Element of The

Total Page:16

File Type:pdf, Size:1020Kb

Element of The Element of the Day Bk Berkelium (bәr­kee­lee­әm), is a transuranic radioactive chemical element with the symbol Bk and atomic number 97, a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the University of California Radiation Laboratory where it was discovered in December 1949. Just over one gram of berkelium has been produced in the United States since 1967. There is no practical application of berkelium outside of scientific research which is mostly directed at the synthesis of heavier transuranic elements and transactinides. Berkelium is a soft, silvery­white, radioactive metal. The berkelium­249 isotope emits low­energy electrons and thus is relatively safe to handle. However, it decays with a half­life of 330 days to californium­249, which is a strong and hazardous emitter of alpha particles. This gradual transformation is an important consideration when studying the properties of elemental berkelium and its chemical compounds, since the formation of californium brings not only chemical contamination, but also self­radiation damage, and self­heating from the emitted alpha particles. What orbitals do the valence electrons of Bk occupy? 1 Chemistry 1. Element of the Day 2. Review Homework 3. VSEPR Theory Notes 4. POGIL Activity 5. Start Homework Announcements Due Today: POGIL ACTIVITY and read pages 299 ­ 307 and answer questions 57, 58, 64, 69, 74, 80, and 81. Due Monday: Finish POGIL Activity, briefly review Chapter 11, and begin work on your study guide. Extra Credit: Crossword Puzzle Due Monday 2 Review Homework 3 Electron Configuration Notes Key Terms Electron configuration Orbital diagram (box diagram) Valence electrons 4 Write the electron configuration for the following: 1. H 2. He 3. C 4. F 5. Ca How many electrons can fit into the 2nd principal quantum level? How many electrons could be found in the 3rd principal quantum levels? 5 Electron Configuration Notes ­Trends in the Periodic Table Metals Nonmetals Metalloids Ionization energy Electronegativity Representative elements Atomic Size 6 Lewis Dot Products In almost all stable chemical compounds of the representative elements, all of the atoms have achieved a noble gas electron configuration. Lewis structure: is a representation of a molecule that shows how the valence electrons are arranged among the atoms in the molecule. Octet rule: they are surrounded by eight electrons. Lone pairs: unshared electrons example: fluorine gas. Examples of Lewis Dot Structures: 1. H2O 2. NH3 3. CO2 7 VSEPR Model Notes Molecular Structure (Geometric Structure): Bond Angle: Shapes 1. Trigonal Planar Structure: 2. Tetrahedral Structure (Tetrahedron): 3. VSEPR Model: Example: 8 VSEPR Model Notes Steps for Predicting Molecular Structure Using the VSEPR Model 1. Draw the Lewis Structure 2. Count the electron pairs and arrange them in the way that minimizes repulsion (as far apart as possible). 3. Determine the postions of the atoms from the way the electron pairs are shared. 4. Determine the name of the molecular structure from the positions of the atoms. Example: CH4 9 VSEPR POGIL Activity 10 Exit Question What molecular structure does NH4 have? Reminder Due Today: POGIL ACTIVITY and read pages 299 ­ 307 and answer questions 57, 58, 64, 69, 74, 80, and 81. Due Monday: Finish POGIL Activity, review chapter 11 and begin work on your study guide. Extra Credit: Crossword Puzzle Due Monday 11.
