Biocatalytic Synthesis of Bioactive Compounds • Josefina Aleu Biocatalytic Synthesis of Bioactive Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Biocatalytic Synthesis of Bioactive Compounds • Josefina Aleu Biocatalytic Synthesis of Bioactive Compounds Biocatalytic Bioactive of Compounds Synthesis • Josefina Aleu Biocatalytic Synthesis of Bioactive Compounds Edited by Josefina Aleu Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Biocatalytic Synthesis of Bioactive Compounds Biocatalytic Synthesis of Bioactive Compounds Editor Josefina Aleu MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Josefina Aleu University of Cadiz´ Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Molecules (ISSN 1420-3049) (available at: https://www.mdpi.com/journal/molecules/special issues/Biocatalytic Synthesis). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03943-571-5 (Hbk) ISBN 978-3-03943-572-2 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Preface to ”Biocatalytic Synthesis of Bioactive Compounds” .................... ix Te-Sheng Chang, Tzi-Yuan Wang, Szu-Yi Yang, Yu-Han Kao, Jiumn-Yih Wu and Chien-Min Chiang Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis Reprinted from: Molecules 2019, 24, 2236, doi:10.3390/molecules24122236 .............. 1 Alexander Veljko Fejzagi´c, Jan Gebauer, Nikolai Huwa and Thomas Classen Halogenating Enzymes for Active Agent Synthesis: First Steps Are Done and Many Have to Follow Reprinted from: Molecules 2019, 24, 4008, doi:10.3390/molecules24214008 .............. 13 Jainara Santos do Nascimento, Wilson Elias Rozo N u´ nez,˜ Valmore Henrique Pereira dos Santos, Josefina Aleu, S´ılvio Cunha and Eliane de Oliveira Silva Mapping the Biotransformation of Coumarins through Filamentous Fungi Reprinted from: Molecules 2019, 24, 3531, doi:10.3390/molecules24193531 .............. 47 Jascha Rolf, Mattijs K. Julsing, Katrin Rosenthal and Stephan Lutz ¨ A Gram-Scale Limonene Production Process with Engineered Escherichia coli Reprinted from: Molecules 2020, 25, 1881, doi:10.3390/molecules25081881 .............. 57 Nina-Katharina Krahe, Ralf G. Berger and Franziska Ersoy A DyP-Type Peroxidase of Pleurotus sapidus with Alkene Cleaving Activity Reprinted from: Molecules 2020, 25, 1536, doi:10.3390/molecules25071536 .............. 69 Young Sung Jung, Ye-Jin Kim, Aaron Taehwan Kim, Davin Jang, Mi-Seon Kim, Dong-Ho Seo, Tae Gyu Nam, Chan-Su Rha, Cheon-Seok Park and Dae-Ok Kim Enrichment of Polyglucosylated Isoflavones from S oybean I soflavone Ag lycones Using Optimized Amylosucrase Transglycosylation Reprinted from: Molecules 2020, 25, 181, doi:10.3390/molecules25010181 .............. 87 Elisabetta Brenna, Danilo Colombo, Giuseppe Di Lecce, Francesco G. Gatti, Maria Chiara Ghezzi, Francesca Tentori, Davide Tessaro and Mariacristina Viola Conversion of Oleic Acid into Azelaic and Pelargonic Acid by a Chemo-Enzymatic Route Reprinted from: Molecules 2020, 25, 1882, doi:10.3390/molecules25081882 ..............103 Mateusz Kutyła, Jan Fiedurek, Anna Gromada, Krzysztof Jedrzejewski and Mariusz Trytek Mutagenesis and Adaptation of the Psychrotrophic Fungus Chrysosporium pannorum A-1 as a Method for Improving β-pinene Bioconversion Reprinted from: Molecules 2020, 25, 2589, doi:10.3390/molecules25112589 ..............115 v About the Editor Josefina Aleu studied Chemistry at the University of Cadiz,´ where she graduated in 1991. After working with Prof. J. R. Hanson at Sussex University for several months in 1995, she then completed her Ph.D. degree in 1996 under the supervision of Prof. Collado on the design of selective fungicides. She then worked for 15 months as a postdoctoral fellow with Prof. C. Fuganti at Politecnico di Milano (Italy) on the biocatalytic synthesis of flavors. She is currently Senior Lecturer of Organic Chemistry at the University of Cadiz,´ and her current research interests are directed towards the biocatalytic synthesis of bioactive molecules, design of selective fungicides, and studies of the metabolism of marine microorganisms. vii Preface to ”Biocatalytic Synthesis of Bioactive Compounds” Biocatalysis, the application of enzymes as catalysts for chemical synthesis, has become an increasingly valuable tool for the synthetic chemist. Enzymatic transformations carried out by partially purified e