New Math Texts Specifically Prepared for Initial College Exposure to Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

New Math Texts Specifically Prepared for Initial College Exposure to Mathematics Calendar This Calendar lists all of the meetings which have been approved by the Council up to the date this issue of the cNotiaiJ was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Abstracts should be submitted on special forms which are available in most departments of mathematics; forms can also be obtained by writing to the headquarters of the Society. Abstracts to be presented at the meeting in person must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline for the meeting. Meeting Deadline for Abstracts* Number Date Place and News I terns August 1974 No summer meeting; Inter- June 15, 1974 national Congress (see below) (News Items only) 716 October 26, 1974 Middletown, Connecticut Sept. 3, 1974 717 November 8-9, 1974 Nashville, Tennessee Sept. 24, 1974 718 November 22-23, 1974 Los Angeles, California Sept. 24, 1974 719 November 23, 1974 Houston, Texas Sept. 24, 1974 720 January 23-27, 1975 Washington, D. C. Nov. 5, 1974 (81st Annual Meeting) April 18-19, 1975 Monterey, California June 20-21, 1975 Pullman, Washington August 18-22, 1975 Kalamazoo, M!cb!gan January 22-26, 1976 San Antonio, Texas (82nd Annual Meeting) *Deadline for abstracts not presented at a meeting (by title). August 1974 issue: June 8 October 1974 Issue: August 26 OTHER EVENTS Angust 21-29, 1974 International Congress of Mathematicians Vancouver, B. C., Canada April 15, 1974 The zip code of the Post Office Box of the Society has been changed from 02904 to 02940. Correspondents are requested to note this change in their records. Please affix the peel-off label on these cNofiaiJ to correspondence with the Society concerning fiscal matters, changes of address, promotions, or when placing orders for books and journals. The c)fofiaiJ of the American Mathematical Society is published by the Americao Mathematical Society, P. 0. Box 6248, Providence, Rhode Island 02940, in Jaouary, February, April, June, August, October, November, aod December. Price per aonual volume is $10. Price per copy $3. Special price for copies sold at registration desks of meetings of the Society, $1 per copy. Subscriptions, orders for back numbers (back issues of the last two years only are available), and inquiries should be addressed to the American Mathematical Society, P. 0. Box 6248, Providence, Rhode Island 02940. Second class postage, paid at Providence, Rhode Islaod, aod additional mailing offices. Copyright © 197 4 by the American Mathematical Society Printed in the United States of America OF THE AMERICAN MATHEMATICAL SOCIETY Everett Pitcher and Gordon L. Walker, Editors Wend ell H. Fleming, Associate Editor CONTENTS MEETINGS Calendar of Meetings . Inside Front Cover Program for the May Meeting in DeKalb . 172 Abstracts for the Meeting: A-453-A-464 INVITED SPEAKERS AT MEETINGS................................................... 178 PRELIMINARY ANNOUNCEMENTS OF MEETINGS . • . 179 NEW FORMAT FOR ABSTRACTS . 179 THE ROLE OF THE DISSERTATION IN THE PH. D. PROGRAM . • . 180 QUERIES •...........•..........•.....•.•.• , .............. , . • . • . 186 THE PRESERVATION OF ARCHIVAL MATERIALS 187 SPECIAL MEETINGS INFORMATION CENTER . • . 188 PERSONAL ITEMS . • . 190 NEW AMS PUBLICATIONS .......................................•.••.......... , . 191 NEWS ITEMS AND ANNOUNCEMENTS . 179, 189, 191 RELATIONS BETWEEN US-USSR SCIENTIFIC JOURNALS AND PUBLISHERS . 192 ABSTRACTS ....................................................•................... A-431 ERRATA TO ABSTRACTS ............................................................ A-464 SITUATIONS WANTED .............................................................