Journal of Wetlands Ecology 1(1/2) Page | 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecology, Biology and Taxonomy. Mudskippers
Chapter of the edited collection: Mangroves: Ecology, Biology and Taxonomy. Mudskippers: human use, ecotoxicology and biomonitoring of mangrove and other soft bottom intertidal ecosystems. Gianluca Polgar 1 and Richard Lim 2 1Institute of Biological Sciences, Institute of Ocean and Earth Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. Tel. +603-7967-4609 / 4182; e-mail: [email protected] / [email protected]. Web site: www.themudskipper.org 2Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology Sydney, Broadway, New South Wales 2007, Australia. e-mail: [email protected] Abstract (269) Mudskippers (Gobiidae: Oxudercinae) are air-breathing gobies, which are widely distributed throughout the West African coast and the Indo-Pacific region. They are closely linked to mangrove and adjacent soft bottom peri-tidal ecosystems. Some species are amongst the best adapted fishes to an amphibious lifestyle. All mudskippers are benthic burrowers in anoxic sediments, and since tidal mudflats are efficient sediment traps, and sinks for nutrients and other chemical compounds, they are constantly in contact with several types of pollutants produced by industrial, agricultural and domestic activities. Due to their natural abundance, considerable resistance to highly polluted conditions, and their benthic habits, mudskippers are frequently used in aquatic ecotoxicological studies. For the same reasons, mudskippers also frequently occur in urbanised or semi-natural coastal areas. Since several species are widely consumed throughout their whole geographical range, these same characteristics also facilitate their aquaculture in several countries, such as Bangladesh, Thailand, Philippines, China, Taiwan and Japan. Even when not directly used, mudskippers are often abundant and are important prey items for many intertidal transient species (marine visitors), and several species of shorebirds. -
Integrated Lake Basin Management Plan of Lake Cluster of Pokhara Valley, Nepal (2018-2023)
Integrated Lake Basin Management Plan Of Lake Cluster of Pokhara Valley, Nepal (2018-2023) Nepal Valley, Pokhara of Cluster Lake Of Plan Management Basin Lake Integrated INTEGRATED LAKE BASIN MANAGEMENT PLAN OF LAKE CLUSTER OF POKHARA VALLEY, NEPAL (2018-2023) Government of Nepal Ministry of Forests and Environment Singha Durbar, Kathmandu, Nepal Tel: +977-1- 4211567, Fax: +977-1-4211868 Government of Nepal Email: [email protected], Website: www.mofe.gov.np Ministry of Forests and Environment INTEGRATED LAKE BASIN MANAGEMENT PLAN OF LAKE CLUSTER OF POKHARA VALLEY, NEPAL (2018-2023) Government of Nepal Ministry of Forests and Environment Publisher: Government of Nepal Ministry of Forests and Environment Citation: MoFE, 2018. Integrated Lake Basin Management Plan of Lake Cluster of Pokhara Valley, Nepal (2018-2023). Ministry of Forests and Environment, Kathmandu, Nepal. Cover Photo Credits: Front cover - Rupa and Begnas Lake © Amit Poudyal, IUCN Back cover – Begnas Lake © WWF Nepal, Hariyo Ban Program/ Nabin Baral © Ministry of Forests and Environment, 2018 Acronyms and Abbreviations ACA Annapurna Conservation Area ADB Asian Development Bank ARM Annapurna Rural Municipality BCN Bird Conservation Nepal BLCC Begnas Lake Conservation Cooperative BMP Budhi Bazar Madatko Patan CBD Convention on Biological Diversity CBS Central Bureau of Statistics CF Community Forest CFUG Community Forest User Group CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora DADO District Agriculture Development Office DCC District Coordination -
Chapter Two Marine Organisms