nzymes or w hole-cell c atalysts are u sed for the p roduction of a w ide variety of compounds ranging from bulk to fine c hemicals. In the fi eld of fin e che micals, the main application clearly lies in the exploitation of the outstanding properties of these biocatalysts with respect to chemoselectivity, regioselectivity, and especially stereoselectivity in the production of enantiomerically pure compounds. Until recently, chemical development companies regarded biocatalysis as a method to be attempted only when all other chemical options failed. Currently, there are clear signs that this view is changing radically, with many of the new process developments revealing the benefits to be gained by using biocatalysis on a commercial scale. Biocatalytic processes have a number of advantages over the corresponding chemical methods. The conditions for such processes are mild and, in the majority of cases, do not require the protection of other functional groups. Moreover, eliminating the need for several chemical synthetic steps has had a dramatic impact on the overall economics. In many cases, biological methods are also enantiospecific, allowing for the production of chiral products from racemic mixtures. Furthermore, the features governing their regiospecificity d iffer from t hose c ontrolling c hemical s pecificity an d, in deed, it is possible to obtain biotransformations at centers that are chemically unreactive. Economically, biocatalytic processes are often cheaper and more direct than their chemical counterparts, and the conversions normally proceed under conditions that are regarded as ecologically acceptable. The aim of this Special Issue is to present studies focused on biocatalysis as applied to the organic synthesis of bioactive compounds and their precursors. The obtained contributions deal with biotransformations, including the stereoselective synthesis of bioactive chemical compounds, active pharmaceutical ingredients, and natural products. The production of interesting bioactive compounds is covered in the eight articles comprising seven research articles and a review. Two of these papers deal with fungal metabolism and fungi-mediated biotransformations. The first paper deals with improving β-pinene bioconversion by mutagenesis and adaptation of the fungus Chrysosporium pannorum A-1. A second paper describes a study on the biotransformation of bioactive coumarins by filamentous fungi. On the other hand, the conversion of oleic acid into azelaic and pelargonic acid by a chemoenzymatic route represents a sustainable alternative to ozonolysis, currently employed at the industrial scale to perform the reaction. In addition, the findings on a gram-scale limonene production process using engineered Escherichia coli provide a basis for the development of an economic and industrially relevant bioprocess. Alkene cleavage is a possibility to generate aldehydes with olfactory properties for the fragrance and flavor i ndustry. A dye-decolorizing peroxidase (DyP) of the basidiomycete Pleurotus sapidus is the first described DyP with alkene cleavage activity towards aryl alkenes and showed potential as biocatalyst for flavor production. Isoflavones in soybeans are well-known p hytoestrogens. Soy isoflavones present in conjugated forms are converted to aglycone forms during processing and storage. Isoflavone aglycones (IFAs) of soybeans in human diets have poor solubility in water, resulting in low bioavailability and bioactivity. Enzyme-mediated glycosylation is an efficient and e nvironmentally f riendly way to ix modify the physicochemical properties of soy IFAs. Thus, Jung et al. studied the enrichment of polyglucosylated isoflavones from soybean isoflavone aglycones using optimized amylosucrase transglycosylation. In the same line, Chang et al. studied the potential industrial production of a well-soluble, alkaline-stable, and anti-inflammatory isoflavone glucoside from 8-hydroxydaidzein glucosylated by recombinant amylosucrase of Deinococcus geothermalis. Finally, the review discusses the use of halogenating enzymes in fine chemical syntheses, detailing the many steps that are still needed before halogenating enzymes are considered reliable, flexible, and sustainable catalysts for halogenation. Overall, these eight contributions provide the reader with relevant fresh insights into the use of enzymes and whole cells as biocatalysts. Josefina Aleu Editor x molecules Article Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory
