Table S4. Disease Prevalence

Total Page:16

File Type:pdf, Size:1020Kb

Table S4. Disease Prevalence Table S4. Disease prevalence ICD-9- Disease CM Prevalence code 17,20-lyase deficiency, isolated, 202110 (3) 282.3 4.44819E-06 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, 277.85 0.00000E+00 300438 (3) 2-methylbutyrylglycinuria, 610006 (3) 277.85 0.00000E+00 3-Methylcrotonyl-CoA carboxylase 1 deficiency, 210200 (3) 277.85 0.00000E+00 3-beta-hydroxysteroid dehydrogenase, type II, deficiency (3) 255.2 1.46483E-05 3-hydroxyacyl-CoA dehydrogenase deficiency, 231530 (3) 277.85 0.00000E+00 3-hydroxyisobutryl-CoA hydrolase deficiency, 250620 (3) 0.00000E+00 3-methylglutaconic aciduria, type I, 250950 (3) 277.86 0.00000E+00 AGAT deficiency (3) 282.3 4.44819E-06 AICA-ribosiduria due to ATIC deficiency, 608688 (3) 277.6 4.33315E-05 AMP deaminase deficiency, erythrocytic (3) 279.2 1.09671E-05 Abruptio placentae, susceptibility to (3) 0.00000E+00 Acatalasemia (3) 277.89 0.00000E+00 Achondrogenesis Ib, 600972 (3) 733 4.58035E-02 Acquired long QT syndrome, reduced susceptibility to, 426.82 0.00000E+00 152427 (3) Acromesomelic dysplasia, Hunter-Thompson type, 201250 (3) 759.2 7.67696E-05 Acyl-CoA dehydrogenase, long chain, deficiency of, 201460 277.85 0.00000E+00 (3) Adenosine deaminase deficiency, partial, 102700 (3) 277.2 1.76394E-06 Adenylosuccinase deficiency, 103050 (3) 277.2 1.76394E-06 Adrenal hyperplasia, congenital, due to 11-beta-hydroxylase 255.2 1.46483E-05 deficiency, 202010 (3) Adrenal insufficiency, congenital with or without 46, XY sex 0.00000E+00 reversal (3) Adult i phenotype with congenital cataract, 110800 (3) 270.3 2.30079E-06 Agammaglobulinemia, 601495 (3) 279 6.21519E-04 Agenesis of the corpus callosum with peripheral neuropathy, 742.2 1.07370E-05 218000 (3) Albinism, brown oculocutaneous, (3) 270.2 1.48784E-05 Alcohol intolerance, acute (3) 291.4 5.44520E-06 Alcoholism, susceptibility to, 103780 (3) 303.9 1.20281E-02 Aldolase A deficiency (3) 264.8 1.53386E-06 Aldosterone to renin ratio raised (3) 255.13 0.00000E+00 1 Aldosteronism, glucocorticoid-remediable, 103900 (3) 255.1 1.50778E-04 Alexander disease, 203450 (3) 781.99 0.00000E+00 Alkaptonuria, 203500 (3) 270.2 1.48784E-05 Allan-Herndon-Dudley syndrome, 300523 (3) 319 1.07201E-03 Alpers syndrome, 203700 (3) 330.8 1.22709E-06 Alpha-methylacetoacetic aciduria, 203750 (3) 277.6 4.33315E-05 Alpha-methylacyl-CoA racemase deficiency (3) 277.6 4.33315E-05 Alternating hemiplegia of childhood, 104290 (3) 342.8 4.60157E-07 Alzheimer disease 9, late onset, susceptibility to, 104300 (3) 331 2.54364E-02 Aminoacylase 1 deficiency, 609924 (3) 0.00000E+00 Amish infantile epilepsy syndrome, 609056 (3) 345.8 1.31145E-04 Amyotrophic lateral sclerosis 4, juvenile, 602433 (3) 335.2 7.99217E-04 Anemia, Diamond-Blackfan, 105650 (3) 285.9 8.40329E-02 Anxiety-related personality traits, 607834 (3) 300 