i t—

r 1 (m For use with thin-base devices only. 1—7.5-

2.0

D0A2 ! ~T

Section A-

MOUNTING INSTRUCTIONS

nut t> CCXI nut lock washer «"• lock washer

- soldering Tag i

,1 1, i : : _P

lead washer

mica washer holes maxArnm- IVVVVVVM kWVsMkVsVVVVVJ kWsVsVVV heatsink

,l~l l~l insulating bush

M3 bolt ca ci

Torque on nut for good heat transfer: 5kg cm

Milliard Accessories—Page 11 ACCESSORIES FOR 56218 TRANSISTORS

MOUNTING ACCESSORIES FOR TO-5, TO-12, TO-33, TO-39 OUTLINES

56218 Top and bottom clamping washers and Mylar washer

MECHANICAL DATA (Dimensions in mm)

22.0

Top clamping washer Bottom clamping washer of insulating material material: brass, tin plated Mylar washer THERMAL CHARACTERISTICS Rtriimb-di Thermal resistance mounting-base to heatsink, non-insulated mounting 1 degC/W insulated mounting 6 degC/W TEMPERATURE

Tmax Max. allowable temperature 100 °c MOUNTING INSTRUCTIONS

top clamping washer © -o~

ffi bottom clamping washer mylar washer ^1 "a ,*sm ^w heatsink i= hole mia7.5mm — Non-insulated: without items 2 and 3 II max.7.7mm M2.6 bolt Note: Item 1 must then be JJ mounted upside down.

Milliard Accessories—Page 12 ACCESSORIES FOR 56245 TRANSISTORS 56246

MOUNTING ACCESSORIES FOR TO-5, TO-12, TO-33, TO-39 OUTLINES (cont'd)

56245 Distance disc

MECHANICAL DATA (Dimensions in mm)

Insulating material

TEMPERATURE

I mix Max. allowable temperature 100 °C

56246 Distance disc

Insulating material

TEMPERATURE

Tm« Max. allowable temperature 100 °c

Milliard Accessories—Page 13 56301B ACCESSORIES FOR 56326 TRANSISTORS

MOUNTING ACCESSORIES FOR TO-126 OUTLINE

56301 B Mica washer 56326 Steel washer MECHANICAL DATA (Dimensions in mm)

--8-»1 D6281

cT

1.6

VTTTm v>/>tn E3ZE2ZZZ

3.22 —-i I— I Section A-A ram

Mica washer Steel washer THERMAL CHARACTERISTICS

Rth(rnt)-h} Thermal resistance mounting-base to heatsink,

without insulating material 1 degC/W with mica washer (56301 B) 4 degC/W

MOUNTING ^washer (56326) INSTRUCTIONS ^plastic transistor m :>•——mica washer (56301BI "—lock washer cr x ~~^^-nut (hex)

Mullard Accessories—Page 14 ACCESSORIES FOR 56301B TRANSISTORS 56326

MOUNTING DETAILS TO-126 OUTLINE

METHOD 1 METHOD 2

Milliard Accessories— Page 15 56239A ACCESSORIES FOR 56239B TRANSISTORS

MOUNTING ACCESSORIES FOR BS 3934 SO-55B OUTLINE

MECHANICAL DATA (Dimensions in mm)

3.8 3.1 -* ^

3^

i -4 . 7 -' -

Insulating bush Mica washer 56239A 56239B

THERMAL CHARACTERISTIC

Rth(mb-h) Thermal resistance mounting-base to heatsink 1 -5 degC/W

TEMPERATURE

T max Max. allowable temperature 150 °C

MOUNTING INSTRUCTIONS

nut rxs nut lock washer lock washer

soldering tag i rn

mica washer holes max 4mm- ^^i nw.iww.'wi' r.'ro^? heatsink

l~T l~l insulating bush

M3bolt

oo el I I Torque on nut for good heat transfer: 5kg cm.

Milliard Accessories—Page 16 ACCESSORIES FOR 56336A TRANSISTORS 56336B

MOUNTING ACCESSORIES FOR TO-3 OUTLINE

(High Voltage Application, up to 2kV)

56336A Insulating bush 56336 B Mica washer

—] 6JD K- l3.9t

3.1

^Z«Jl

Dimensions in mm

THERMAL CHARACTERISTICS

Rtn l mb-h l Thermal resistance, mounting-base to heatsink 1°C/W

The use of a heatsink compound is essential. When the mica washer is used, the compound must be applied to both sides of the washer.

