The 5Å Resolution Crystal Structure of Adenylosuccinate Synthetase from Escherichia Coli

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1990 The 5Å esolutr ion crystal structure of adenylosuccinate synthetase from Escherichia coli Michael Alan Serra Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Bacteriology Commons, Biochemistry, Biophysics, and Structural Biology Commons, and the Cellular and Molecular Physiology Commons Recommended Citation Serra, Michael Alan, "The 5Å er solution crystal structure of adenylosuccinate synthetase from Escherichia coli " (1990). Retrospective Theses and Dissertations. 11220. https://lib.dr.iastate.edu/rtd/11220 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. jm 19 9 Ô ^ INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper aligimient can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 Nortti Zeeb Road, Ann Arbor, fvll 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9035115 The 5Â resolution crystal structure of adenylosuccinate synthetase from Escherichia eoli Serra, Michael Alaji, Ph.D. Iowa State University, 1990 UMI 300N.ZeebRd. Ann Arbor, MI 48106 The 5Â resolution crystal structure of adenylosuccinate synthetase from Escherichia coli by Michael Alan Serra A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Biochemistry and Biophysics Major; Molecular, Cellular, and Developmental Biology Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. For the Majo^VDepartment Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1990 i i TABLE OF CONTENTS Page DEFINITIONS iv ABBREVIATIONS v INTRODUCTION 1 Properties of the Synthetase from Escherichia coli 3 Mechanism 4 Role in Disease 6 Cancer 6 Hyperuricemia and gout 7 Malaria 8 Inhibitors of Therapeutic Importance 9 Long Range Goals 11 Present Study 12 CRYSTALLIZATION AND CHARACTERIZATION OF THREE CRYSTAL FORMS 13 Enzyme Preparation 13 Growth of the P2i and the P2i2j2]^ Crystal Forms 13 Crystalline Enzyme-Ligand Complexes; Soaking Experiments 16 Crystalline Enzyme-Ligand Complexes: Growth of the P3i21 (P3221) Crystal Form 16 Space Group Determination 18 Determination of the P2i crystal form 18 Determination of the ?2i2i2i crystal form 20 Determination of the P3i21 (P3221) crystal form 21 Results and Discussion 28 i i i STRUCTURE DETERMINATION OF THE P2i CRYSTAL FORM TO 5.0À RESOLUTION 32 Introduction 32 Phase Problem 36 Isomorphous replacement 37 Anomalous scattering 39 Materials and Methods 43 Crystallization 43 Crystal manipulation 44 Data collection 46 Data processing 49 RESULTS AND DISCUSSION 72 Stabilization Buffer 72 Heavy Atom Derivatives 74 Patterson Map 78 Rotation Function 80 Electron Density Map 87 APPENDIX: STRUCTURE OF l-(p-NITROBENZYLIDINEAMINO) GUANIDINIUM CHLORIDE 102 Abstract 102 Introduction 102 Experimental 104 Discussion 105 REFERENCES 112 ACKNOWLEDGEMENT 118 iv DEFINITIONS x,y,z fractional coordinates; for atomic positions a,b,c unit cell edge vectors parallel to the X, Y, and Z axes of a right handed coordinate system a*,b*,c* reciprocal unit cell vectors associated with the X, Y, and Z axes of a right handed coordinate system a,b,c unit cell edges in direct space a*,b*,c* unit cell edges in reciprocal space r direct space vector; r = ax + by + cz h reciprocal space vector; h = ha* + kb* + Ic* F(h) structure factor for the hth reciprocal space vector referred to one unit cell F*(h) the conjugate vector of F(h) F(h) modulus or amplitude of any vector F(h) f atomic scattering factor a, (3. Y angles between pairs of unit cell edges be, ac, and ab respectively V ABBREVIATIONS AMP adenosine 5'-monophosphate ATP adenosine 5'-triphosphate IMP inosine 5'-monophosphate GMP guanosine 5'-monophosphate GDP guanosine 5'-diphosphate GTP guanosine 5'-triphosphate HEPES N-2-hydroxyethylpiperazine-N'-2- ethanesulfonic acid MPD 2-methyl-2,4-pentanediol PEG 3350 polyethylene glycol, approximate molecular weight of 3350 pi