2.89976E-02 Apparent mineralocorticoid excess, hypertension due to (3) 405.99 1.26390E-04 Argininemia, 207800 (3) 270.6 6.93304E-05 Aromatase deficiency (3) 277.6 4.33315E-05 Aromatic L-amino acid decarboxylase deficiency, 608643 (3) 277.6 4.33315E-05 Arterial calcification, generalized, of infancy, 208000 (3) 0.00000E+00 Arterial tortuosity syndrome, 208050 (3) 0.00000E+00 Aspartylglucosaminuria (3) 271 2.78150E-03 Asthma, 600807 (3) 493.9 2.21119E-02 Atelosteogenesis II, 256050 (3) 756.58 0.00000E+00 Atherosclerosis, susceptibility to (3) 440.9 2.04259E-02 Atopy, 147050 (3) 995.3 3.12447E-04 Autism, chromosome 22q13.3 deletion syndrome-related (3) 299 2.48485E-05 Bannayan-Riley-Ruvalcaba syndrome, 153480 (3) 756 1.54743E-03 Bartter syndrome, type 1, 601678 (3) 255.13 0.00000E+00 Basal ganglia disease, adult-onset, 606159 (3) 333.9 7.96686E-04 Beckwith-Wiedemann syndrome, 130650 (3) 759.89 3.02170E-05 Benzene toxicity, susceptibility to (3) 982 1.92499E-05 Beta-ureidopropionase deficiency (3) 0.00000E+00 Bile acid malabsorption, primary (3) 579.9 3.03244E-04 Biotinidase deficiency, 253260 (3) 277.6 4.33315E-05 Blood group Cromer (3) 0.00000E+00 Bombay phenotype (3) 0.00000E+00 Breast and colorectal cancer, susceptibility to (3) 239.3 1.18107E-04 Bruck syndrome 2, 609220 (3) 759.89 3.02170E-05 Brunner syndrome (3) 0.00000E+00 2 CHILD syndrome, 308050 (3) 0.00000E+00 COPD, rate of decline of lung function in, 606963 (3) 496 1.47127E-01 CPT II deficiency, lethal neonatal, 608836 (3) 277.85 0.00000E+00 Canavan disease, 271900 (3) 330 4.41751E-05 Carbamoylphosphate synthetase I deficiency, 237300 (3) 270.6 6.93304E-05 Carbohydrate-deficient glycoprotein syndrome, type I, 271.8 1.05069E-05 212065 (3) Carcinoid tumors, intestinal, 114900 (3) 235.2 1.83112E-03 Carnitine deficiency, systemic primary, 212140 (3) 277.81 0.00000E+00 Carnitine-acylcarnitine translocase deficiency (3) 277.85 0.00000E+00 Cerebellar ataxia, 604290 (3) 334.3 3.87069E-04 Cerebral infarction, susceptibility to, 601367 (3) 434.91 3.42273E-03 Cerebral palsy, spastic, symmetric, autosomal recessive, 0.00000E+00 603513 (3) Cerebrotendinous xanthomatosis, 213700 (3) 272.2 1.30079E-03 Ceroid lipofuscinosis, neuronal 8, 600143 (3) 330.1 8.28283E-06 Ceroid lipofuscinosis, neuronal-1, infantile, 256730 (3) 330.1 8.28283E-06 Charcot-Marie-Tooth disease, axonal, type 2F, 606595 (3) 356.1 1.53463E-04 Chitotriosidase deficiency (3) 0.00000E+00 Chloride diarrhea, congenital, Finnish type, 214700 (3) 787.91 0.00000E+00 Cholestasis, benign recurrent intrahepatic, 243300 (3) 576.8 2.04318E-03 Cholesteryl ester storage disease (3) 272.7 4.83165E-05 Chondrodysplasia punctata, X-linked dominant, 302960 (3) 756.59 1.54153E-05 Chondrosarcoma, 215300 (3) 170.9 5.54490E-05 Chromosome 16p13.3 deletion syndrome (3) 758.39 0.00000E+00 Citrullinemia, 215700 (3) 270.6 6.93304E-05 Cleft lip with or without cleft