Milliard Accessories—Page 17 56325 ACCESSORIES FOR 56338 TRANSISTORS

MOUNTING ACCESSORIES FOR TO-220

56325 Mica washer

MECHANICAL DATA Dimensions in mm

THERMAL RESISTANCE

From mounting base to heatsink R t h-h) = 2.5°C/W.

-> 56338 Insulating bush

MECHANICAL DATA Dimension in mm

\ 1 J t *— 07 -* 03.1

Mullard Accessories— Page 18 ABRIDGED DATA FOR EARLIER TYPES

ABRIDGED DATA FOR EARLIER TYPES Abridged data only are given in these tables. Full data for these types are available on request GERMANIUM TRANSISTORS

"1 Maximum Ratinqs h «. at Type v CE(sat) ai Typical Polarity Outline VCB 'cm 'C(AV) "tot min. max. I min. No. c max. I c l B power gain at25°C atf (V) (V) (mA) (mA) (°C) (mW) (mA) (MHz) (V) (mA) (mA) (dB) (MHz) ACY17 p-n-p TO-5 -70 -60 2A 500 90 260 50" 150 300 -0-35 ACY18 p-n-p TO-5 -50 -40 500 25 2A 500 90 260 40" 120 300 -0-35 ACY19 p-n-p 500 25 — TO-5 -50 -40 2A 500 90 260 80" 1-3* ACY20 250 300 -0-35 500 25 — p-n-p TO-5 -40 -32 2A 500 90 260 50" ACY21 145 50 -0-2 50 1-3 p-n-p TO-5 -40 -32 2A 500 90 90" 260 250 50 1-3* -0-2 50 1-3 ACY22 p-n-p TO-5 -20 -20 2A 500 90 260 30" 300 300 -035 ACY39 p-n-p TO-5 -110 -75 500 25 — 2A 500 90 260 50" 150 300 -0-35 ACY40 p-n-p TO-5 -32 -32 500 25 2A 500 90 260 30" 70 300 0-8* -0-35 ACY41 p-n-p TO-5 -32 -32 500 25 — 2A 500 90 260 50" 250 300 0-6* -0-35 ACY44 p-n-p 500 25 TO-5 -50 -40 2A 500 90 260 * 30 100 1 1 -0-2 50 1-3 ADY26 p-n-p TO-36 -80 -60 30A 25A 90 100W 40" 120 5A -0-5 ADZ11 p-n-p TO-36 -50 -40 25A 2-5A 20A 15A 90 45W 40" 120 1-2A 80kHz -10 ADZ12 p-n-p TO-36 -80 -60 15A 2A 20A 15A 90 45W 40" 120 1-2A AF114 p-n-p 100kHz -10 15A 2A TO-7 -20 -20 10 10 75 85 40 75* AFT 15 p-n-p 1 14 100 TO-7 -20 -20 10 10 75 85 40 75' 1 13 100 AF116 p-n-p TO-7 -20 -20 10 10 75 85 40 75" AF117 p-n-p TO-7 1 25 10-7 -20 -20 10 10 75 85 40 75" ASY26 1 42 0-4 p-n-p TO-5 -30 -15 300 200 85 150 30" ASY27 80 20 4 -0-2 10 0-3 p-n-p TO-5 -25 -15 300 200 85 150 50" 150 20 6 -0-2 10 0-2 ASY28 n-p-n TO-5 30 300 200 85 30" I _ 15| 150 80 20 0-2 10 03 L . .J 'typical GERMANIUM TRANSISTORS (cont.)