•. A-465 Seven Hundred Fifteenth Meeting N orthem Illinois UDiversity DeKalb, Illinois May 13-17,1974 The seven hundred fifteenth meeting of the John Milnor, David Mumford, Albrecht Ffister, American Mathematical Society will be held at Julia B. Robinson, Guido Stampacchia, John T. Northern nlinois University in DeKalb, nlinois, Tate, Robert Tijdeman, ArthurS. Wightman, from Monday, May 13, to Friday, May 17. The and Chung-Tao Yang. principal feature of the meeting will be a sym­ There will be five hour addresses per day posium on Mathematical Developments Arising in the symposium on Monday through Thursday. from the Hilbert Problems. In additon there will be four hour addresses for In 1900, David Hilbert delivered a lecture the Society meeting on Friday whose subject mat­ before the Second International Congress of ter will be an integral part of the symposium; Mathematicians at Paris. In this lecture, he they will be given by John H. Conway, 0. Timothy posed only ten of the twenty-three problems that O•Meara, Hugh L. Montgomery, and James B. appeared in the published reports. The paper Serrin. was first published in the Gottinger Nachrichten At the request of the Organizing Committee [{1900), 253-297], and Archiv der Mathematik of the Symposium on Mathematical Developments und Physik [3d ser. 1 (1901), 44-63, 213-237]. Arising from the Hilbert Problems, Professor The English translation by Dr. Mary Winston Jean Dieudonne has set up a committee of emi­ Newson appeared in the Bulletin of the American nent mathematicians to assemble a list of the Mathematical Society [50 (1902), 437-479] under most outstanding unsolved problems of present the title "Mathematical problems"; and a sum­ day mathematics. It is hoped that such a list mary in French of Hilbert• s talk and the list of might serve to focus the interest of young re­ the problems appeared in L' Enseignement Mathe­ search mathematicians on worthwhile projects matique [2 (1900), 349-355]. A substantial por­ and help them see their way through the con­ tion of the Bulletin article, with some additional siderable amount of mathematical publications. comments, was reproduced as Chapter 10, "The It is hoped that a preliminary version of this future of mathematics," in Hilbert by Constance collection of problems will be available at the Reid, Springer-Verlag, 19~ symposium and that a more definitive version Hilbert died in 1943 at the age of eighty-one. will be published in the proceedings of the sym­ An obituary by Hermann Weyl appeared in the posium. Bulletin of the American Mathematical Society There will be sessions for the presentation [50 (1944), 612-654], and in the Boletin da So­ of contributed ten-minute papers early Friday ciedade de Matematica de Sao Paulo [1 (1946), morning and late Friday afternoon, May 17. 76-104, and 2 (1947), 34-601. Professor Weyl All the addresses on the Mathematical De­ stated: "His Paris address on •Mathematical velopments Arising from the Hilbert Problems problems• .•. straddles all fields of our science. will be presented in the Carl Sandburg Audito­ Trying to unveil what the future would hold in rium of the University Center. The sessions of store for us, he posed and discussed twenty­ contributed papers will be held in Reavis West, three unsolved problems which have indeed, as a classroom building four-minutes walk from we can now state in retrospect, played an im­ the University Center. portant role during the following forty odd years. The Council of the Society will meet at A mathematician who had solved one of them 2:00 p.m. on Sunday, May 12, 1974, at the thereby passed on to the honors class of the Holiday Inn, 1212 W. Lincoln Highway in DeKalb. mathematical community." In the time that has REGISTRATION elapsed since Weyl wrote this, further develop­ ments have strongly endorsed his opinion. The registration desk will be located in the This symposium on Mathematical Develop­ lobby of the University Center. The desk will be ments Arising from the Hilbert Problems will be open from 8:30 a.m. to 4:30 p.m. Monday supported by a grant from the National Science through Friday. A message center will be main­ Foundation. This topic was chosen by the Com­ tained at the registration desk. The registration mittee to Select Hour Speakers for Western Sec­ fees for the meeting are as follows: members tional Meetings. The Organizing Committee of $5. 00, nonmembers $7. 50, and students and the symposium consists of Paul T. Bateman, unemployed mathematicians $1. 00. Felix E. Browder (chairman), R. Creighton ACCOMMODATIONS Buck, Donald J. Lewis, and Daniel Zelinsky. The list of speakers includes Lipman Bers, The following accommodations will be Enrico Bombieri, Herbert Busemann, Nicholas available on or near the Northern nlinois Uni­ M. Katz, Steven L. Kleiman, Georg Kreisel, versity campus for this meeting. R. Langlands, G. G. Lorentz, Donald A. Martin, A. Dormitory accommodations in Grant 172 South, a student dormitory complex ten-minutes From O•Hare to DeKalb walk from the University Center. These accom­ modations are not recommended for families with Lv. O•Hare Ar. DeKalb small children. Maid service is not provided. Room rates are $3. 