palate, with gastric cancer, 749 2.91433E-05 familial diffuse (3) Codeine sensitivity (3) E850.2 0.00000E+00 Coenzyme Q10 deficiency, 607426 (3) 0.00000E+00 Cold-induced sweating syndrome 1, 610313 (3) 238 3.84952E-03 Colon adenocarcinoma (3) 153 1.66505E-02 Combined hyperlipidemia, familial, 144250 (3) 272.2 1.30079E-03 Combined oxidative phosphorylation deficiency 1, 609060 0.00000E+00 (3) Complex I, mitochondrial respiratory chain, deficiency of, 277.87 0.00000E+00 252010 (3) Cone dystrophy-1, 304020 (3) 362.75 1.38047E-06 Congenital disorder of glycosylation, type IIc, 266265 (3) 271.8 1.05069E-05 Cornea plana congenita, recessive, 217300 (3) 371.5 3.27325E-04 3 Coronary artery disease in familial hypercholesterolemia, 414 2.46394E-01 protection against, 143890 (3) Coronary spasms, susceptibility to (3) 414.9 5.13918E-02 Cortisone reductase deficiency, 604931 (3) 255.2 1.46483E-05 Coumarin resistance, 122700 (3) 0.00000E+00 Cowden disease, 158350 (3) 759.6 1.14886E-04 Creatine deficiency syndrome, X-linked, 300352 (3) 319 1.07201E-03 Crigler-Najjar syndrome, type I, 218800 (3) 277.4 2.69882E-04 Crohn disease, ileal, protection against, 266600 (3) 555.9 1.16796E-03 Cystathioninuria, 219500 (3) 270.4 1.76394E-06 Cystinuria, 220100 (3) 270 1.56070E-04 D-bifunctional protein deficiency, 261515 (3) 277.86 0.00000E+00 Deafness, X-linked 1, progressive (3) 389.9 4.23659E-03 Debrisoquine sensitivity (3) 995.27 0.00000E+00 Delayed sleep phase syndrome, susceptibility to (3) 307.4 1.12509E-04 Dent disease, 300009 (3) 592 1.27924E-02 Desmosterolosis, 602398 (3) 0.00000E+00 Diabetes mellitus, gestational, 125851 (3) 250 1.67048E-01 Diastrophic dysplasia, 222600 (3) 0.00000E+00 Dihydropyrimidinuria (3) 277.2 1.76394E-06 Dimethylglycine dehydrogenase deficiency, 605850 (3) 0.00000E+00 Dopamine beta-hydroxylase deficiency, 223360 (3) 0.00000E+00 Down syndrome, susceptibility to, 190685 (3) 758 7.79200E-05 Dystonia, DOPA-responsive, 128230 (3) 333.6 5.94370E-05 Ehlers-Danlos due to tenascin X deficiency, 606408 (3) 756.83 8.97307E-06 Elliptocytosis, Malaysian-Melanesian type (3) 282.1 1.74093E-05 Emphysema (3) 492.8 2.73722E-02 Endometrial carcinoma (3) 182 4.25139E-03 Enlarged vestibular aqueduct, 603545 (3) 742.3 3.81931E-05 Enolase-beta deficiency (3) 729.1 1.92752E-03 Eosinophil peroxidase deficiency, 261500 (3) 0.00000E+00 Epilepsy with grand mal seizures on awakening, 607628 (3) 345.9 4.18475E-03 Epiphyseal dysplasia, multiple 1, 132400 (3) 756.56 6.90236E-07 Episodic ataxia, type 2, 108500 (3) 781.3 4.14234E-03 Erythrocyte lactate transporter defect, 245340 (3) 0.00000E+00 Exertional myoglobinuria due to deficiency of LDH-A (3) 791.3 9.08811E-05 Exostoses, multiple, type 1, 133700 (3) 726.91 6.40616E-04 Fabry disease, 301500 (3) 272.7 4.83165E-05 Fanconi-Bickel syndrome, 227810 (3) 0.00000E+00 4 Farber lipogranulomatosis (3) 272.8 1.70258E-04 Fatty liver, acute, of