Recommended publications
  • Heavy Element Chemistry Contractors' Meeting Program and Abstracts
    Department of Energy Office of Science Chemical Sciences, Geosciences and Biosciences Division Heavy Element Chemistry Contractors' Meeting Advanced Photon Source Office Building Argonne National Laboratory November 19 - 21, 2000 Program and Abstracts Heavy Element Chemistry Contractors' Meeting November 19 - 21, 2000 Program i Sunday, November 19, 2000; 1630 - 2100 Put up posters in APS Office Building Gallery Monday Morning, November 20, 2000 700 - 900 Breakfast at the hotel; Poster set up in APS Office Building Gallery 900 Start of meeting - APS Office Building - E1100 and E1200 Department of Energy, Office of Science, Chemical 900 - 905 Edelstein, Norman Welcome and Introductions Sciences, Geosciences and Biosciences Division Department of Energy, Office The View of Heavy Element of Science, Chemical 905 - 930 Smith, Paul Chemistry from DOE, Sciences, Geosciences and Washington Biosciences Division 930 Short presentations - Oral session I - APS Office Building - E1100 and E1200 Gas Phase GAS-PHASE ACTINIDE ION Oak Ridge National 930 Gibson, John P1-1 CHEMISTRY Laboratory Chemistry Department, SUPERHEAVY ELEMENT University of California, CHEMISTRY STUDIES AT Berkeley, Nuclear Science 940 Nitsche, H. P1-2 THE BERKELEY GAS- Division, The Glenn T. FILLED SEPARATOR Seaborg Center, Lawrence Berkeley National Laboratory ii Solid State STRUCTURAL RELATIONSHIPS AND Dorhout, Peter UNIQUE ASPECTS OF Department of Chemistry, 950 P1-3 K. ACTINIDE Colorado State University CHALCOPHOSPHATE MATERIALS: Th, U, Pu. SPECTROSCOPIC INVESTIGATIONS OF Oak Ridge National 1000 Assefa, Z. P1-4 ACTINIDES IN THE SOLID Laboratory STATE SYNTHESIS AND PHOTOPHYSICS OF HEAVY Chemistry Division, Argonne 1010 Beitz, J. V. P1-5 ELEMENT-CONTAINING National Laboratory NANOPHASES ACTINIDE CHEMISTRY UNDER NEAR-NEUTRAL Los Alamos National 1020 Dewey, H.
    [Show full text]
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Techniques of Preparation and Crystal Chemistry of Transuranic Chalcogenides and Pnictides D
    Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides D. Damien, R. Haire, J. Peterson To cite this version: D. Damien, R. Haire, J. Peterson. Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides. Journal de Physique Colloques, 1979, 40 (C4), pp.C4-95-C4-100. 10.1051/jphyscol:1979430. jpa-00218826 HAL Id: jpa-00218826 https://hal.archives-ouvertes.fr/jpa-00218826 Submitted on 1 Jan 1979 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, supplément au n° 4, Tome 40, avril 1979, page C4-95 Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides (*) D. A. Damien (**), R. G. Haire and J. R. Peterson (t) Transuranium Research Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37830, U.S.A. Résumé. — La cristallochimie d'un certain nombre de chalcogénures et pnictures d'éléments transuraniens a été étudiée en utilisant les isotopes Am, Cm, Bk et Cf. Les composés ont été préparés par réaction directe du métal avec l'élément chalcogène ou pnictogène à température élevée. Les chalcogénures supérieurs ont été dissociés thermiquement pour donner des composés à stœchiométrie plus basse dont les sesquichalco- génures constituent la limite.
    [Show full text]
  • Genius of the Periodic Table
    GENIUS OF THE PERIODIC TABLE "Isn't it the work of a genius'. " exclaimed Academician V.I. Spitsyn, USSR, a member of the Scientific Advisory Committee when talking to an Agency audience in January. His listeners shared his enthusiasm. Academician Spitsyn was referring to the to the first formulation a hundred years ago by Professor Dmitry I. Mendeleyev of the Periodic Law of Elements. In conditions of enormous difficulty, considering the lack of data on atomic weights of elements, Mendeleyev created in less than two years work at St. Petersburg University, a system of chemical elements that is, in general, still being used. His law became a powerful instrument for further development of chemistry and physics. He was able immediately to correct the atomic weight numbers of some elements, including uranium, whose atomic weight he found to be double that given at the time. Two years later Mendeleyev went so far as to give a detailed description of physical or chemical properties of some elements which were as yet undiscovered. Time gave striking proof of his predictions and his periodic law. Mendeleyev published his conclusions in the first place by sending, early in March 186 9, a leaflet to many Russian and foreign scientists. It gave his system of elements based on their atomic weights and chemical resemblance. On the 18th March that year his paper on the subject was read at the meeting of the Russian Chemical Society, and two months later the Society's Journal published his article entitled "The correlation between properties of elements and their atomic weight".