THE SINGAPORE BLUE PLAN 2018 EDITORS ZEEHAN JAAFAR DANWEI HUANG JANI THUAIBAH ISA TANZIL YAN XIANG OW NICHOLAS YAP PUBLISHED BY THE SINGAPORE INSTITUTE OF BIOLOGY OCTOBER 2018 THE SINGAPORE BLUE PLAN 2018 PUBLISHER THE SINGAPORE INSTITUTE OF BIOLOGY C/O NSSE NATIONAL INSTITUTE OF EDUCATION 1 NANYANG WALK SINGAPORE 637616 CONTACT: [email protected] ISBN: 978-981-11-9018-6 COPYRIGHT © TEXT THE SINGAPORE INSTITUTE OF BIOLOGY COPYRIGHT © PHOTOGRAPHS AND FIGURES BY ORINGAL CONTRIBUTORS AS CREDITED DATE OF PUBLICATION: OCTOBER 2018 EDITED BY: Z. JAAFAR, D. HUANG, J.T.I. TANZIL, Y.X. OW, AND N. YAP COVER DESIGN BY: ABIGAYLE NG THE SINGAPORE BLUE PLAN 2018 ACKNOWLEDGEMENTS The editorial team owes a deep gratitude to all contributors of The Singapore Blue Plan 2018 who have tirelessly volunteered their expertise and effort into this document. We are fortunate to receive the guidance and mentorship of Professor Leo Tan, Professor Chou Loke Ming, Professor Peter Ng, and Mr Francis Lim throughout the planning and preparation stages of The Blue Plan 2018. We are indebted to Dr. Serena Teo, Ms Ria Tan and Dr Neo Mei Lin who have made edits that improved the earlier drafts of this document. We are grateful to contributors of photographs: Heng Pei Yan, the Comprehensive Marine Biodiversity Survey photography team, Ria Tan, Sudhanshi Jain, Randolph Quek, Theresa Su, Oh Ren Min, Neo Mei Lin, Abraham Matthew, Rene Ong, van Heurn FC, Lim Swee Cheng, Tran Anh Duc, and Zarina Zainul. We thank The Singapore Institute of Biology for publishing and printing the The Singapore Blue Plan 2018. -
River Culture in Nepal
Nepalese Culture Vol. XIV : 1-12, 2021 Central Department of NeHCA, Tribhuvan University, Kathmandu, Nepal DOI: https://doi.org/10.3126/nc.v14i0.35187 River Culture in Nepal Kamala Dahal- Ph.D Associate Professor, Patan Multipal Campus, T.U. E-mail: [email protected] Abstract Most of the world civilizations are developed in the river basins. However, we do not have too big rivers in Nepal, though Nepalese culture is closely related with water and rivers. All the sacraments from birth to the death event in Nepalese society are related with river. Rivers and ponds are the living places of Nepali gods and goddesses. Jalkanya and Jaladevi are known as the goddesses of rivers. In the same way, most of the sacred places are located at the river banks in Nepal. Varahakshetra, Bishnupaduka, Devaghat, Triveni, Muktinath and other big Tirthas lay at the riverside. Most of the people of Nepal despose their death bodies in river banks. Death sacrement is also done in the tirthas of such localities. In this way, rivers of Nepal bear the great cultural value. Most of the sacramental, religious and cultural activities are done in such centers. Religious fairs and festivals are also organized in such a places. Therefore, river is the main centre of Nepalese culture. Key words: sacred, sacraments, purity, specialities, bath. Introduction The geography of any localities play an influencing role for the development of culture of a society. It affects a society directly and indirectly. In the beginning the nomads passed their lives for thousands of year in the jungle. -
Vulnerability and Impacts Assessment for Adaptation Planning In
VULNERABILITY AND I M PAC T S A SSESSMENT FOR A DA P TAT I O N P LANNING IN PA N C H A S E M O U N TA I N E C O L O G I C A L R E G I O N , N EPAL IMPLEMENTING AGENCY IMPLEMENTING PARTNERS SUPPORTED BY Ministry of Forest and Soil Conservation, Department of Forests UNE P Empowered lives. Resilient nations. VULNERABILITY AND I M PAC T S A SSESSMENT FOR A DA P TAT I O N P LANNING IN PA N C H A S E M O U N TA I N E C O L O G I C A L R E G I O N , N EPAL Copyright © 2015 Mountain EbA Project, Nepal The material in this publication may be reproduced in whole or in part and in any form for educational or non-profit uses, without prior written permission from the copyright holder, provided acknowledgement of the source is made. We would appreciate receiving a copy of any product which uses this publication as a source. Citation: Dixit, A., Karki, M. and Shukla, A. (2015): Vulnerability and Impacts Assessment for Adaptation Planning in Panchase Mountain Ecological Region, Nepal, Kathmandu, Nepal: Government of Nepal, United Nations Environment Programme, United Nations Development Programme, International Union for Conservation of Nature, German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety and Institute for Social and Environmental Transition-Nepal. ISBN : 978-9937-8519-2-3 Published by: Government of Nepal (GoN), United Nations Environment Programme (UNEP), United Nations Development Programme (UNDP), International Union for Conservation of Nature (IUCN), German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) and Institute for Social and Environmental Transition-Nepal (ISET-N). -
