Physical Geography the Equator Means That Most of the Region of Caribbean South America Includes Has Warm Temperatures Year-Round
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Economic Commission for Latin America and The
110 100 90 80 ° ° ° ° ECONOMIC COMMISSION FOR UNITED STATES OF AMERICA LATIN AMERICA AND THE CARIBBEAN 30° 30° Nassau Gulf of Mexico BAHAMAS La Habana Turks and ATLANTIC OCEAN CUBA Caicos Is. DOMINICAN co MEXICO i Is. REPUBLIC R gin to ir rgin I Cayman Is. r V Vi s. e S ish HAITI u it Mexico Kingston P U r P B 20 20° S ANTIGUA AND ° o a r JAMAICA t n BARBUDA BELIZE - SAINT KITTS a to Montserrat Belmopan u AND NEVIS D -P o Guadeloupe r m HONDURAS Caribbean Sea in in DOMINICA Martinique Guatemala ce go Tegucigalpa SAINT LUCIA GUATEMALA Netherlands BARBADOS NICARAGUA Aruba Antilles R r GRENADA SAINT VINCENT AND o Managua O d THE GRENADINES D a VA lv Port of Spain L a TRINIDAD AND SA n S San José EL Sa PANAMA Caracas TOBAGO COSTA RICA 10 Panamá town 10 ° rge ° VENEZUELA eo Medellín G G SURINAME Santa Fé U Paramaribo de Bogotá Y French Guiana A Cayenne N COLOMBIA A Equator Quito 0 ECUADOR 0 ° Galapagos Is. ° Guayaquil Manaus Belém PERU Recife BRAZIL 10° Lima 10° PACIFIC OCEAN La Paz Brasília BOLIVIA Sucre P 20 AR 20 ° A ° G U São Paulo A Rio de Janeiro Y Isla San Félix Asunción 100° 90° Isla San Ambrosio Members: Antigua and Barbuda Honduras Argentina Italy 30° Bahamas Jamaica Barbados Mexico Islas 30° Belize Netherlands Juan Fernãndez A Santiago N URUGUAY Bolivia Nicaragua ECLAC HQ I Brazil Panama T Buenos Aires Montevideo Canada Paraguay N Chile Peru E Colombia Portugal E G Costa Rica Saint Kitts and Nevis R L Cuba Saint Lucia 40° I A Dominica Saint Vincent and the Dominican Republic Grenadines H 40 Ecuador Spain ° C El Salvador Suriname 40 30 50 France Trinidad and Tobago ° ° ° Grenada United Kingdom l Capital city Guatemala United States of America The boundaries and names shown and the designations used Guyana Uruguay on this map do not imply official endorsement or acceptance Haiti Venezuela by the United Nations. -
Analysing the Influence of African Dust Storms on the Prevalence of Coral Disease in the Caribbean Sea Using Remote Sensing and Association Rule Data Mining
International Journal of Remote Sensing ISSN: 0143-1161 (Print) 1366-5901 (Online) Journal homepage: http://www.tandfonline.com/loi/tres20 Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining Heather Hunter & Guido Cervone To cite this article: Heather Hunter & Guido Cervone (2017) Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining, International Journal of Remote Sensing, 38:6, 1494-1521 To link to this article: http://dx.doi.org/10.1080/01431161.2016.1277279 Published online: 31 Jan 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tres20 Download by: [Pennsylvania State University] Date: 31 January 2017, At: 12:46 INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017 VOL. 38, NO. 6, 1494–1521 http://dx.doi.org/10.1080/01431161.2016.1277279 Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining Heather Hunter a and Guido Cervone b,c aDepartment of Applied Marine Physics, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA; bDepartment of Geography and Institute for CyberScience, Pennsylvania State University, University Park, PA, USA; cLamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA ABSTRACT ARTICLE HISTORY The application of an association rule data mining algorithm is Received 29 July 2016 described to combine remote sensing and in-situ geophysical data Accepted 22 December 2016 to show a relationship between African dust storms, Caribbean climate, and Caribbean coral disease. -
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
North America Name North America
Not at same scale Hawaii (U.S.) Name North America Name North America Greenland North America ARCTIC Sea Bering Bering Strait OCEAN Canada is on the continent Helpful Sea of North America. Hint Greenland Alaska Beaufort (Denmark) One U.S. state, Sea Two countries, the United States and Mexico, (U.S.) Baffin share the continent with Canada. North Hawaii, is not Bay part of North Gulf of America also includes Greenland, the countries Alaska America. %Nuuk of Central America, and many islands. Labrador Use the map to answer these questions about North America. Sea Hudson Canada Bay 1. In which direction is Mexico from the United States? R 2. Name three countries O C Mississippi Ottawa% K River that share a border with Mexico. Y M O U N T ATLANTIC A I 3. What country shares a border N Washington, D.C.% S OCEAN on the south with Canada? United States PACIFIC Rio of America Grande Bermuda (U.K.) 4. What U.S. state is on the northwest OCEAN part of North America? Bahamas Gulf of Mexico Cuba Dominican North America Mexico Republic 5. What oceans border the east Haiti Puerto Rico (U.S.) % National capital Mexico City Jamaica and west coasts of North America? % Mountain Belize Border Honduras 6. What ocean is north of this continent? Caribbean Sea Guatemala Nicaragua El Salvador N N 7. What is the capital of Canada? NW NE Costa Rica Area of detail WE WE Panama SOUTH AMERICA 8. What river forms part of the border Miles SW SE 0 200 400 600 S S between the U.S. -