at Typical at f ^CE(sat) Ratings hfe T gain Maximum lc >b Power max. lc min. max. Ptot min. atf Type Polarity Dutiline VcbI V CE 'cm 'C(av) l at25°C (dB) (MHz) No. (mA) (MHz) (V) (mA) (mA) (V) (V) (mA) (mA) (°C) (mW) 0-2 *- 0-2 10 I 150 50* 150 20 10 TO-5 25 15 300 200 85 -0-35 10 10 ASY29 n-p-n 35 10 300 TO-18 -20 -15 50 30 85 120 ASZ21 p-n-p 25 75 1A 0-25 TO-3 -100 -75 10A 8A 90 30WJ -0-6* 1A 30 — OC20 p-n-p 22-5W| 50** 1A 2 -47 -32 2A 1A 90 -0-4* 30 — OC22 p-n-p TO-3 50** 1A 2-5 1A 2A 1A 90 22-5Wf OC23 p*n-p TO-3 -55 -40 50** 1A 2-5 -0-4* 1A 30 -47 -40 2A 1A 90 22-5Wt OC24 p-n-p TO-3 15"* 1A 0-25 -40 4A 4A 90 22-5Wt 80 OC25 p-n-p TO-3 -40 3 -0-2 50 3 50 75 112 20 90 10 p-n-p SO-2 -16 -15 150 5-5 -0-2 50 1-5 — OC41 50 75 112 40 10 — p-n-p SO-2 -16 -15 150 12 -0-28 125 7 OC42 50 75 112 50 200 50 OC43 p-n-p SO-2 -15 -15 150 7-5 -0-15 8| 0-5 70 40 225 1 -15 -15 10 5 75 -0-15 8 0-5 OC44 p-n-p SO-2 125 1 3 -15 10 5 75 70 25 0-5 p-n-p SO-2 -15 0-5 5kHz -0-33 9 OC45 10 75 125 20 40 — p-n-p SO-2 -30 -30 50 5kHz -0-21 9 0-5 OC70 10 75 125 41 1 p-n-p SO-2 -30 -30 50 0-33 E OC71 125 75 125 45 120 10 OC72 p-n-p SO-2 -32 -32 250 0-5 130 3 0-9 -0-21 9 -30 -30 50 10 75 125 60 OC75 p-n-p SO-2 10 0-35 -32 -32 250 125 75 125 45 — OC76 p-n-p SO-2 10 0-35 -60 250 125 75 125 45 — OC77 p-n-p SO-2 -60 3-5 0-22 50 3 250 75 145 20 84 15 n-p-n SO-2 20 20 250 4-5 0-22 50 1-2 OC139 400 75 145 50 150 15 OC140 n-p-n SO-2 20 20 400 0-22 50 0-7 145 80 200 15 I 90 20 20 400 400 75 25 10 OC141 n-p-n SO-2 1 75* -20 -20 10 10 75 85 40 14 100 OC170 p-n-p TO-7 1 75* -20 -20 10 10 75 85 40 TO-7 I

$T ...<45«>C 'typical **h FE tTc...<25"C e SILICON TRANSISTORS

1 Maximum Ratinas h Type Polarity Outline V fr V CE(sat) at CBO VCE0 'cm 'c(AV) Tj *on toff at Ptot min. max. I No. c min. max. | at25°C c ) B (V) (V) (mA) (mA) (°C) (mW) (mA) (MHz) (V) (mA) (mA) (ns) (ns) (mAl BC146 n-p-n (x mm. 20 20 50 50 125 50 80 550 BC186 p-n-p TO-18 0.2 150* 0-18 ' 20 -40 -25 200 100 175 300 — BC187 p-n-p 40 200 20 50 -0-5 50 TO-18 -30 -25 200 100 175 5 — BC200 300 100 500 20 50 -0-5 p-n-p (x min. -20 -20 50 5 50 50 125 50 50 400 0-2 90* §BCY55 n-p-n Block 45 -0-2* 20 45 60 30 125 300 200 600 10 50 10 10 0-5 BCZ11 p-n-p SO-2 -30 -25 100 50 150 250 15 50 20 BD115 n-p-n TO-39 245 0-9 -0-55 20 3 180 200 150 200 6t 22 — BD121 n-p-n TO-3 50 145* 90 100 10 60 35 5A 5A 175 45W 30 — B0123 n-p-n TO-3 90 1A 60 0-65 1A 100 — 60 5A 5A 175 45W 30 BD124 n-p-n SO-55 70 1A 60 0-65 1A 100 45 4A 2A 175 15W 35 500 60 0-50 2A 200 BDY10 n-p-n TO-3 50 40 4A 2A 175 150Wt 10 50 2A BDY11 n-p-n TO-3 100 70 10 0-7 2A 400 4A 2A 175 150Wf 10 50 2A BDY60 n-p-n TO-3 120 60 10 0-7 2A 400 10A 5A 175 15W 45 450 500 100* BDY61 n-p-n TO-3 100 60 0-7 5A 500 120 350 10A 5A 175 15W 45 450 500 100* 5A BDY62 n-p-n TO-3 60 30 10A 0-9 5A 500 120 350 5A 175 15W 45 450 500 100* 5A 0-9 5A 500 120 350 5A BF115 n-p-n TO-72 50 30 30 30 175 145 BF167 48 1 230* n-p-n TO-72 40 30 25 — BF173 25 175 130 350* n-p-n TO-72 40 25 25 BF177 25 175 260 550* n-p-n TO-5 100 50 60 50 200 600 20 — 15 120* BF178 n-p-n TO-5 160 115 50 E E I . | 50 200 600 | 20 30 120* | 'typical _L L tTmb S 25°C §Du al tran sistor SILICON TRANSISTORS (cont.)