Recommended publications
  • Microbial Enzymes and Their Applications in Industries and Medicine
    BioMed Research International Microbial Enzymes and Their Applications in Industries and Medicine Guest Editors: Periasamy Anbu, Subash C. B. Gopinath, Arzu Coleri Cihan, and Bidur Prasad Chaulagain Microbial Enzymes and Their Applications in Industries and Medicine BioMed Research International Microbial Enzymes and Their Applications in Industries and Medicine Guest Editors: Periasamy Anbu, Subash C. B. Gopinath, Arzu Coleri Cihan, and Bidur Prasad Chaulagain Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Microbial Enzymes and Their Applications in Industries and Medicine,PeriasamyAnbu, Subash C. B. Gopinath, Arzu Coleri Cihan, and Bidur Prasad Chaulagain Volume 2013, Article ID 204014, 2 pages Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611, Mojdeh Dinarvand, Malahat Rezaee, Malihe Masomian, Seyed Davoud Jazayeri, Mohsen Zareian, Sahar Abbasi, and Arbakariya B. Ariff Volume 2013, Article ID 508968, 13 pages A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond, Neelam Gurung, Sumanta Ray, Sutapa Bose, and Vivek Rai Volume 2013, Article
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Prodrugs Design Based on Inter- and Intramolecular Chemical Processes
    Chem Biol Drug Des 2013; 82: 643–668 Review Prodrugs Design Based on Inter- and Intramolecular Chemical Processes Rafik Karaman1,2,* compound satisfies a number of preset criteria to start clinical development. The number of years it takes to intro- 1Bioorganic Chemistry Department, Faculty of Pharmacy, duce a drug to the pharmaceutical market is over 10 years Al-Quds University, P.O. Box 20002, Jerusalem, Palestine with a cost of more than $1 billion dollars (1,2). 2Department of Science, University of Basilicata, Via dell’Ateneo Lucano 10, 85100, Potenza, Italy Modifying the absorption, distribution, metabolism, and *Corresponding author: Rafik Karaman, elimination (ADME) properties of an active drug requires a [email protected] complete understanding of the physicochemical and bio- logical behavior of the drug candidate (3 6). This includes This review provides the reader a concise overview of – the majority of prodrug approaches with the emphasis comprehensive evaluation of drug-likeness involving on the modern approaches to prodrug design. The prediction of ADME properties. These predictions can be chemical approach catalyzed by metabolic enzymes attempted at several levels: in vitro–in vivo using data which is considered as widely used among all other obtained from tissue or recombinant material from human approaches to minimize the undesirable drug physico- and preclinical species, and in silico or computational pre- chemical properties is discussed. Part of this review dictions projecting in vitro or in vivo data, involving the will shed light on the use of molecular orbital methods evaluation of various ADME properties, using computa- such as DFT, semiempirical and ab initio for the design tional approaches such as quantitative structure activity of novel prodrugs.
    [Show full text]
  • Structure Property Relationships of Carboxylic Acid Isosteres † † † ‡ † Pierrik Lassalas, Bryant Gay, Caroline Lasfargeas, Michael J
    Article pubs.acs.org/jmc Structure Property Relationships of Carboxylic Acid Isosteres † † † ‡ † Pierrik Lassalas, Bryant Gay, Caroline Lasfargeas, Michael J. James, Van Tran, † ‡ † § † Krishna G. Vijayendran, Kurt R. Brunden, Marisa C. Kozlowski, Craig J. Thomas, Amos B. Smith, III, † † ‡ Donna M. Huryn,*, and Carlo Ballatore*, , † Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States ‡ Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States § National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20850, United States *S Supporting Information ABSTRACT: The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physico- chemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure− property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group. ■ INTRODUCTION ships (SPR) of the existing palette of isosteres is most desirable.