50 per person per night on a Sun. May 12 3:35p.m. 5:20p.m. double occupancy basis, and $5. 50 per person 5:35p.m. 7:20p.m. per night in a single room. 7:35p.m. 9:20p.m. B. Accommodations in the University Plaza, a private dormitory type building five­ Mon. May 13 9:35a.m. 11:20 a.m. minutes walk from the University Center. Maid 11:35 a.m. 1:20 p.m. service is provided. Room rates are $7. 50 per 7:35p.m. 9:20p.m. person per night on a double occupancy basis, Tues. May 14 7:35p.m. 9:20p.m. and $8. 50 per person per night in a single room. All rooms have shared baths. Wed. May 15 7:35p.m. 9:20p.m. C. A limited number of rooms in the Uni­ Thurs. May 16 3:35p.m. 5:20p.m. versity Center. All of these rooms are for dou­ 5:35p.m. 7:20p.m. ble occupancy at the rate of $7.
Recommended publications
  • A Combinatorial Analysis of Topological Dissections
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ADVANCES IN MATHEMATICS 25, 267-285 (1977) A Combinatorial Analysis of Topological Dissections THOMAS ZASLAVSKY Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 From a topological space remove certain subspaces (cuts), leaving connected components (regions). We develop an enumerative theory for the regions in terms of the cuts, with the aid of a theorem on the Mijbius algebra of a subset of a distributive lattice. Armed with this theory we study dissections into cellular faces and dissections in the d-sphere. For example, we generalize known enumerations for arrangements of hyperplanes to convex sets and topological arrangements, enumerations for simple arrangements and the Dehn-Sommerville equations for simple polytopes to dissections with general intersection, and enumerations for arrangements of lines and curves and for plane convex sets to dissections by curves of the 2-sphere and planar domains. Contents. Introduction. 1. The fundamental relations for dissections and covers. 2. Algebraic combinatorics: Valuations and MGbius algebras. 3. Dissections into cells and properly cellular faces. 4. General position. 5. Counting low-dimensional faces. 6. Spheres and their subspaces. 7. Dissections by curves. INTRODUCTION A problem which arises from time to time in combinatorial geometry is to determine the number of pieces into which a certain geometric set is divided by given subsets. Think for instance of a plane cut by prescribed curves, as in a map of a land area crisscrossed by roads and hedgerows, or of a finite set of hyper- planes slicing up a convex domain in a Euclidean space.
    [Show full text]
  • The Dehn-Sydler Theorem Explained
    The Dehn-Sydler Theorem Explained Rich Schwartz February 16, 2010 1 Introduction The Dehn-Sydler theorem says that two polyhedra in R3 are scissors con- gruent iff they have the same volume and Dehn invariant. Dehn [D] proved in 1901 that equality of the Dehn invariant is necessary for scissors congru- ence. 64 years passed, and then Sydler [S] proved that equality of the Dehn invariant (and volume) is sufficient. In [J], Jessen gives a simplified proof of Sydler’s Theorem. The proof in [J] relies on two results from homolog- ical algebra that are proved in [JKT]. Also, to get the cleanest statement of the result, one needs to combine the result in [J] (about stable scissors congruence) with Zylev’s Theorem, which is proved in [Z]. The purpose of these notes is to explain the proof of Sydler’s theorem that is spread out in [J], [JKT], and [Z]. The paper [J] is beautiful and efficient, and I can hardly improve on it. I follow [J] very closely, except that I simplify wherever I can. The only place where I really depart from [J] is my sketch of the very difficult geometric Lemma 10.1, which is known as Sydler’s Fundamental Lemma. To supplement these notes, I made an interactive java applet that renders Sydler’s Fundamental Lemma transparent. The applet departs even further from Jessen’s treatment. [JKT] leaves a lot to be desired. The notation in [JKT] does not match the notation in [J] and the theorems proved in [JKT] are much more general than what is needed for [J].