Density and Length-Weight Relationship of Mudskipper (Periophthalmus Spp.) in the Mangrove Area of Kairatu Beach, Maluku, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 11, November 2020 E-ISSN: 2085-4722 Pages: 5465-5473 DOI: 10.13057/biodiv/d211155 Short Communication: Density and length-weight relationship of mudskipper (Periophthalmus spp.) in the mangrove area of Kairatu Beach, Maluku, Indonesia DIANA TANIWEL1,♥, FREDY LEIWAKABESSY2, DOMINGGUS RUMAHLATU2,♥♥ 1Graduate Program of Biology Education, Universitas Pattimura. Jl. Dr. Tamaela, Ambon 97116, Maluku, Indonesia. Tel./fax.: +62-911-311803, ♥email: [email protected] 2Program of Biology Education, Faculty of Teacher Training and Education, Universitas Pattimura. Jl. Ir. M. Putuhena, Ambon 97233, Maluku, Indonesia. Tel./fax.: +62-911-3825216, ♥♥email: [email protected] Manuscript received: 29 August 2020. Revision accepted: 27 October 2020. Abstract. Taniwel D, Leiwakabessy F, Rumahlatu D. 2020. Short Communication: Density and length-weight relationship of mudskipper (Periophthalmus spp.) in the mangrove area of Kairatu Beach, Maluku, Indonesia. Biodiversitas 21: 5465-5473. Mudskippers (genus Periophthalmus) fish species inhabit mudflat, sandy beaches, and mangrove areas. Their daily activities are influenced by tidal rhythms. The aim of this research was to identify the species of mudskipper, their density, and length-weight relationship of more density species in the mangrove area of Kairatu beach, Maluku, Indonesia. This research was conducted from July to August 2018, 3 sampling sites using purposive sampling technique. The physical-chemical parameters of environmental conditions (temperature, dissolved oxygen, salinity, and pH of water) were measured directly on location (in-situ), while the different mudskippers species present in the study sites were identified in the laboratory at the Pattimura University. Quantitative data on population density and length and weight of individuals were obtained for four Periophthalmus species. -
A REVIEW of the STATUS and THREATS to WETLANDS in NEPAL Re! on the Occasion Of3 I UCN World Conservation Congress, 2004
A REVIEW OF THE STATUS AND THREATS TO WETLANDS IN NEPAL re! On the occasion of3 I UCN World Conservation Congress, 2004 A REVIEW OF THE STATUS AND THREATS TO WETLANDS IN NEPAL IUCN Nepal 2004 IUCN The World Conservation Union IUCN The World Conservation Union The support of UNDP-GEF to IUCN Nepal for the studies and design of the national project on Wetland Conservation and Sustainable Use and the publication of this document is gratefully acknowledged. Copyright: © 2004 IUCN Nepal Published June 2004 by IUCN Nepal Country Office Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: IUCN Nepal (2004). A Review o(the Status andThreats to Wetlands in Nepal 78+v pp. ISBN: 99933-760-9-4 Editing: Sameer Karki and Samuel Thomas Cover photo: Sanchit Lamichhane Design & Layout: WordScape, Kathmandu Printed by: Jagadamba Press, Hattiban, Lalitpur Available from: IUCN Nepal, P.O. Box 3923, Kathmandu, Nepal Tel: (977-1) 5528781,5528761,5526391, Fax:(977-I) 5536786 email: [email protected], URL: http://www.iucnnepal.org Foreword This document is the result of a significant project development effort undertaken by the IUCN Nepal Country Office over the last two years, which was to design a national project for conservation and sustainable use of wetlands in the country.This design phase was enabled by a UNDP-GEF PDF grant. -
Metallothionein Expression in Estuarine Catfish (Arius Thalassinus) Kidney on Exposure to Heavy Metals (Cd, Pb, Cu and Zn) Concentration