    [Show full text]
  • Crystal Structure of Exo-Inulinase from Aspergillus Awamori: the Enzyme Fold and Structural Determinants of Substrate Recognition
    doi:10.1016/j.jmb.2004.09.024 J. Mol. Biol. (2004) 344, 471–480 Crystal Structure of Exo-inulinase from Aspergillus awamori: The Enzyme Fold and Structural Determinants of Substrate Recognition R. A. P. Nagem1†, A. L. Rojas1†, A. M. Golubev2, O. S. Korneeva3 E. V. Eneyskaya2, A. A. Kulminskaya2, K. N. Neustroev2 and I. Polikarpov1* 1Instituto de Fı´sica de Sa˜o Exo-inulinases hydrolyze terminal, non-reducing 2,1-linked and 2,6-linked Carlos, Universidade de Sa˜o b-D-fructofuranose residues in inulin, levan and sucrose releasing Paulo, Av. Trabalhador b-D-fructose. We present the X-ray structure at 1.55 A˚ resolution of Sa˜o-carlense 400, CEP exo-inulinase from Aspergillus awamori, a member of glycoside hydrolase 13560-970, Sa˜o Carlos, SP family 32, solved by single isomorphous replacement with the anomalous Brazil scattering method using the heavy-atom sites derived from a quick cryo- soaking technique. The tertiary structure of this enzyme folds into 2Petersburg Nuclear Physics two domains: the N-terminal catalytic domain of an unusual five-bladed Institute, Gatchina, St b-propeller fold and the C-terminal domain folded into a b-sandwich-like Petersburg, 188300, Russia structure. Its structural architecture is very similar to that of another 3Voronezh State Technological member of glycoside hydrolase family 32, invertase (b-fructosidase) from Academy, pr. Revolutsii 19 Thermotoga maritima, determined recently by X-ray crystallography The Voronezh, 394017, Russia exo-inulinase is a glycoprotein containing five N-linked oligosaccharides. Two crystal forms obtained under similar crystallization conditions differ by the degree of protein glycosylation.
    [Show full text]
  • Prodrugs: a Challenge for the Drug Development
    PharmacologicalReports Copyright©2013 2013,65,1–14 byInstituteofPharmacology ISSN1734-1140 PolishAcademyofSciences Drugsneedtobedesignedwithdeliveryinmind TakeruHiguchi [70] Review Prodrugs:A challengeforthedrugdevelopment JolantaB.Zawilska1,2,JakubWojcieszak2,AgnieszkaB.Olejniczak1 1 InstituteofMedicalBiology,PolishAcademyofSciences,Lodowa106,PL93-232£ódŸ,Poland 2 DepartmentofPharmacodynamics,MedicalUniversityofLodz,Muszyñskiego1,PL90-151£ódŸ,Poland Correspondence: JolantaB.Zawilska,e-mail:[email protected] Abstract: It is estimated that about 10% of the drugs approved worldwide can be classified as prodrugs. Prodrugs, which have no or poor bio- logical activity, are chemically modified versions of a pharmacologically active agent, which must undergo transformation in vivo to release the active drug. They are designed in order to improve the physicochemical, biopharmaceutical and/or pharmacokinetic properties of pharmacologically potent compounds. This article describes the basic functional groups that are amenable to prodrug design, and highlights the major applications of the prodrug strategy, including the ability to improve oral absorption and aqueous solubility, increase lipophilicity, enhance active transport, as well as achieve site-selective delivery. Special emphasis is given to the role of the prodrug concept in the design of new anticancer therapies, including antibody-directed enzyme prodrug therapy (ADEPT) andgene-directedenzymeprodrugtherapy(GDEPT). Keywords: prodrugs,drugs’ metabolism,blood-brainbarrier,ADEPT,GDEPT
    [Show full text]
  • Long-Term Warming in a Mediterranean-Type Grassland Affects Soil Bacterial Functional Potential but Not Bacterial Taxonomic Composition
    www.nature.com/npjbiofilms ARTICLE OPEN Long-term warming in a Mediterranean-type grassland affects soil bacterial functional potential but not bacterial taxonomic composition Ying Gao1,2, Junjun Ding2,3, Mengting Yuan4, Nona Chiariello5, Kathryn Docherty6, Chris Field 5, Qun Gao2, Baohua Gu 7, Jessica Gutknecht8,9, Bruce A. Hungate 10,11, Xavier Le Roux12, Audrey Niboyet13,14,QiQi2, Zhou Shi4, Jizhong Zhou2,4,15 and ✉ Yunfeng Yang2 Climate warming is known to impact ecosystem composition and functioning. However, it remains largely unclear how soil microbial communities respond to long-term, moderate warming. In this study, we used Illumina sequencing and microarrays (GeoChip 5.0) to analyze taxonomic and functional gene compositions of the soil microbial community after 14 years of warming (at 0.8–1.0 °C for 10 years and then 1.5–2.0 °C for 4 years) in a Californian grassland. Long-term warming had no detectable effect on the taxonomic composition of soil bacterial community, nor on any plant or abiotic soil variables. In contrast, functional gene compositions differed between warming and control for bacterial, archaeal, and fungal communities. Functional genes associated with labile carbon (C) degradation increased in relative abundance in the warming treatment, whereas those associated with recalcitrant C degradation decreased. A number of functional genes associated with nitrogen (N) cycling (e.g., denitrifying genes encoding nitrate-, nitrite-, and nitrous oxidereductases) decreased, whereas nifH gene encoding nitrogenase increased in the 1234567890():,; warming treatment. These results suggest that microbial functional potentials are more sensitive to long-term moderate warming than the taxonomic composition of microbial community.