pregnancy (3) 571.8 1.01856E-03 Favism (3) 282.2 2.80696E-05 Fish-eye disease, 136120 (3) 371.5 3.27325E-04 Fluorouracil toxicity, sensitivity to (3) 0.00000E+00 Fructose intolerance (3) 271.2 6.82567E-06 Fructose-bisphosphatase deficiency (3) 271.2 6.82567E-06 Fructosuria (3) 271.2 6.82567E-06 Fucosidosis (3) 271.8 1.05069E-05 Fucosyltransferase-6 deficiency (3) 0.00000E+00 Fumarase deficiency, 606812 (3) 0.00000E+00 Fundus albipunctatus, 136880 (3) 362.76 1.22709E-06 G6PD deficiency (3) 277.6 4.33315E-05 GABA-transaminase deficiency (3) 0.00000E+00 GAMT deficiency (3) 0.00000E+00 GM1-gangliosidosis (3) 348.9 3.74491E-04 Galactokinase deficiency with cataracts, 230200 (3) 271.1 4.37150E-06 Galactose epimerase deficiency, 230350 (3) 271.1 4.37150E-06 Galactosemia, 230400 (3) 271.1 4.37150E-06 Galactosialidosis (3) 271 2.78150E-03 Gallbladder disease 1, 600803 (3) 574.2 1.63182E-02 Gaucher disease, atypical, 610539 (3) 272.7 4.83165E-05 Gilbert syndrome, 143500 (3) 277.4 2.69882E-04
Recommended publications
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Mapping Influenza-Induced Posttranslational Modifications On
    viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
    [Show full text]
  • Moderate the MAOA-L Allele Expression with CRISPR/Cas9 System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 April 2018 doi:10.20944/preprints201804.0275.v1 1 Review 2 Moderate the MAOA-L Allele Expression with CRISPR/Cas9 System 3 Martin L. Nelwan 4 Department of Animal Science – Other 5 Nelwan Institution for Human Resource Development 6 Jl. A. Yani No. 24 7 Palu, Sulawesi Tengah, Indonesia 8 Email: [email protected] 9 Abstract: Antisocial behavior is a behavior disorder inherited according to the inheritance of X-linked 10 chromosome. Mutations in the MAOA gene can cause different behaviors in humans. These can comprise 11 violent behavior or antisocial behavior. Low MAOA (MAOA-L) allele activity can cause antisocial 12 behavior in both healthy and unhealthy people. Antisocial from healthy males can originate from 13 maltreatment during childhood. There are no drugs for the treatment of antisocial behavior permanently 14 at this time. MAOA inhibitor can reverse antisocial behavior in animal models. To cure antisocial 15 behavior in the future, the CRISPR/Cas9 system in combination with iPSCs or ssODN methods for 16 instance can be used. This system has succeeded to correct erroneous segments in the F8 gene and F9 17 gene. Both genes occupy the X chromosome. The MAOA gene also occupies the X chromosome. It seems 18 that CRISPR/Cas9 system may be a beneficial tool to edit erroneous segments in the MAOA gene to treat 19 antisocial behavior. 20 Keywords: advanced therapy, aggressive, antisocial, behavior, MAOA. 21 22 1. Introduction 23 Antisocial behavior is a hereditary disorder inherited through an X-linked recessive inheritance 24 pattern.