isoelectric point 1 INTRODUCTION Adenylosuccinate synthetase catalyzes the first committed step toward the ^ novo biosynthesis of AMP (Figure 1). Adenylosuccinate is formed from the ligation of IMP and aspartate with the concomitant hydrolysis of GTP to GDP and P^. Adenylosuccinate lyase then cleaves adenylosuccinate releasing fumarate and AMP. Adenylate kinase transfers a high energy phosphate from ATP to AMP to produce two molecules of ADP. Finally, ATP is produced from ADP and P^ by oxidative phosphorylation in animals and by photophosphorylation in plants. OOCCHaÇHCOO- NH L-aspartate. GDP + PI Adenylosuccinate ribose-5'-P ribos6-5'-P synthetase Adenylosuccinate Inosine 5'-monophosphate Figure 1. The reaction catalyzed by adenylosuccinate synthetase Adenylosuccinate synthetase also participates in the purine nucleo­ tide cycle (1,2). This cycle (Figure 2) involves the interconversion of IMP, adenylosuccinate and AMP and is thought to play a number of regulatory roles including: 1) the liberation of ammonia from amino acids via aspartate, 2) regulation of adenine ribonucleotides, 3) regulation of phosphofructokinase activity and glycolysis via changes in AMP and ammonia levels, 4) regulation of phosphorylase b which is 2 activated by IMP, and 5) replenishment of citric acid cycle intermediates in tissues that do not have pyruvate carboxylase. "<X> ribose-5'-P IMP L-aspartate ^ / NH/ Adenylosuccinate synthetase f AMP deaminase / ^ GDPGDF + Pi OOCCHgCHCOO" NH NHg fumarate 6) adenylosuccinate "<ï> lyase ribose-5'-P ribose-S'-P AMP Adenylosuccinate Figure 2. The purine nucleotide cycle The enzyme has been isolated from plant (3), animal (4), and bacterial systems (4). The synthetase is believed to be enzymatically active as a dimer with typical dimeric molecular weights of 90,000 to 110,000 daltons (5-7). The enzyme from all sources requires a divalent cation for activity (7-11). Magnesium is the best activator, but Mn2+ 3 and Ca2+, and in some cases Co2+, Ba2+, and will substitute with decreased activity. Matsuda et al. (6) reported the isolation of two isozymic forms of adenylosuccinate synthetase. Later studies in chicken (12) and in healthy tissues of rat and rabbit also revealed only two distinct forms (8,13). They are distinguished by their isoelectric points. The acidic isozyme (pl=5.9) predominates in the brain, kidney, and spleen (6) and is believed to be involved primarily with ^ novo biosynthesis. The basic isozyme (pl=8.9) is found predominantly in skeletal and cardiac muscle and its primary role appears be the purine nucleotide cycle (1,2). The liver contains roughly equal amounts of both (6). This dissertation will concentrate on the structure of the synthetase isolated from Escherichia coli. A comprehensive review of the regulation, genetics and properties of the synthetase from various sources has been published (4). Properties of the Synthetase from Escherichia coli The synthetase from E. coli exists as a dimer with a molecular weight of 96,000 Da (14). The amino acid sequence has been determined (15). Post translational processing cleaves the N-terminal methionine leaving 431 amino acids in the polypeptide chain. Little homology exists between adenylosuccinate synthetase and other GTP binding proteins. This suggests the possibility of a unique nucleotide fold. The enzyme from ^ coli most closely resembles the acidic isozyme from mammalian tissues. 4 Mechanism COO- 0 fO_H- "OOCCHgCHCOOr B| 0 ^ 09 NH £-L-osp-GTP'IMP^= E-GOP-N'^N^ -L-asp^z^GDPPj-E- N^N. c R5P , R5P % //h 'OOCCHgÇHCOO" -OOCCHpCHCOO" -O^NH. r., -HO,P., I .ST.. St»-. ÂSP 5} ' R5P Figure 3. Three different reaction mechanisms proposed for adenylosuc­ cinate synthetase. This figure is taken from reference 4 Initial rate kinetic studies from a variety of sources (10,12,16-18)
Recommended publications
  • United States Patent 19 11 Patent Number: 5,780,253 Subramanian Et Al