BF264 BFS18R BFS19R BFS92 BFS93 BFS94 BFS95 BFW16 BFW17 BFW45 BFW57 BFW58 BFW59 BFW60 BFW87

•typical tTc»se^125°C tT m b<50°C J

SILICON TRANSISTORS (cont.)

Maximum Ratinas h FE at Type Polarity VcE(sat) at ton toff at Outline "CBO VcEO T; 'cm 'c(AV) Ptot min. max. I c min. max. I No. at25°C c | B (V) (V) (mA) (mA) (°C) (mW) (mA) (MHz) (V) (mA) (mA) (ns) (ns) (mA) BFW88 p-n-p Lock-fit -60 -60 500 500 125 300 40 130 150 100 -0-4 BFW89 p-n-p 150 15 50 290 100 Lock-fit -40 -40 500 500 125 300 80 320 BFW90 150 100 -04 150 15 50 290 100 p-n-p Lock-fit -40 -40 500 500 125 300 40 BFW91 120 150 100 -0-4 150 15 50 290 100 p-n-p Lock-fit -20 -20 500 500 125 300 125* 40 150 100 -0-4 150 15 50 BFW92 n-p-n T pack 25 15 50 25 290 100 125 130 20 150 20 1600* 0-75 20 BFX12 p-n-p TO-18 -20 -15 140 100 200 300 20 60 10 150 -0-25 BFX13 10 1 p-n-p TO-18 -20 -15 140 100 200 300 50 250 10 150 -0-25 10 1 BFX34 n-p-n TO-39 120 60 5A 2A 200 870 40 150 2A 70 10 5A 500 210 BFX37 p-n-p TO-18 -60 -60 50 50 340 5A 200 360 100 170* 10 -0-25 10 0-5 BLY17 n-p-n TO-36 100 100" 10A 10A 175 lOOWf 5 5A 50 20 10A 2A BSS27 n-p-n TO-39 70 45 1A 1A 200 800 25 400* BSS28 500 0-4 500 35 25 40 500 n-p-n TO-39 50 30 1A 1A 200 800 30 — 500 400* 0-5 500 35 25 45 BSS29 n-p-n TO-39 50 30 1A 1A 200 500 800 20 500 400* 0-5 500 35 30 BSW41 n-p-n TO-18 40 25 500 300 200 50 500 1W 20 500 250 0-5 150 15 BSW65 n-p-n TO-5 80 80 2A 1A 50 100 300 200 800 40 100 80* 0-4 500 50 BSW69 n-p-n Plastic 150 150 50 50 125 125 30 4 130* BSX12 n-p-n 40 20 10 TO-39 25 12 1A 1A 200 3WJ 30 120 300 BSX12A 450 0-33 300 30 11 19 1A n-p-n TO-39 25 15 1A 1A 200 3WJ 30 120 BSX44 300 450 0-33 300 30 11 19 1A n-p-n TO-18 15 6 200 200 300 30 150 20 600 0-45 50 50 20 15 20 BSX76 n-p-n 20 J TO-18 20 400 200 200 350 35 10 50 0-35 50 2-5 J 40 80 100 "typical **Vcbit (Rbb<' Oil) tTmb<25 °C tTcase*S95°C ~

SILICON TRANSISTORS (cont.)