    [Show full text]
  • A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes
    bioengineering Review A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes Rajeev Ravindran 1,2, Shady S. Hassan 1,2 , Gwilym A. Williams 2 and Amit K. Jaiswal 1,* 1 School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland; [email protected] (R.R.); [email protected] (S.S.H.) 2 School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +353-1402-4547 Received: 5 October 2018; Accepted: 26 October 2018; Published: 28 October 2018 Abstract: Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical–chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold.
    [Show full text]
  • Rapid and Efficient Bioconversion of Chicory Inulin to Fructose By
    Trivedi et al. Bioresources and Bioprocessing (2015) 2:32 DOI 10.1186/s40643-015-0060-x RESEARCH Open Access Rapid and efficient bioconversion of chicory inulin to fructose by immobilized thermostable inulinase from Aspergillus tubingensis CR16 Sneha Trivedi1, Jyoti Divecha2, Tapan Shah3 and Amita Shah1* Abstract Background: Fructose, a monosaccharide, has gained wide applications in food, pharmaceutical and medical industries because of its favourable properties and health benefits. Biocatalytic production of fructose from inulin employing inulinase is the most promising alternative for fructose production. For commercial production, use of immobilized inulinase is advantageous as it offers reutilization of enzyme and increase in stability. In order to meet the demand of concentrated fructose syrup, inulin hydrolysis at high substrate loading is essential. Results: Inulinase was immobilized on chitosan particles and employed for fructose production by inulin hydrolysis. Fourier transform infrared spectroscopy (FTIR) analysis confirmed linkage of inulinase with chitosan particles. Immobilized biocatalyst displayed significant increase in thermostability at 60 and 65 °C. Statistical model was proposed with an objective of optimizing enzymatic inulin hydrolytic process. At high substrate loading (17.5 % inulin), using 9.9 U/g immobilized inulinase at 60 °C in 12 h, maximum sugar yield was 171.1 ± 0.3 mg/ml and productivity was 14.25 g/l/h. Immobilized enzyme was reused for ten cycles. Raw inulin from chicory and asparagus was extracted and supplied in 17.5 % for enzymatic hydrolysis as a replacement of pure inulin. More than 70 % chicory inulin and 85 % asparagus inulin were hydrolyzed under optimized parameters at 60 °C. Results of high performance liquid chromatography confirmed the release of fructose after inulin hydrolysis.