    United States Patent 19 11 Patent Number: 5,780,253 Subramanian Et Al

    III USOO5780253A United States Patent 19 11 Patent Number: 5,780,253 Subramanian et al. (45) Date of Patent: Jul. 14, 1998 54 SCREENING METHOD FOR DETECTION OF 4.433.999 2/1984 Hyzak ....................................... 71.03 HERBCDES 4.6–552 2/1987 Anoti et al. if O3. 4,802,912 2/1989 Baker ........................................ 7/103 Inventors: Wenkiteswaran Subramanian Danville: Anne G. Toschi. Burlingame. OTHERTHER PPUBLICATION CATIONS both of Calif. Heim et al. Pesticide Biochem & Physiol; vol. 53, pp. 138-145 (1995). 73) Assignee: Sandoz Ltd., Basel. Switzerland Hatch. MD.: Phytochem. vol. 6... pp. 115 to 119, (1967). Haworth et al. J. Agric. Food Chem, vol. 38, pp. 1271-1273. 21 Appl. No.:752.990 1990. Nishimura et al: Phytochem: vol. 34, pp. 613-615. (1993). 22 Filed: Nov. 21, 1996 Primary Examiner-Louise N. Leary Related U.S. Application Data Attorney, Agent, or Firm-Lynn Marcus-Wyner: Michael P. Morris 63 Continuation of Ser. No. 434.826, May 4, 1995, abandoned. 6 57 ABSTRACT 51 Int. Cl. ............................... C12Q 1/48: C12Q 1/32: C12Q 1/37; C12O 1/00 This invention relates to novel screening methods for iden 52 U.S. Cl. ................................. 435/15:435/18: 435/26: tifying compounds that specifically inhibit a biosynthetic 435/23: 435/4, 536/23.6:536/23.2:536/24.3 pathway in plants. Enzymes which are specifically affected 536/26.11:536/26.12:536/26.13 by the novel screening method include plant purine biosyn 58 Field of Search .................................. 435/15, 8, 26, thetic pathway enzymes and particularly the enzymes 435/23 4: 536/23.6, 23.2, 24.3, 26.1, involved in the conversion of inosine monophosphate to 26.12, 26.13 adenosine monophosphate and inosine monophosphate to guanosine monophosphate.
  • 35 Disorders of Purine and Pyrimidine Metabolism

    35 Disorders of Purine and Pyrimidine Metabolism

    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
  • SUPPY Liglucosexlmtdh

    SUPPY Liglucosexlmtdh

    US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.
  • Nucleotide Metabolism Pathway: the Achilles' Heel for Bacterial Pathogens

    Nucleotide Metabolism Pathway: the Achilles' Heel for Bacterial Pathogens

    REVIEW ARTICLES Nucleotide metabolism pathway: the achilles’ heel for bacterial pathogens Sujata Kumari1,2,* and Prajna Tripathi1,3 1National Institute of Immunology, New Delhi 110 067, India 2Present address: Department of Zoology, Magadh Mahila College, Patna University, Patna 800 001, India 3Present address: Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110 062, India de novo pathway, the nucleotides are synthesized from Pathogens exploit their host to extract nutrients for their survival. They occupy a diverse range of host simple precursor molecules. In the salvage pathway, the niches during infection which offer variable nutrients preformed nucleobases or nucleosides which are present accessibility. To cause a successful infection a patho- in the cell or transported from external environmental gen must be able to acquire these nutrients from the milieu to the cell are utilized to form nucleotides. host as well as be able to synthesize the nutrients on its own, if required. Nucleotides are the essential me- tabolite for a pathogen and also affect the pathophysi- Purine biosynthesis pathway ology of infection. This article focuses on the role of nucleotide metabolism of pathogens during infection The purine biosynthesis pathway is universally conserved in a host. Nucleotide metabolism and disease pathoge- in living organisms (Figure 1). As an example, we here nesis are closely related in various pathogens. Nucleo- present the pathway derived from well-studied Gram- tides, purines and pyrimidines, are biosynthesized by positive bacteria Lactococcus lactis. In the de novo the de novo and salvage pathways. Whether the patho- pathway the purine nucleotides are synthesized from sim- gen will employ the de novo or salvage pathway dur- ple molecules such as phosphoribosyl pyrophosphate ing infection is dependent on various factors, like (PRPP), amino acids, CO2 and NH3 by a series of enzy- availability of nucleotides, energy condition and pres- matic reactions.
  • Annual Symposium of the Society for the Study of Inborn Errors of Metabolism Birmingham, UK, 4 – 7 September 2012