    [Show full text]
  • Iron Dysregulation in Movement Disorders
    Neurobiology of Disease 46 (2012) 1–18 Contents lists available at SciVerse ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Review Iron dysregulation in movement disorders Petr Dusek a,c, Joseph Jankovic a,⁎, Weidong Le b a Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA b Parkinson's Disease Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA c Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic article info abstract Article history: Iron is an essential element necessary for energy production, DNA and neurotransmitter synthesis, myelination Received 9 November 2011 and phospholipid metabolism. Neurodegeneration with brain iron accumulation (NBIA) involves several genetic Revised 22 December 2011 disorders, two of which, aceruloplasminemia and neuroferritinopathy, are caused by mutations in genes directly Accepted 31 December 2011 involved in iron metabolic pathway, and others, such as pantothenate-kinase 2, phospholipase-A2 and fatty acid Available online 12 January 2012 2-hydroxylase associated neurodegeneration, are caused by mutations in genes coding for proteins involved in phospholipid metabolism. Phospholipids are major constituents of myelin and iron accumulation has been linked Keywords: Iron to myelin derangements. Another group of NBIAs is caused by mutations in lysosomal enzymes or transporters Neurodegeneration such as ATP13A2, mucolipin-1 and possibly also β-galactosidase and α-fucosidase. Increased cellular iron uptake Dystonia in these diseases may be caused by impaired recycling of iron which normally involves lysosomes.
    [Show full text]
  • 1 Accepted Preprint First Posted on 4 July 2018 As Manuscript EJE-18
    Page 1 of 26 Accepted Preprint first posted on 4 July 2018 as Manuscript EJE-18-0256 Title page Title: Approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 "DSDnet" Authors: L. Audí 1, S.F. Ahmed 2, N. Krone 3, M. Cools 4, K. McElreavey 5, P.M. Holterhus 6, A. Greenfield 7, A. Bashamboo 5, O. Hiort 8, S.A. Wudy 9, R. McGowan 2,10, on behalf of the EU COST Action 1 Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, 08035, Spain 2 Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK 3 Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, United Kingdom 4 Department of Paediatric Endocrinology, Ghent University Hospital, Paediatrics and Internal Medicine Research Unit, Ghent University, 9000 Ghent, Belgium 5 Human Developmental Genetics, Institut Pasteur, Paris, France 6 Division of Pediatric Endocrinology and Diabetes, University Hospital of Schleswig-Holstein and Christian Albrechts University, Kiel, Germany 7 Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, UK 1 Copyright © 2018 European Society of Endocrinology. Page 2 of 26 8 Division of Paediatric Endocrinology and Diabetes. Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany 9 Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany 10 Department of Clinical Genetics, Laboratories Building, Queen Elizabeth University Hospital, Glasgow, UK Corresponding author: Laura Audí Vall d’Hebron Research Institute (VHIR)- P.
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
    Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10).