at V at ton toff Maximum Ratings h FE at fT C E(sat) min. min. max. I c Type Polarity Outline Vcbo VcEO IcM C(AV) °tot at25°C (ns) (mA) No. (mA) (MHz) (V) (mA) (mA) (ns) (V) (V) (mA) (mA) (°C) (mW) 100 0-35 50 2-5 40 80 100 40 20 400 200 200 350 40 120 10 BSX77 n-p-n TO-18 100 0-35 50 2-5 40 80 100 40 20 400 200 200 350 80 240 10 BSX78 n-p-n TO-18 1 27 130 10 300 20 60 10 200 0-35 10 n-p-n TO-18 20 15 200 100 175 BSY26 200 0-35 10 1 27 130 10 15 200 100 175 300 40 120 10 BSY27 n-p-n TO-18 20 0-6 100 10 14 45 100 175 300 15 45 100 350* BSY38 n-p-n TO-18 20 15 200 100 14 45 100 20 70 100 350* 0-6 100 10 TO-18 20 15 200 100 175 300 50 BSY39 n-p-n 140 -0-2 10 1 25 100 -25 -20 140 100 200 300 25 60 10 BSY40 p-n-p TO-18 -0-2 10 1 25 100 50 -20 100 200 300 50 200 10 140 BSY41 p-n-p TO-18 -25 140 -0-35 10 0-2 200 100 140 150 50 200 10 200 BSY95 n-p-n TO-18 20 15 7-5* 2-5A 1-5A 750 2A 115 10W 50 BUI 05 n-p-n TO-3 1500 1500 2-5A 2-5A 0-45 -0-55 20 3 -25 100 50 150 250 10 50 20 OC200 p-n-p SO-2 -30 -0-55 20 3 ~ -25 -20 100 50 150 250 10 70 20 20 OC201 p-n-p SO-2 1-4 -0-55 20 3 -15 -10 100 50 150 250 24 125 20 OC202 p-n-p SO-2 0-3 -0-55 20 3 -50 100 50 150 250 10 50 20 OC203 p-n-p SO-2 -60 -0-56 125 17 — — 150 125 10 30 150 0-45 OC204 p-n-p SO-2 -32 -32 500 250 0-45 -0-56 125 17 -60 -60 500 250 150 125 10 50 150 OC205 p-n-p SO-2 0-85 -0-55 125 17 -32 500 250 150 125 16 120 150 OC206 p-n-p SO-2 -32 -0-56 150 17 - = - 250 150 310 12 70 150 20 OC207 p-n-p SO-2 -50 -50 500 INDEX INDEX to Book 1 (Parts 1 & 2)

Type Number Part/ Suggested Type N umber Part/ Suggested Section alternative Section alternative AC127 1B BCY70 1B AC128/2-AC128 1B BCY71 IB AC128/AC176 1B BCY72 1B AC176 1B BCY87/8/9 1B AC187 1B BCZ11 D* AC188 1B BD115 D* ACY17to22 D* AC128 BD121/3 D' BDY92/60 ACY39 to 41 D* AC128 BD124 ACY44 D' D* BD131/2-BD131 AD140/2-AD140 1B AD149 BD132 1B AD149/2-AD149 1B BD133 1B AD161 1B BD135to 140 1B AD161/2 1B BD181 to 184 1B AD162 1B BD201 ADY26 to 204 1B D* BD232 1B ADZ11/12 D* BD233 to 238 1B AF114to117 D* BD262/A/B . 1B AFY19 * BFX88 BD263/A/B 1B ASY26 to 29 D* BD433to438 ASY67 1B BCY70 BDX35/6/7 1B ASZ20 BCY70 BDX42/3/4 1B ASZ21 D* BDX62/A/B ASZ23 1B BCY70 BDX63/A/B 1B BC1 07/8/9 1B BDX64/A/B BC146 1B D' BCW32R BDX65/A/B 1B BC1 47/8/9 1B BDY10/11 D" BDY20 BC1 57/8/9 1B BDY20/2-BDY20 1B BC186/7 D' BCY70 BDY38/2-BDY38 BC200 1B D* BCW30R BDY60/1/2 D* BC327/8 1B BDY90 to 95 1B

BC337/8 1B BDY96/7/8 BC547/8/9 1B 1B BF115 D" BC557/8/9 1B BF167 D* BF196 BCW29R/30R 1B BF173 D* BF197 BCW31 R to 33R 1B BF1 77/8/9 D'