Journal of University of Shanghai for Science and Technology ISSN: 1007-6735 Metallothionein Expression in Estuarine Catfish (Arius thalassinus) Kidney on Exposure to Heavy Metals (Cd, Pb, Cu and Zn) Concentration * Ahmed, A., Ismail, A., Omar, H., Zulkifli, S., Yusof, S. and Rahman, F. Department of Biological Science, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia *Corresponding author: [email protected] Abstract: Immunohistochemical techniques have been used to identify Metallothionein3 (MT3) expression specifically to detect MT3 levels in the kidney. The techniques employed are highly sensitive, thus allowing the detection of very low amount of proteins with the use of antibodies. The present study aimed at identifying the MT3 expressions and localizations in the kidney tissue of estuarine catfish Arius thalassinus from Kuala Gula using immunohistochemical methods. Primary mouse monoclonal anti-MT3 (1F11), primary antibody (1:2000), secondary antibody and Goat anti-mouse IgG2 (1:2000) were used. MT3 bands were detected using (Santa Cruz kit USA method). Heavy metals (Cd, Pb, Zn and Cu) were determined using aqua regia’s methods followed by analyses with AAS. The results showed high expressions of Metallothionein3 (MT3) with an increasing concentration of heavy metals. Large catfish A. thalassinus had higher accumulation of heavy metals concentrations therefore, exhibiting higher expressions than smaller sized fish. The concentration of heavy metals in fishes were: Zn (284.00 ±29.7, 259.32± 23.2 and 240.90±20.3 μg/g-1 d.w), Cu (7.00±1.7, 6.90±1.3 and 5.60±1.8 μg/g-1 d.w), Pb (66.80±10.8, 35.31±6.4 and 26.02±6.9 μg/g-1 d.w) and Cd (1.32 ± 0.12, 1.19 ±0.12 and 1.20± 0.09 μg/g-1 d.w) in large, medium and small fish respectively. -
Water Quality Assessment of Begnas and Rupa Lakes, Lesser Himalaya Pokhara, Nepal
Journal of the Institute of Engineering TUTA/IOE/PCU July 2019, Vol. 15 (No. 2): 113-122113 © TUTA/IOE/PCU, Printed in Nepal References Water Quality Assessment of Begnas and Rupa Lakes, [1] Aulbach B and Kieninger B (2001), On Three Definitions of Chaos, Nonlinear Dynamics and Systems Theory, 1(1): 23-37. Lesser Himalaya Pokhara, Nepal [2] Blaya A and López V (2012), On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps, Discrete and Continuous Dynamical Ramesh R. Pant1, Khadka Bdr. Pal2*, Nanda L. Adhikari3, Subash Adhikari4, Akkal D. Mishra3 Systems, 32(2): 433-466. Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal [3] Chen T and Zhu Z (2007), Exponential synchronization of nonlinear coupled dynamical 2Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal 3 networks, International Journal of Bifurcation and Chaos, 17(3): 999-1005. Prithvi Narayan Multiple Campus, Tribhuvan University, Pokhara, Nepal 4Institute of Tibetan Plateau Research, Chinese Academy of Science, China [4] Devaney R (1989), An Introduction to Chaotic Dynamical Systems, Addison- Wesley *Corresponding author: [email protected] Publishing Company. [5] Ding M and Yang W (1997), Stability of synchronous chaos and on-off intermittency in Received: Nov 7, 2018 Revised: Jan 26, 2019 Accepted: Feb 4, 2019 coupled map lattices, Phys. Rev. E, 56(4): 4009-4016. [6] Foucart S (2001), On definitions of discrete topological chaos and their relations on intervals, Cambridge Tripos Part III Essay. Abstract: This study was conducted to assess water quality variations and identify potential pollution sources in two lakes namely Begnas and Rupa, Lesser Himalayas [7] Li X and G Chen (2003), Synchronization and Desynchronization of Complex Dynamical Pokhara, Nepal during monsoon season in June 2016. -
The Round Goby Genome Provides Insights Into Mechanisms That May Facilitate Biological Invasions