    [Show full text]
  • Purine Metabolism in Cultured Endothelial Cells
    PURINE METABOLISM IN MAN-III Biochemical, Immunological, and Cancer Research Edited by Aurelio Rapado Fundacion Jimenez Diaz Madrid, Spain R.W.E. Watts M.R.C. Clinical Research Centre Harrow, England and Chris H.M.M. De Bruyn Department of Human Genetics University of Nijmegen Faculty of Medicine Nijmegen, The Netherlands PLENUM PRESS · NEW YORK AND LONDON Contents of Part Β I. PURINE METABOLISM PATHWAYS AND REGULATION A. De Novo Synthesis; Precursors and Regulation De Novo Purine Synthesis in Cultured Human Fibroblasts 1 R.B. Gordon, L. Thompson, L.A. Johnson, and B.T. Emmerson Comparative Metabolism of a New Antileishmanial Agent, Allopurinol Riboside, in the Parasite and the Host Cell 7 D. J. Nelson, S.W. LaFon, G.B. Elion, J.J. Marr, and R.L. Berens Purine Metabolism in Rat Skeletal Muscle 13 E. R. Tully and T.G. Sheehan Alterations in Purine Metabolism in Cultured Fibroblasts with HGPRT Deficiency and with PRPPP Synthetase Superactivity 19 E. Zoref-Shani and 0. Sperling Purine Metabolism in Cultured Endothelial Cells 25 S. Nees, A.L. Gerbes, B. Willershausen-Zönnchen, and E. Gerlach Determinants of 5-Phosphoribosyl-l-Pyrophosphate (PRPP) Synthesis in Human Fibroblasts 31 K.0, Raivio, Ch. Lazar, H. Krumholz, and M.A. Becker Xanthine Oxidoreductase Inhibition by NADH as a Regulatory Factor of Purine Metabolism 35 M.M. Jezewska and Z.W. Kaminski vii viii CONTENTS OF PART Β Β. Nucleotide Metabolism Human Placental Adenosine Kinase: Purification and Characterization 41 CM. Andres, T.D. Palella, and I.H. Fox Long-Term Effects of Ribose on Adenine Nucleotide Metabolism in Isoproterenol-Stimulated Hearts .
    [Show full text]
  • Metabolism of Purines and Pyrimidines in Health and Disease
    39th Meeting of the Polish Biochemical Society Gdañsk 16–20 September 2003 SESSION 6 Metabolism of purines and pyrimidines in health and disease Organized by A. C. Sk³adanowski, A. Guranowski 182 Session 6. Metabolism of purines and pyrimidines in health and disease 2003 323 Lecture The role of DNA methylation in cytotoxicity mechanism of adenosine analogues in treatment of leukemia Krystyna Fabianowska-Majewska Zak³ad Chemii Medycznej IFiB, Uniwersytet Medyczny, ul. Mazowiecka 6/8, 92 215 £ódŸ Changes in DNA methylation have been recognized tory effects of cladribine and fludarabine on DNA as one of the most common molecular alterations in hu- methylation, after 48 hr growth of K562 cells with the man neoplastic diseases and hypermethylation of drugs, are non-random and affect mainly CpG rich is- gene-promoter regions is one of the most frequent lands or CCGG sequences but do not affect sepa- mechanisms of the loss of gene functions. For this rea- rately-located CpG sequences. The analysis showed son, DNA methylation may be a tool for detection of that cladribine (0.1 mM) reduced the methylated early cell transformations as well as predisposition to cytosines in CpG islands and CCGG sequences to a sim- metastasis process. Moreover, DNA methylation seems ilar degree. The inhibition of cytosine methylation by to be a promissing target for new preventive and thera- fludarabine (3 mM) was observed mainly in CCGG se- peutic strategies. quences, sensitive to HpaII, but the decline in the meth- Our studies on DNA methylation and cytotoxicity ylated cytosine, located in CpG island was 2-fold lower mechanism of antileukemic drugs, cladribine and than that with cladribine.
    [Show full text]
  • Estrogen Receptor-Mediated Neuroprotection: the Role of the Alzheimer’S Disease-Related Gene Seladin-1
    REVIEW Estrogen receptor-mediated neuroprotection: The role of the Alzheimer’s disease-related gene seladin-1 Alessandro Peri Abstract: Experimental evidence supports a protective role of estrogen in the brain. According Mario Serio to the fact that Alzheimer’s disease (AD) is more common in postmenopausal women, estrogen treatment has been proposed. However, there is no general consensus on the benefi cial effect of Department of Clinical Physiopathology, Endocrine Unit, estrogen or selective estrogen receptor modulators in preventing or treating AD. It has to be said that Center for Research, Transfer several factors may markedly affect the effi cacy of the treatment. A few years ago, the seladin-1 gene and High Education on Chronic, Inflammatory, Degenerative (for selective Alzheimer’s disease indicator-1) has been isolated and found to be down-regulated and Neoplastic Disorders in brain regions affected by AD. Seladin-1 has been found to be identical to the gene encoding the for the Development of Novel enzyme 3-beta-hydroxysterol delta-24-reductase, involved in the cholesterol biosynthetic pathway, Therapies (DENOThe), University β of Florence, Florence, Italy which confers protection against -amyloid-mediated toxicity and from oxidative stress, and is an effective inhibitor of caspase-3 activity, a key mediator of apoptosis. Interestingly, we found earlier that the expression of this gene is up-regulated by estrogen. Furthermore, our very recent data support the hypothesis that seladin-1 is a mediator of the neuroprotective effects of estrogen. This review will summarize the current knowledge regarding the neuroprotective effects of seladin-1 and the relationship between this protein and estrogen.