    [Show full text]
  • Computational Design of Steady 3D Dissection Puzzles
    DOI: 10.1111/cgf.13638 EUROGRAPHICS 2019 / P. Alliez and F. Pellacini Volume 38 (2019), Number 2 (Guest Editors) Computational Design of Steady 3D Dissection Puzzles Keke Tang1;2 Peng Song3y Xiaofei Wang4 Bailin Deng5 Chi-Wing Fu6 Ligang Liu4 1 Cyberspace Institute of Advanced Technology, Guangzhou University 2 University of Hong Kong 3 EPFL 4 University of Science and Technology of China 5 Cardiff University 6 The Chinese University of Hong Kong Figure 1: (a&b) TEAPOT - SNAIL dissection puzzle designed by our method; (c) 25 3D-printed pieces; and (d&e) assembled puzzles. Abstract Dissection puzzles require assembling a common set of pieces into multiple distinct forms. Existing works focus on creating 2D dissection puzzles that form primitive or naturalistic shapes. Unlike 2D dissection puzzles that could be supported on a tabletop surface, 3D dissection puzzles are preferable to be steady by themselves for each assembly form. In this work, we aim at computationally designing steady 3D dissection puzzles. We address this challenging problem with three key contributions. First, we take two voxelized shapes as inputs and dissect them into a common set of puzzle pieces, during which we allow slightly modifying the input shapes, preferably on their internal volume, to preserve the external appearance. Second, we formulate a formal model of generalized interlocking for connecting pieces into a steady assembly using both their geometric arrangements and friction. Third, we modify the geometry of each dissected puzzle piece based on the formal model such that each assembly form is steady accordingly. We demonstrate the effectiveness of our approach on a wide variety of shapes, compare it with the state-of-the-art on 2D and 3D examples, and fabricate some of our designed puzzles to validate their steadiness.
    [Show full text]
  • An Algorithm for Creating Geometric Dissection Puzzles
    An Algorithm for Creating Geometric Dissection Puzzles Yahan Zhou, [email protected] Rui Wang, [email protected] Department of Computer Science, UMass Amherst Abstract Geometric dissection is a popular category of puzzles. Given two planar figures of equal area, a dissection seeks to partition one figure into pieces that can be reassembled to construct the other figure. In this paper, we present a computational method for creating lattice-based geometric dissection puzzles. Our method starts by representing the input figures on a discrete grid, such as a square or triangular lattice. Our goal is then to partition both figures into the smallest number of clusters (pieces) such that there is a one-to-one and congruent matching between the two sets of clusters. Solving this problem directly is intractable with a brute-force approach. We propose a hierarchical clustering method that can efficiently find near-optimal solutions by iteratively minimizing an objective function. In addition, we modify the objective function to include an area-based term, which directs the solution towards pieces with more balanced sizes. Finally, we show extensions of our algorithm for dissecting 3D shapes of equal volume. 1 Introduction Geometric dissection is a mathematical problem that has enjoyed for a long time great popularity in recre- ational math and art [4,7]. In its basic form, the dissection question asks whether any two shapes of the same area are equi-decomposable, that is, if they can be cut into a finite number of congruent polygonal pieces [4]. Such problems have a rich history originating from the exploration of geometry by the ancient Greeks.
    [Show full text]
  • Proofs from the BOOK
    Martin Aigner · Günter M. Ziegler Proofs from THE BOOK Fifth Edition Martin Aigner Günter M. Ziegler Proofs from THE BOOK Fifth Edition Martin Aigner Günter M. Ziegler Proofs from THE BOOK Fifth Edition Including Illustrations by Karl H. Hofmann 123 Martin Aigner Günter M. Ziegler Freie Universität Berlin Freie Universität Berlin Berlin, Germany Berlin, Germany ISBN978-3-662-44204-3 ISBN978-3-662-44205-0(eBook) DOI 10.1007/978-3-662-44205-0 © Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Coverdesign: deblik, Berlin Printed on acid-free paper Springer is Part of Springer Science+Business Media www.springer.com Preface Paul Erdos˝ liked to talk about The Book, in which God maintains the perfect proofs for mathematical theorems, following the dictum of G. H. Hardy that there is no permanent place for ugly mathematics.