Adrian-Kalchhauser et al. BMC Biology (2020) 18:11 https://doi.org/10.1186/s12915-019-0731-8 RESEARCH ARTICLE Open Access The round goby genome provides insights into mechanisms that may facilitate biological invasions Irene Adrian-Kalchhauser1,2* , Anders Blomberg3†, Tomas Larsson4†, Zuzana Musilova5†, Claire R. Peart6†, Martin Pippel7†, Monica Hongroe Solbakken8†, Jaanus Suurväli9†, Jean-Claude Walser10†, Joanna Yvonne Wilson11†, Magnus Alm Rosenblad3,12†, Demian Burguera5†, Silvia Gutnik13†, Nico Michiels14†, Mats Töpel2†, Kirill Pankov11†, Siegfried Schloissnig15† and Sylke Winkler7† Abstract Background: Theinvasivebenthicroundgoby(Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results: We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochromeP450enzymes,aremarkablydiverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby’s capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. -
Nepal-Destination-Guide.Pdf
Him al aya n t rekki ng with a dif erence NEPAL DESTINATION GUIDE DISCOVER NEPAL’S BEST TREKS NEPAL HIMALAYAN TREKKING WITH A DIFFERENCE Every traveller should see the incredible The accommodation in Nepal can be an Nepal Himalaya at least once in their amazing experience in itself. It’s not all basic lifetime – it’s an extraordinary and uplifting teahouses and camping. You can choose experience you will never forget. unique mountain lodges and boutique hotels that are in keeping with the style and Lo Manthang In Nepal you can trek to the base of Mount Dolpo traditions of the area. They will take your Mustang TIBET Everest in true expedition style, or explore District experience of Nepal to a whole new level by Kagbeni Annapurna the Annapurna region, an outstanding offering comfort and standards you probably Conservation introduction to Himalayan trekking that offers Area never expected to find. Lodges specialising in JOMSON lower altitude treks without compromising on AIRPORT ‘barefoot luxury’ add a whole new dimension Bardia Ghandruk Poon Hill Ghorepani breathtaking scenery. Many travellers end up to a trekking trip in Nepal. National Park trekking both in the end, because Nepal is one Langtang Valley Everest Base of those countries that’s hard to only do once. The wonderful people of Nepal and their Gosainkund Camp MT EVEREST NEPAL Helambu culture will round out your experience. Pokhara Pheriche Namche Tengboche There’s also the lake city of Pokhara and Chitwan Kathmandu LUKLA shorter treks to enjoy, along with lots of Call me today for first-hand advice on National Park AIRPORT side trips, including the Kathmandu Valley, travelling in Nepal. -
Analysis of Watersheds in Gandaki Province, Nepal Using QGIS
TECHNICAL JOURNAL Vol 1, No.1, July 2019 Nepal Engineers' Association, Gandaki Province ISSN : 2676-1416 (Print) Pp.: 16-28 Analysis of Watersheds in Gandaki Province, Nepal Using QGIS Keshav Basnet*, Er. Ram Chandra Paudel and Bikash Sherchan Infrastructure Engineering and Management Program Department of Civil and Geomatics Engineering Pashchimanchal Campus, Institute of Engineering Tribhuvan University, Nepal *Email: [email protected] Abstract Gandaki province has the good potentiality of hydro-electricity generation with existing twenty- nine hydro-electricity projects. Since the Province is rich in water resources, analysis of watersheds needs to be done for management, planning and identification of water as well as natural resources. GIS offers integration of spatial and no spatial data to understand and analyze the watershed processes and helps in drawing a plan for integrated watershed development and management. The Digital Elevation Model (DEM) available on the NASA-Earth data has been taken as a primary data for morphometric analysis of watershed in Gandaki Province using QGIS. Delineation of watershed was conducted from a DEM by computing the flow direction and using it in the Watershed tool. Necessary fill sink correction was made before proceeding to delineation. A raster representing the direction of flow was created using Flow Direction tool to determine contributing area. Flow accumulation raster was created from flow direction raster using Flow Accumulation Tool. A point- based method has been used to delineate watershed for each selected point. The selected point may be an outlet, a gauge station or a dam. The annual rainfall data from ground meteorological stations has been used in QGIS to generate rainfall map for the study of rainfall pattern in the province and watersheds using IDW Interpolation method.