    [Show full text]
  • Peaceful Berkelium
    in your element Peaceful berkelium The first new element produced after the Second World War has led a rather peaceful life since entering the period table — until it became the target of those producing superheavy elements, as Andreas Trabesinger describes. f nomenclature were transitive, element 97 with the finding that in Bk(iii) compounds would be named after an Irish bishop spin–orbit coupling leads to a mixing of the Iwhose philosophical belief was that first excited state and the ground state. This material things do not exist. But between gives rise to unexpected electronic properties the immaterialist George Berkeley and the not present in analogous lanthanide element berkelium stands, of course, the structures containing terbium. Even more fine Californian city of Berkeley (pictured), recently5, a combined experimental and where the element was first produced in computational study revealed that berkelium December 1949. The city became the eponym can have stabilized +iii and +iV oxidation of element 97 “in a manner similar to that states also under mild aqueous conditions, used in naming its chemical homologue indicating a path to separating it from other terbium […] whose name was derived from lanthanides and actinides. the town of Ytterby, Sweden, where the rare The main use of berkelium, however — earth minerals were first found”1. arguably one that wouldn’t have met with A great honour for the city? The mayor Bishop Berkeley’s approval — remains a of Berkeley at the time reportedly displayed PHOTO STOCK / ALAMY AF ARCHIVE distinctly material one: as the target for “a complete lack of interest when he was the synthesis of other transuranium and called with the glad tidings”2.
    [Show full text]
  • Upper Limit of the Periodic Table and the Future Superheavy Elements
    CLASSROOM Rajarshi Ghosh Upper Limit of the Periodic Table and the Future Department of Chemistry The University of Burdwan ∗ Superheavy Elements Burdwan 713 104, India. Email: [email protected] Controversy surrounds the isolation and stability of the fu- ture transactinoid elements (after oganesson) in the periodic table. A single conclusion has not yet been drawn for the highest possible atomic number, though there are several the- oretical as well as experimental results regarding this. In this article, the scientific backgrounds of those upcoming super- heavy elements (SHE) and their proposed electronic charac- ters are briefly described. Introduction Totally 118 elements, starting from hydrogen (atomic number 1) to oganesson (atomic number 118) are accommodated in the mod- ern form of the periodic table comprising seven periods and eigh- teen groups. Total 92 natural elements (if technetium is consid- ered as natural) are there in the periodic table (up to uranium hav- ing atomic number 92). In the actinoid series, only four elements— Keywords actinium, thorium, protactinium and uranium—are natural. The Superheavy elements, actinoid rest of the eleven elements—from neptunium (atomic number 93) series, transactinoid elements, periodic table. to lawrencium (atomic number 103)—are synthetic. Elements after actinoids (i.e., from rutherfordium) are called transactinoid elements. These are also called superheavy elements (SHE) as they have very high atomic numbers. Prof. G T Seaborg had Elements after actinoids a very distinct contribution in the field of transuranium element (i.e., from synthesis. For this, Prof. Seaborg was awarded the Nobel Prize in rutherfordium) are called transactinoid elements. 1951.