    Annual Symposium of the Society for the Study of Inborn Errors of Metabolism Birmingham, UK, 4 – 7 September 2012

    J Inherit Metab Dis (2012) 35 (Suppl 1):S1–S182 DOI 10.1007/s10545-012-9512-z ABSTRACTS Annual Symposium of the Society for the Study of Inborn Errors of Metabolism Birmingham, UK, 4 – 7 September 2012 This supplement was not sponsored by outside commercial interests. It was funded entirely by the SSIEM. 01. Amino Acids and PKU O-002 NATURAL INHIBITORS OF CARNOSINASE (CN1) O-001 Peters V1 ,AdelmannK2 ,YardB2 , Klingbeil K1 ,SchmittCP1 , Zschocke J3 3-HYDROXYISOBUTYRIC ACID DEHYDROGENASE DEFICIENCY: 1Zentrum für Kinder- und Jugendmedizin de, Heidelberg, Germany IDENTIFICATION OF A NEW INBORN ERROR OF VALINE 2Universitätsklinik, Mannheim, Germany METABOLISM 3Humangenetik, Innsbruck, Austria Wanders RJA1 , Ruiter JPN1 , Loupatty F.1 , Ferdinandusse S.1 , Waterham HR1 , Pasquini E.1 Background: Carnosinase degrades histidine-containing dipeptides 1Div Metab Dis, Univ Child Hosp, Amsterdam, Netherlands such as carnosine and anserine which are known to have several protective functions, especially as antioxidant agents. We recently Background, Objectives: Until now only few patients with an established showed that low carnosinase activities protect from diabetic nephrop- defect in the valine degradation pathway have been identified. Known athy, probably due to higher histidine-dipeptide concentrations. We deficiencies include 3-hydroxyisobutyryl-CoA hydrolase deficiency and now characterized the carnosinase metabolism in children and identi- methylmalonic semialdehyde dehydrogenase (MMSADH) deficiency. On fied natural inhibitors of carnosinase. the other hand many patients with 3-hydroxyisobutyric aciduria have been Results: Whereas serum carnosinase activity and protein concentrations described with a presumed defect in the valine degradation pathway. To correlate in adults, children have lower carnosinase activity although pro- identify the enzymatic and molecular defect in a group of patients with 3- tein concentrations were within the same level as for adults.
  • 1 T CELL ACTIVATION TRIGGERS REVERSIBLE INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE ASSEMBLY Krisna C. Duong-Ly 1, Yin-Ming Kuo 2

    1 T CELL ACTIVATION TRIGGERS REVERSIBLE INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE ASSEMBLY Krisna C. Duong-Ly 1, Yin-Ming Kuo 2

    bioRxiv preprint doi: https://doi.org/10.1101/315929; this version posted May 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. T CELL ACTIVATION TRIGGERS REVERSIBLE INOSINE-5’-MONOPHOSPHATE DEHYDROGENASE ASSEMBLY Krisna C. Duong-Ly1, Yin-Ming Kuo2, Matthew C. Johnson3, Justin M. Kollman3, Jonathan Soboloff4, Glenn F. Rall5, Andrew J. Andrews2, and Jeffrey R. Peterson1 1Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 2Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 3Department of Biochemistry, University of Washington, Seattle, WA 4Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 5Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA Correspondence to Jeffrey R. Peterson: [email protected], Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, ORCID: 0000-0002-0604-718X; Yin-Ming Kuo’s present address is Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA Short running title: IMPDH FILAMENT ASSEMBLY IN T CELLS Abbreviations used: IMP: inosine-5’-monophosphate IMPDH: inosine-5’-monophosphate dehydrogenase 1 bioRxiv preprint doi: https://doi.org/10.1101/315929; this version posted May 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
  • Supplementary Table S1 List of Proteins Identified with LC-MS/MS in the Exudates of Ustilaginoidea Virens Mol