BCW69R to 72R 1B BF180 BCX17/18 1B 1B BF181 1B BCX19/20 1B BF182 D* BCX21 1B BF183 D* BCX31 to 34 1B BF184/5 BF194/5 BCX35 to 37 1B BF194 1B BCY30/1/2/3/4 1B BF195 BCY38/9/40 1B 1B BF196 1B BCY54 1B BF197 BCY55 1B D* BCY87 BF200 13 •Not recommended for the design of new equipment Full data for these types are available on request. Part/ Suggested Type Number Part/ Suggested Type Number Section alternative Section alternative 3FY50/1/2 2B EJF245A/B/C 1B BF362/3 BFY53 2B 13F262/3 D' 2B 3F264 D* BFY90 2B BF324 1B BGY22/A 2B BF336/7/8 1B BGY23/A 2B BF355 1B BLX13 2B BF362/3 1B BLX14 2B BF450/1 1B BLX65 BFQ10to16 2B BLX66 2B 2B BFR29 2B BLX67 2B BFR30/1 2B BLX69 2B BFR63/4 2B BLX91 2B BFR90 28 BLX92 2B BFR91 2B BLX93 BFR92 2B BLX94 2B BLX14 BFR93 2B BLY17 D* BFS17R 2B BLY33/4 2B BFS18R/19R D # BFS20R BLY35 2B BFS20R 2B BLY36 2B BFS21/21A 2B BLY53A 2B

BFS28 2B BLY55 2B 2B BFS92 to 95 D* BCX35-37 BLY83 BFT24 2B BLY84 2B 2B BFT25 2B BLY85 2B BFW10/11 2B BLY89A

BFW16 D* BFW16A BLY90 2B BFW16A 2B BLY93A 2B BFW17 D' BFW17A BLY94 2B BFW17A 2B BLY97 2B BFW30 2B BRY39 2B BSS27/8/9 D* BSX59 BFW45 D* BSX21 BSS40/1 2B BFW57/8/9/60 D* BCX32-34 BSS50/1/2 2B BFW61 2B BSV22 D" BFR29/BSV81 BFW87 to 91 D" BFX85 BSV52R 2B BFW92 D' BFS17R BSV64 2B BFW96 D* BFR29/BSV81 BSV68 2B BFX12/13 D* BCY70 BSV78/9/80 2B BFX29 2B BSV81 2B BFX30 2B BSW41 D' BFX34 D* BSV64 BSW65 D* BFX85

BFX37 D* BCY70 BSW66/7/8 2B BFX63 D* BFR29/BSV81 BSW69 D* BFX84/5/6 2B BSX12/12A D* BFX87/8 2B BSX19/20 2B BFX89 2B BSX21 2B

* Not recommended for the design of new equipment. request. Full data for these types are available on BAB

Type Number Part/ Suggested Type Number Part/ Suggested Section alternative Section alternative BSX44 D" BSX19 2N3375 BSX59/60/61 2B 2B 2N3442 BSX76/7/8 D* 2B 2N3553 2B BSX82 D* BFR29/BSV81 2N3632 2B BSY26/7 D' BSX19/20 2N3823 2B BSY38/9 D' 2N3866 BSY40/1 2B D' BCY70 2N3966 BSY95 D* 2B BSY95A 2N4091/2/3 2B 2B 2N4347 BU126 2B 2B 2N4391/2/3 2B BU133 2B 2N4427 BU204/5/6 2B 2B BU207/8/9 2N4856to4861 2B 2B 56200 OC20 D' C 56201 OC22/3/4/5 D' C 56201 C OC26 * AD149 0C28/9 56207 C 2B 56209 OC35/6 C 2B 56214 OC41/2/3/4/5 D' C 56218 C OC70/1/2 D* AC128 56226 OC75/6/7 C D* AC128 56227 OC122/3 • C BFX87 56239A 0C1 39/40/41 D' C OC170/1 56239B C D' 56245 OC200to207 D" C 56246 2N1613 2B C 56263 2N1711 2B C 56265 2N2297 2B C 56300 2N2369A 2B c 2N2904/4A 2B 56301 c 56325 2N2905/5A 2B c 56326 2N2906/6A 2B c 2N2907/7A 2B 56336A c 2N3053 2B 56336B c 56338 2N3055 2B c

ttlki _.* ... . . t -..~~- „ — .«. imc ucoiyu o[ new equipment. Full data for these types are available on request. TRANSISTORS CONTENTS

4 SELECTION GUIDE

= A GENERAL SECTION

= TRANSISTORS BFQ10 to OC36 = B (including 2N types)

= c ACCESSORIES

D ABRIDGED DATA FOR EARLIER TYPES

i INDEX