    [Show full text]
  • EUROPEAN COMMISSION Brussels, 28 April 2020 REGISTER of FOOD
    EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR HEALTH AND FOOD SAFETY Food and feed safety, innovation Food processing technologies and novel foods Brussels, 28 April 2020 REGISTER OF FOOD ENZYMES TO BE CONSIDERED FOR INCLUSION IN THE UNION LIST Article 17 of Regulation (EC) No 1332/20081 provides for the establishment of a Register of all food enzymes to be considered for inclusion in the Union list. In accordance with that Article, the Register includes all applications which were submitted within the initial period fixed by that Regulation and which comply with the validity criteria laid down in accordance with Article 9(1) of (EC) No 1331/2008 establishing a common authorisation procedure for food additives, food enzymes and food flavourings2. The Register therefore lists all valid food enzyme applications submitted until 11 March 2015 except those withdrawn by the applicant before that date. Applications submitted after that date are not included in the Register but will be processed in accordance with the Common Authorisation Procedure. The entry of a food enzyme in the Register specifies the identification, the name, the source of the food enzyme as provided by the applicant and the EFSA question number under which the status of the Authority’s assessment can be followed3. As defined by Article 3 of Regulation (EC) No 1332/2008, ‘food enzyme’ subject to an entry in the Register, refers to a product that may contain more than one enzyme capable of catalysing a specific biochemical reaction. In the assessment process, such a food enzyme may be linked with several EFSA question numbers.
    [Show full text]
  • Molecular Modification of Alkaloids
    Molecular Modification Of Alkaloids Reinhard predominated eightfold if confiding Brooks inlaces or sharecropped. Jeth scrammed her chuckwallas pestiferously, she underplays it pugnaciously. How crenulated is Shayne when paediatric and osteoplastic Osbourne alloy some feeze? Depth, or bupivacaine has similar potency as an anesthetic. NOT if for human. Due to alkaloids production of alkaloid in another form dimers in topo ii inhibitors targeting acetylcholinesterase inhibitors were used to sodium influx through iv. Ethanol is a psychoactive drug because one legal the oldest recreational drugs still used by humans. However, but stimulants such as caffeine and the analog compounds theophylline and theobromine are. Sketch experiments should be reproduced progeny or reduction is high pressure is a functional group as one of lithospermum erythrorhizon by several alkaloids. In molecular modification of suggestion that of molecular modification alkaloids. Quinoline is mainly used as motion the production of other specialty chemicals. On the basis of steric consideration. Every single crystal modification alkaloids should be. Only investigates alkaloids dissolve in molecular modification with lots of one or increased libido, check with molecular modification of alkaloids defines a user flair your interest in the. Making changa is super simple. Do and modification of density, compared to an essential for these diagrams, molecular modification of alkaloids. This include seeds needed large enzymatic fluorination and molecular formula for dimethyltryptamine is a little confusion because of molecular modification alkaloids with digitonin often isolated from alcohol functional range of benzene are. EVAPCO is dedicated to designing and manufacturing the highest quality products for the evaporative cooling and industrial refrigeration markets around that globe.
    [Show full text]
  • Enhanced Skin Permeation of Anti-Wrinkle Peptides Via Molecular
    www.nature.com/scientificreports Correction: Author Correction OPEN Enhanced Skin Permeation of Anti- wrinkle Peptides via Molecular Modifcation Received: 16 April 2016 Seng Han Lim 1, Yuanyuan Sun1,2, Thulasi Thiruvallur Madanagopal3, Vinicius Rosa 3 & Accepted: 12 December 2017 Lifeng Kang 1,4 Published: xx xx xxxx Wrinkles can have a negative efect on quality of life and Botox is one of the most efective and common treatments. Argireline (Arg0), a mimetic of Botox, has been found to be safer than Botox and efective in reducing wrinkles, with efcacies up to 48% upon 4 weeks of twice daily treatment. However, the skin permeation of Arg0 is poor, due to its large molecular weight and hydrophilicity. Arg0 exists in zwitterionic form and this charged state hindered its skin permeation. Chemical modifcation of the peptide structure to reduce the formation of zwitterions may result in increased skin permeability. We investigated a total of 4 peptide analogues (Arg0, Arg1, Arg2, Arg3), in terms of skin permeation and wrinkle reduction. The 4 peptides were dissolved in various propylene glycol and water co-solvents. Enhanced human skin permeation was demonstrated by both Arg2 and Arg3 in vitro. On the other hand, the abilities of the 4 analogues to reduce wrinkle formation were also compared using primary human dental pulp stem cells derived neurons. By measuring the inhibition of glutamate release from the neurons in vitro, it was shown that Arg3 was the most efective, followed by Arg1, Arg0 and Arg2. Wrinkles are visible creases or folds in the skin1 and they are ofen the frst sign of ageing2.
    [Show full text]