    Supplementary Table S1 List of Proteins Identified with LC-MS/MS in the Exudates of Ustilaginoidea Virens Mol

    Supplementary Table S1 List of proteins identified with LC-MS/MS in the exudates of Ustilaginoidea virens Mol. weight NO a Protein IDs b Protein names c Score d Cov f MS/MS Peptide sequence g [kDa] e Succinate dehydrogenase [ubiquinone] 1 KDB17818.1 6.282 30.486 4.1 TGPMILDALVR iron-sulfur subunit, mitochondrial 2 KDB18023.1 3-ketoacyl-CoA thiolase, peroxisomal 6.2998 43.626 2.1 ALDLAGISR 3 KDB12646.1 ATP phosphoribosyltransferase 25.709 34.047 17.6 AIDTVVQSTAVLVQSR EIALVMDELSR SSTNTDMVDLIASR VGASDILVLDIHNTR 4 KDB11684.1 Bifunctional purine biosynthetic protein ADE1 22.54 86.534 4.5 GLAHITGGGLIENVPR SLLPVLGEIK TVGESLLTPTR 5 KDB16707.1 Proteasomal ubiquitin receptor ADRM1 12.204 42.367 4.3 GSGSGGAGPDATGGDVR 6 KDB15928.1 Cytochrome b2, mitochondrial 34.9 58.379 9.4 EFDPVHPSDTLR GVQTVEDVLR MLTGADVAQHSDAK SGIEVLAETMPVLR 7 KDB12275.1 Aspartate 1-decarboxylase 11.724 112.62 3.6 GLILTLSEIPEASK TAAIAGLGSGNIIGIPVDNAAR 8 KDB15972.1 Glucosidase 2 subunit beta 7.3902 64.984 3.2 IDPLSPQQLLPASGLAPGR AAGLALGALDDRPLDGR AIPIEVLPLAAPDVLAR AVDDHLLPSYR GGGACLLQEK 9 KDB15004.1 Ribose-5-phosphate isomerase 70.089 32.491 32.6 GPAFHAR KLIAVADSR LIAVADSR MTFFPTGSQSK YVGIGSGSTVVHVVDAIASK 10 KDB18474.1 D-arabinitol dehydrogenase 1 19.425 25.025 19.2 ENPEAQFDQLKK ILEDAIHYVR NLNWVDATLLEPASCACHGLEK 11 KDB18473.1 D-arabinitol dehydrogenase 1 11.481 10.294 36.6 FPLIPGHETVGVIAAVGK VAADNSELCNECFYCR 12 KDB15780.1 Cyanovirin-N homolog 85.42 11.188 31.7 QVINLDER TASNVQLQGSQLTAELATLSGEPR GAATAAHEAYK IELELEK KEEGDSTEKPAEETK LGGELTVDER NATDVAQTDLTPTHPIR 13 KDB14501.1 14-3-3
  • Developmental Disorder Associated with Increased Cellular Nucleotidase Activity (Purine-Pyrimidine Metabolism͞uridine͞brain Diseases)

    Developmental Disorder Associated with Increased Cellular Nucleotidase Activity (Purine-Pyrimidine Metabolism͞uridine͞brain Diseases)