    [Show full text]
  • BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To
    BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged to Four and Five Significant Figures Norman E. Holden Energy Sciences & Technology Department National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Prepared for the 44th IUPAC General Assembly, in Torino, Italy August 2007 Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • Remarkable Complexation and Stabilization of Berkelium(IV) by A
    Remarkable complexation and stabilization of berkelium(IV) by a synthetic siderophore: An experimental and theoretical comparison with neighboring trivalent actinide elements Gauthier J-P. Deblonde1, Manuel Sturzbecher-Hoehne1, Peter B. Rupert,2 Dahlia D. An,1 Marie-Claire Illy,1 Corie Y. Ralston,3 Jiri Brabec,4 Wibe A. de Jong*,5 Roland K. Strong*,2 and Rebecca J. Abergel* 1 1 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 2 Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA 3 Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 4 J. Heyrovsky Institute of Physical Chemistry, 18223 Prague 8, Czech Republic 5 Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Keywords: Berkelium; Californium; Actinides; Chelation; Separation; Luminescence; Sensitization Page 1 Abstract Despite theoretical assertions of berkelium (Bk) being the only transplutonium element that can exhibit +III and +IV oxidation states in solution, evidence of a stable oxidized Bk chelate has so far been elusive. Using a siderophore derivative, stabilization of the heaviest 4+ ion of the periodic table was achieved under mild aqueous conditions. The resulting Bk(IV) complex exhibits unprecedented sensitized luminescence through ligand-to-metal energy transfer, but also inhibits Bk interactions with the protein siderocalin, a mammalian metal transporter. Formation of this neutral Bk(IV) coordination compound contrasts sharply with the corresponding negatively charged species incorporating neighboring trivalent americium, curium and californium (Cf), which are sequestered by siderocalin, as evidenced by Xray diffraction analysis of the Cf(III)-ligand-protein ternary adduct, the first example and crystallographic characterization of a Cf macromolecular assembly.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Periodic Table of Elements
    The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 The origin of the elements Univ.-Ass. Dipl.-Ing. Dr. techn. Ille C. Gebeshuber Institut für Allgemeine Physik Technische Universität Wien Wiedner Hauptstrasse 8-10/134 1040 Wien Tel. +43 1 58801 13436 FAX: +43 1 58801 13499 Internet: http://www.ille.com/ © 2007 © Photographs of the elements: Mag. Jürgen Bauer, http://www.smart-elements.com 1 The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 I. The Periodic table............................................................................................................... 5 Arrangement........................................................................................................................... 5 Periodicity of chemical properties.......................................................................................... 6 Groups and periods............................................................................................................. 6 Periodic trends of groups.................................................................................................... 6 Periodic trends of periods................................................................................................... 7 Examples ................................................................................................................................ 7 Noble gases .......................................................................................................................
    [Show full text]
  • Ment 98), Einsteinium (Element 99), Fermium (Element 100), Mendelevium (Element Downloaded by Guest on September 26, 2021 472 PHYSICS: G
    VOL. 45, 1959 PHYSICS: G. T. SEABORG 471 of californium isotopes. The horizontal broken line labeled "0.02%" indicates the peak height for a group which would have that intensity relative to the total alpha particles. It is seen that the general background is considerably higher than this value, and, in fact, some of the peaks which are sketched in are hardly justifi- able in view of the scatter of the data. The bottom part of Figure 8 shows the same part of the spectrum taken under much improved conditions, as shown by the line illustrating the peak height of 0.02 per cent. All of the peaks are seen much more clearly and, in addition, one or two have showed up which were completely ob- scured under the other conditions. The principal change in technique which re- sulted in this improvement consisted of lining the interior of the spectrograph with very-low-atomic-number material which has the desirable effect of reducing low- angle scattering of alpha particles. In summary, we may say that during the past few years very important ad- vances in theory, as well as in experimental technique, are beginning to result in a systematic assignment of nuclear spectroscopic states and an interpretation of these states in terms of some detailed knowledge of nuclear structure. In this discussion, attention has been confined to one aspect of a very broad problem, namely, that having to do with spectroscopic states in the heavy-element region deduced from the alpha-decay process. There are many other experimental methods which are brought to bear on this problem, some of which have been touched upon in a peripheral sense in this discussion and others not mentioned at all.
    [Show full text]