    [Show full text]
  • Constant Weight Codes: a Geometric Approach Based on Dissections Chao Tian, Member, IEEE, Vinay A
    1 Constant Weight Codes: A Geometric Approach Based on Dissections Chao Tian, Member, IEEE, Vinay A. Vaishampayan Senior Member, IEEE and N. J. A. Sloane Fellow, IEEE Abstract— We present a novel technique for encoding and with the property that it is impossible to dissect one into a decoding constant weight binary codes that uses a geometric finite number of pieces that can be rearranged to give the interpretation of the codebook. Our technique is based on other, i.e., that the two tetrahedra are not equidecomposable. embedding the codebook in a Euclidean space of dimension equal to the weight of the code. The encoder and decoder mappings are The problem was immediately solved by Dehn [7]. In 1965, then interpreted as a bijection between a certain hyper-rectangle after 20 years of effort, Sydler [23] completed Dehn’s work. and a polytope in this Euclidean space. An inductive dissection The Dehn-Sydler theorem states that a necessary and sufficient algorithm is developed for constructing such a bijection. We prove condition for two polyhedra to be equidecomposable is that that the algorithm is correct and then analyze its complexity. they have the same volume and the same Dehn invariant. This The complexity depends on the weight of the code, rather than on the block length as in other algorithms. This approach is invariant is a certain function of the edge-lengths and dihedral advantageous when the weight is smaller than the square root angles of the polyhedron. An analogous theorem holds in of the block length. four dimensions (Jessen [11]), but in higher dimensions it is Index Terms— Constant weight codes, encoding algorithms, known only that equality of the Dehn invariants is a necessary dissections, polyhedral dissections, bijections, mappings, Dehn condition.
    [Show full text]
  • Intendd for Both
    A DOCUMENT RESUME ED 040 874 SE 008 968 AUTHOR Schaaf, WilliamL. TITLE A Bibli6graphy of RecreationalMathematics, Volume INSTITUTION National Council 2. of Teachers ofMathematics, Inc., Washington, D.C. PUB DATE 70 NOTE 20ap. AVAILABLE FROM National Council of Teachers ofMathematics:, 1201 16th St., N.W., Washington, D.C.20036 ($4.00) EDRS PRICE EDRS Price ME-$1.00 HC Not DESCRIPTORS Available fromEDRS. *Annotated Bibliographies,*Literature Guides, Literature Reviews,*Mathematical Enrichment, *Mathematics Education,Reference Books ABSTRACT This book isa partially annotated books, articles bibliography of and periodicalsconcerned with puzzles, tricks, mathematicalgames, amusements, andparadoxes. Volume2 follows original monographwhich has an gone through threeeditions. Thepresent volume not onlybrings theliterature up to material which date but alsoincludes was omitted in Volume1. The book is the professionaland amateur intendd forboth mathematician. Thisguide canserve as a place to lookfor sourcematerials and will engaged in research. be helpful tostudents Many non-technicalreferences the laymaninterested in are included for mathematicsas a hobby. Oneuseful improvementover Volume 1 is that the number ofsubheadings has more than doubled. (FL) been 113, DEPARTMENT 01 KWH.EDUCATION & WELFARE OffICE 01 EDUCATION N- IN'S DOCUMENT HAS BEEN REPRODUCED EXACILY AS RECEIVEDFROM THE CO PERSON OR ORGANIZATION ORIGINATING IT POINTS Of VIEW OR OPINIONS STATED DO NOT NECESSARILY CD REPRESENT OFFICIAL OFFICE OfEDUCATION INt POSITION OR POLICY. C, C) W A BIBLIOGRAPHY OF recreational mathematics volume 2 Vicature- ligifitt.t. confiling of RECREATIONS F DIVERS KIND S7 VIZ. Numerical, 1Afironomical,I f Antomatical, GeometricallHorometrical, Mechanical,i1Cryptographical, i and Statical, Magnetical, [Htlorical. Publifhed to RecreateIngenious Spirits;andto induce them to make fartherlcruciny into tilde( and the like) Suut.tm2.