    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11601–11606, October 1997 Medical Sciences Developmental disorder associated with increased cellular nucleotidase activity (purine-pyrimidine metabolismyuridineybrain diseases) THEODORE PAGE*†,ALICE YU‡,JOHN FONTANESI‡, AND WILLIAM L. NYHAN‡ Departments of *Neurosciences and ‡Pediatrics, University of California at San Diego, La Jolla, CA 92093 Communicated by J. Edwin Seegmiller, University of California at San Diego, La Jolla, CA, August 7, 1997 (received for review June 26, 1997) ABSTRACT Four unrelated patients are described with a represent defects of purine metabolism, although no specific syndrome that included developmental delay, seizures, ataxia, enzyme abnormality has been identified in these cases (6). In recurrent infections, severe language deficit, and an unusual none of these disorders has it been possible to delineate the behavioral phenotype characterized by hyperactivity, short mechanism through which the enzyme deficiency produces the attention span, and poor social interaction. These manifesta- neurological or behavioral abnormalities. Therapeutic strate- tions appeared within the first few years of life. Each patient gies designed to treat the behavioral and neurological abnor- displayed abnormalities on EEG. No unusual metabolites were malities of these disorders by replacing the supposed deficient found in plasma or urine, and metabolic testing was normal metabolites have not been successful in any case. except for persistent hypouricosuria. Investigation of purine This report describes four unrelated patients in whom and pyrimidine metabolism in cultured fibroblasts derived developmental delay, seizures, ataxia, recurrent infections, from these patients showed normal incorporation of purine speech deficit, and an unusual behavioral phenotype were bases into nucleotides but decreased incorporation of uridine.
  • Supplements Inference of Cancer Mechanisms Through Computational Systems Analysis

    Supplements Inference of Cancer Mechanisms Through Computational Systems Analysis

    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2017 Supplements Inference of Cancer Mechanisms through Computational Systems Analysis Zhen Qi and Eberhard O. Voit Mathematical model of purine metabolism in human. A published kinetic model of human purine metabolism was used as a computational platform; it consists of 16 ordinary differential equations with 37 fluxes 1, 2. In the literature, the fluxes were formulated either as traditional Michaelis-Menten kinetics or as power law functions under the tenets of Biochemical Systems Theory 3. Here we chose the latter. Many parameters were obtained from experimental and clinical data in humans, and the remaining values were estimated using biological constraints, such as the ratio of adenine and guanine in nucleic acids, which is approximately 3/2, or the fact that normal subjects excrete about 420 mg per day of UA in urine. A detailed analysis of the steady-state properties of the mathematical model demonstrated that the steady state is stable and robust. Analysis also showed that the model is not sensitive to parameter changes. Simulations of normal and pathological perturbations of purine metabolism yielded consistent results with some representative biochemical and clinical observations. All these analyses are described in great detail in the literature 3. Implementation of enzyme activities altered by cancer. Weber discovered several changes in the enzyme activities of purine metabolism in human renal carcinoma cells 4. The affected enzymes and their fold changes compared to normal kidney cells are listed in Table S4. These alterations are expected to result in changed metabolite levels between normal human cells and human renal cell carcinoma, which were computed with the mathematical model, and the values at the corresponding steady state are shown in Table 1 in the Text.
  • Nucleo'de)Metabolism) (Chapter)23)) INTRODUCTION)TO)NUCLEIC)ACIDS)

    Nucleo'de)Metabolism) (Chapter)23)) INTRODUCTION)TO)NUCLEIC)ACIDS)

    BIOCH 765: Biochemistry II Spring 2014 Nucleo'de)Metabolism) (Chapter)23)) Jianhan)Chen) Office)Hour:)MF)1:30B2:30PM,)Chalmers)034) Email:)[email protected]) Office:)785B2518) INTRODUCTION)TO)NUCLEIC)ACIDS) (c))Jianhan)Chen) 2) Eukaryo'c)cell) 3 Genome)is)believed)to)define)a)species) 4 Nucleic)Acids) • Polymer(of( nucleotides:(highly( flexible((compared( to(peptides)( • Nucleic(acids(are( universal(in(living( things,(as(they(are( found(in(all(cells( and(viruses.( • Nucleic(acids(were( first(discovered(by( Friedrich(Miescher( in(1871.( (c))Jianhan)Chen) 5 Building)Blocks)of)Nucleo'des) • Phosphate(group(+(pentose(carbohydrate(+( base((nitrogenGcontaining(heterocyclic(ring)( • Deoxyribonucleic(acid((DNA):(A/G/C/T( • Ribonuclei(acid((RNA):(A/G/C/U( Nucleotide nucleobase 6 Nucleo'des)have)many)roles) • Building(blocks(of(the(nucleic(acid(polymers(RNA(and( DNA.( • Energy(transfer(or(energy(coupling(to(drive(biosynthesis( and(other(processes((muscle(contraction,(transport,(etc).( • Oxidation(reduction(reactions.( • Intracellular(signaling.( ATP 7 Pentose)sugars) Base Phosphate sugar • The(pentose(sugar(in(the(nucloetide(is(either(ribose(or( deoxyribose.( ( – The(base(is(added(at(the(1(position(and(phosphates(are(added(at( the(5(position.( – Most(nucleotides,(including(those(incorporated(into(RNA,(contain( ribose.( – 2’GOH(reduced(to(–H(in(deoxynucleotides( – 3’GOH(participates(in(forming(phosphodiester(linkage( – Deoxynucleotides(are(exclusively(used(for(DNA(synthesis.( 8 Nucleo'de)forma'on) O ║ H N The base is added at the 1 6 N position and phosphates
  • Open Thesis Final Draft Janowitz.Pdf