    [Show full text]
  • Inherited Metabolic Disorders)
    1 โรคพันธุกรรมเมตาบอลิก (inherited metabolic disorders) บทนํา โรคพันธุกรรมเมตาบอลิคนั้น มีผู้ประเมินไว้ว่ามีหลายร้อยโรคด้วยกัน และเป็นที่ยอมรับว่า อุบัติการของโรคกลุ่มนี้มักจะน้อยกว่าความเป็นจริง เนื่องจากการวินิจฉัยโรคทําได้ด้วยความ ยากลําบาก แพทย์ทั่วไปมักรู้จักค่อนข้างน้อย หรือให้การวินิจฉัยไม่ถูกต้อง ด้วยเหตุผลหลาย ประการ 1). การวินิจฉัยทําได้ค่อนข้างยาก เนื่องจากแต่ละโรคพบได้น้อยคือ จัดเป็น rare disease ทําให้แพทย์ไม่ค่อยนึกถึงเมื่อพบผู้ป่วย จนอาการค่อนข้างมาก หรือเมื่อได้แยกโรคที่พบได้บ่อย ออกไปแล้ว 2). การตรวจทางห้องปฎิบัติการโดยเฉพาะการตรวจเลือดและปัสสาวะเบื้องต้น มักไม่ ค่อยบอกโรคชัดเจน ยกเว้นส่งตรวจพิเศษบางอย่างเช่นการวิเคราะห์ plasma amino acid หรือ urine organic acid 3). ในทารกแรกเกิดซึ่งมีโอกาสพบโรคกลุ่มนี้ได้บ่อย มักจะมีการตอบสนองต่อ severe overwhelming illness อย่างมีขีดจํากัด หรือแสดงอาการอย่าง nonspecific เช่น poor feeding,lethargy เป็นต้น 4).กุมารแพทย์คิดถึงโรคกลุ่มนี้ในบางภาวะเท่านั้นเช่นภาวะปัญญาอ่อน หรือชักที่คุมได้ยากและมองข้ามอาการแสดงบางอย่างที่อาจเป็นเงื่อนงําสําคัญในการวินิจฉัยโรค โรคพันธุกรรมเมตาบอลิก ที่เรียกว่า inherited metabolic disorders หรือ inborn errors of metabolism (IBEM) เป็นโรคพันธุกรรมกลุ่มหนึ่งที่เกิดจากความผิดปกติของยีนเดี่ยว ที่มีความ ผิดปกติของการเรียงลําดับของเบสหรือสายDNA ก่อให้เกิดความผิดปกติของ enzymes, receptors, transport proteins, structural proteins, หรือส่วนประกอบอื่นของเซลล์แล้วส่งผลให้ เกิดความผิดปกติของขบวนการย่อยสลาย (catabolism) หรือขบวนการสังเคราะห์ (anabolism) สารอาหาร การเปลี่ยนแปลงที่ระดับ DNA ของโรคกลุ่มนี้อาจเกิดจากการกลายพันธุ์ของยีนที่สร้าง enzyme หรือยีนที่สร้างสารควบคุมหรือส่งเสริมการทํางานของ
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]