    [Show full text]
  • Hinged Dissection of Polyominoes and Polyforms
    Hinged Dissection of Polyominoes and Polyforms Erik D. Demaine¤ Martin L. Demaine¤ David Eppsteiny Greg N. Fredericksonz Erich Friedmanx Abstract A hinged dissection of a set of polygons S is a collection of polygonal pieces hinged together at vertices that can be rotated into any member of S. We present a hinged dissection of all edge-to-edge gluings of n congruent copies of a polygon P that join corresponding edges of P . This construction uses kn pieces, where k is the number of vertices of P . When P is a regular polygon, we show how to reduce the number of pieces to dk=2e(n ¡ 1). In particular, we consider polyominoes (made up of unit squares), polyiamonds (made up of equilateral triangles), and polyhexes (made up of regular hexagons). We also give a hinged dissection of all polyabolos (made up of right isosceles triangles), which do not fall under the general result mentioned above. Finally, we show that if P can be hinged into Q, then any edge-to-edge gluing of n congruent copies of P can be hinged into any edge-to-edge gluing of n congruent copies of Q. 1 Introduction A geometric dissection [8, 13] is a cutting of a polygon into pieces that can be re-arranged to form another polygon. It is well known, for example, that any polygon can be dissected into any other polygon with the same area [2, 8, 14], but the bound on the number of pieces is quite weak. The main problem, then, is to ¯nd a dissection with the fewest possible number of pieces.
    [Show full text]
  • The Mathematical Gazette Index for 1894 to 1908
    The Mathematical Gazette Index for 1894 to 1908 AUTHOR TITLE PAGE Issue Category C.W.Adams Stability of cube floating in liquid p. 388 Dec 1908 MNote 285 V.Ramaswami Aiyar Extension of Euclid I.47 to n-sided regular polygons p. 109 June 1897 MNote 41 V.Ramaswami Aiyar On a fundamental theorem in inversion p. 88 Oct 1904 MNote 153 V.Ramaswami Aiyar On a fundamental theorem in inversion p. 275 Jan 1906 MNote 183 V.Ramaswami Aiyar Note on a point in the demonstration of the binomial theorem p. 276 Jan 1906 MNote 185 V.Ramaswami Aiyar Note on the power inequality p. 321 May 1906 MNote 192 V.Ramaswami Aiyar On the exponential inequalities and the exponential function p. 8 Jan 1907 Article V.Ramaswami Aiyar The A, B, C of the higher analysis p. 79 May 1907 Article V.Ramaswami Aiyar On Stolz and Gmeiner’s proof of the sine and cosine series p. 282 June 1908 MNote 259 V.Ramaswami Aiyar A geometrical proof of Feuerbach’s theorem p. 310 July 1908 MNote 264 A.O.Allen On the adjustment of Kater’s pendulum p. 307 May 1906 Article A.O.Allen Notes on the theory of the reversible pendulum p. 394 Dec 1906 Article Anonymous Proof of a well-known theorem in geometry p. 64 Oct 1896 MNote 30 Anonymous Notes connected with the analytical geometry of the straight line p. 158 Feb 1898 MNote 49 Anonymous Method of reducing central conics p. 225 Dec 1902 MNote 110B (note) Anonymous On a fundamental theorem in inversion p.
    [Show full text]
  • A Computational Algorithm for Creating Geometric Dissection Puzzles
    A Computational Algorithm for Creating Geometric Dissection Puzzles Yahan Zhou Rui Wang University of Massachusetts Amherst Abstract Geometric dissection is a popular way to create puzzles. Given two input figures of equal area, a dissection seeks to partition one figure into pieces which can be reassembled to construct the other figure. While mathematically it is well-known that a dissection al- ways exists between two 2D polygons, the challenge is to find a solution with as few pieces as possible. In this paper, we present a computational method for creating geometric dissection puzzles. Our method starts by representing the input figures onto a discrete grid, such as a square or triangular lattice. Our goal is then to parti- tion both figures into the smallest number of clusters (pieces) such that there is a one-to-one and congruent matching between the two sets. Directly solving this combinatorial optimization problem is intractable with a brute-force approach. We propose a novel hierar- chical clustering method that can efficiently find an optimal solution by iteratively minimizing an objective function. In addition, we can modify the objective function to include an area-based term, which directs the solution towards pieces with a more balanced size. Fi- nally, we show extensions of our algorithm for dissecting multiple 2D figures, and for dissecting 3D shapes. Figure 1: Four example sets of dissection puzzles created using our Keywords: Geometric puzzles, dissection, optimization. algorithm. The top two rows show 2D dissections – the first is a 4- piece dissection, and the second is a 5-piece dissection of a rectan- 1 Introduction gle with a rasterized octagon.