    Open Thesis Final Draft Janowitz.Pdf

    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY MODELING THE REPRODUCTIVE PHENOTYPES OF ADENYLOSUCCINATE LYASE DEFICIENCY IN C. ELEGANS HALEY JANOWITZ FALL 2017 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Biochemistry and Molecular Biology with honors in Biochemistry and Molecular Biology Reviewed and approved* by the following: Wendy Hanna-Rose Interim Department Head, Biochemistry and Molecular Biology Associate Professor of Biochemistry and Molecular Biology Thesis Supervisor Sarah Ades Associate Professor of Biochemistry and Molecular Biology Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT Mutations in enzymes that function in purine metabolism result in human syndromes with a wide variety of symptoms. Adenylosuccinate lyase deficiency (ASLD) is characterized by the decrease in function of adenylosuccinate lyase (ADSL), a bi-functional enzyme within de novo purine biosynthesis. In humans, this syndrome is characterized by neuronal, developmental, and metabolic defects which include symptoms of seizures, encephalopathy, psychomotor retardation, and autistic features. The molecular mechanisms driving this disease are currently unknown. I report on the reproductive phenotypes associated with a knockdown of ADSL in Caenorhabditis elegans. I identify sterility in animals with significant knockdown of adsl-1 expression, as well as embryonic lethality and oogenesis defects associated with a partial knockdown of adsl-1 expression. Using supplementation, I correlate these phenotypes with a decreased flux through de novo purine biosynthesis. Although reproductive phenotypes are not directly correlated with human symptoms, these findings still have impact on the role of purines in the development of patients with ASLD.
  • Diagnose a Broad Range of Metabolic Disorders with a Single Test, Global

    Diagnose a Broad Range of Metabolic Disorders with a Single Test, Global

    PEDIATRIC Assessing or diagnosing a metabolic disorder commonly requires several tests. Global Metabolomic Assisted Pathway Screen, commonly known as Global MAPS, is a unifying test GLOBAL MAPS™ for analyzing hundreds of metabolites to identify changes Global Metabolomic or irregularities in biochemical pathways. Let Global MAPS Assisted Pathway Screen guide you to an answer. Diagnose a broad range of metabolic disorders with a single test, Global MAPS Global MAPS is a large scale, semi-quantitative metabolomic profiling screen that analyzes disruptions in both individual analytes and pathways related to biochemical abnormalities. Using state-of-the-art technologies, Global Metabolomic Assisted Pathway Screen (Global MAPS) provides small molecule metabolic profiling to identify >700 metabolites in human plasma, urine, or cerebrospinal fluid. Global MAPS identifies inborn errors of metabolism (IEMs) that would ordinarily require many different tests. This test defines biochemical pathway errors not currently detected by routine clinical or genetic testing. IEMs are inherited metabolic disorders that prevent the body from converting one chemical compound to another or from transporting a compound in or out of a cell. NORMAL PROCESS METABOLIC ERROR These processes are necessary for essentially all bodily functions. Most IEMs are caused by defects in the enzymes that help process nutrients, which result in an accumulation of toxic substances or a deficiency of substances needed for normal body function. Making a swift, accurate diagnosis