    [Show full text]
  • Arxiv:1708.02891V3 [Math.MG] 6 Jun 2018 7.3
    AREA DIFFERENCE BOUNDS FOR DISSECTIONS OF A SQUARE INTO AN ODD NUMBER OF TRIANGLES JEAN-PHILIPPE LABBÉ, GÜNTER ROTE, AND GÜNTER M. ZIEGLER Abstract. Monsky’s theorem from 1970 states that a square cannot be dissected into an odd number n of triangles of the same area, but it does not give a lower bound for the area differences that must occur. We extend Monsky’s theorem to “constrained framed maps”; based on this we can apply a gap theorem from semi-algebraic geometry to a polynomial area difference measure and thus get a lower bound for the area differences that decreases doubly-exponentially with n. On the other hand, we obtain the first superpolynomial upper bounds for this problem, derived from an explicit construction that uses the Thue–Morse sequence. Contents 1. Introduction 2 2. Background 3 2.1. Dissection of simple polygons3 2.2. Monsky’s theorem4 2.3. Error measures5 3. Monsky’s theorem for constrained framed maps of dissection skeleton graphs5 3.1. Combinatorial types of dissections6 3.2. Collinearity constraints of dissections6 3.3. Framed maps and constrained framed maps8 3.4. Signed area of a triangular face9 3.5. Monsky’s theorem for constrained framed maps of skeleton graphs 10 4. Area differences of dissections and framed maps 11 5. Lower bound for the range of areas of dissections 13 5.1. Properties of the area difference polynomial 13 5.2. Lower bound using a gap theorem 14 6. Enumeration and optimization results 15 6.1. Enumeration of combinatorial types 15 6.2. Finding the optimal dissection for each combinatorial type 16 6.3.
    [Show full text]
  • Construction and Fabrication of Reversible Shape Transforms
    Construction and Fabrication of Reversible Shape Transforms SHUHUA LI, Dalian University of Technology and Simon Fraser University ALI MAHDAVI-AMIRI, Simon Fraser University RUIZHEN HU∗, Shenzhen University HAN LIU, Simon Fraser University and Carleton University CHANGQING ZOU, University of Maryland, College Park OLIVER VAN KAICK, Carleton University XIUPING LIU, Dalian University of Technology HUI HUANG∗, Shenzhen University HAO ZHANG, Simon Fraser University Fig. 1. We introduce a fully automatic algorithm to construct reversible hinged dissections: the crocodile and the Crocs shoe can be inverted inside-out and transformed into each other, bearing slight boundary deformation. The complete solution shown was computed from the input (let) without user assistance. We physically realize the transform through 3D printing (right) so that the pieces can be played as an assembly puzzle. We study a new and elegant instance of geometric dissection of 2D shapes: the iltering scheme picks good inputs for the construction. Furthermore, reversible hinged dissection, which corresponds to a dual transform between we add properly designed hinges and connectors to the shape pieces and two shapes where one of them can be dissected in its interior and then in- fabricate them using a 3D printer so that they can be played as an assembly verted inside-out, with hinges on the shape boundary, to reproduce the other puzzle. With many interesting and fun RIOT pairs constructed from shapes shape, and vice versa. We call such a transform reversible inside-out transform found online, we demonstrate that our method signiicantly expands the or RIOT. Since it is rare for two shapes to possess even a rough RIOT, let range of shapes to be considered for RIOT, a seemingly impossible shape alone an exact one, we develop both a RIOT construction algorithm and a transform, and ofers a practical way to construct and physically realize quick iltering mechanism to pick, from a shape collection, potential shape these transforms.
    [Show full text]