Economic Survey of Latin America and the Caribbean 2018
2018 Economic Survey of Latin America and the Caribbean Evolution of investment in Latin America and the Caribbean: stylized facts, determinants and policy challenges Thank you for your interest in this ECLAC publication ECLAC Publications Please register if you would like to receive information on our editorial products and activities. When you register, you may specify your particular areas of interest and you will gain access to our products in other formats. www.cepal.org/en/suscripciones 2 Executive summary Economic Commission for Latin America and the Caribbean (ECLAC) Alicia Bárcena Executive Secretary Mario Cimoli Deputy Executive Secretary Raúl García-Buchaca Deputy Executive Secretary for Management and Programme Analysis Daniel Titelman Chief, Economic Development Division Ricardo Pérez Chief, Publications and Web Services Division The Economic Survey of Latin America and the Caribbean is issued annually by the Economic Development Division of the Economic Commission for Latin America and the Caribbean (ECLAC). The 2018 edition was prepared under the leadership of Daniel Titelman, Chief of the Division, and coordinated by Jürgen Weller. In the preparation of this edition, the Economic Development Division was assisted by the Statistics Division, the Division of International Trade and Integration, the ECLAC subregional headquarters in Mexico City and Port of Spain, and the Commission’s country offices in Bogotá, Brasilia, Buenos Aires, Montevideo and Washington, D.C. Part I, entitled, “The economic situation and outlook for 2018”, was prepared with input from the following experts: Alejandra Acevedo, Claudio Aravena, Claudia de Camino, Pablo Carvallo, Ivonne González, Michael Hanni, Juan Pablo Jiménez, Esteban Pérez Caldentey, Ramón Pineda, José Antonio Sánchez, Cecilia Vera and Jürgen Weller. -
Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J. -
Strategies for Increasing Economic Resilience in the Caribbean
STRATEGIES FOR INCREASING ECONOMIC RESILIENCE IN THE CARIBBEAN ISSUE 3 / JULY - SEPTEMBER 2019 ABOUT ECLAC/CDCC The Economic Commission for Latin America and the Caribbean (ECLAC) is one of five regional commissions of the United Nations Economic and Director’s Desk: Social Council (ECOSOC). It was established in 1948 to support Latin Strategies for increasing economic resilience in 3 American governments in the economic and social development of that region. Subsequently, in 1966, the Commission (ECLA, at that time) the Caribbean established the subregional headquarters for the Caribbean in Port of Spain to serve all countries of the insular Caribbean, as well as Belize, Strategies to avoid debt traps among developing 4 Guyana and Suriname, making it the largest United Nations body in the countries as they pursue the SDGs subregion. Promoting a competitive tourism industry in the 6 At its sixteenth session in 1975, the Commission agreed to create the Caribbean through upgrading and diversification Caribbean Development and Cooperation Committee (CDCC) as a permanent subsidiary body, which would function within the ECLA Financing Agro-processing in the Caribbean 8 structure to promote development cooperation among Caribbean countries. Secretariat services to the CDCC would be provided by the subregional headquarters for the Caribbean. Nine years later, the Building a Case for Trade Driven Economic 10 Commission’s widened role was officially acknowledged when the Economic Commission for Latin America (ECLA) modified its title to the Restructuring in the Caribbean: An Examination Economic Commission for Latin America and the Caribbean (ECLAC). of the Trinidad and Tobago Trade Policy CONTENTS Key Areas of Activity The ECLAC subregional headquarters for the Caribbean (ECLAC/CDCC Regular Features secretariat) functions as a subregional think-tank and facilitates increased contact and cooperation among its membership. -
The Evolution of Middle America and the Gulf of Mexico-Caribbean Sea Region During Mesozoic Time
The evolution of Middle America and the Gulf of Mexico-Caribbean Sea region during Mesozoic time THOMAS H. ANDERSON I Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, Pennsylvania VICTOR A. SCHMIDT | 15260 ABSTRACT Geometric constraints suggest that of Central America, the Nicaraguan Rise, probably shear initially occurred along the and southeastern Cuba) was sutured A plate-tectonic model for the evolution Mexican volcanic zone near the end of the against the Maya East plate along the of Middle America and the Gulf of Mex- Middle Jurassic. Subsequently, probably present Motagua fault and Cayman ico-Caribbean Sea region is presented. about 160 m.y. ago, displacements that Trench. The model, which is based upon the exist- total ~800 km began along the Mojave- Our model is constrained by published ence of the Mojave-Sonora megashear, Sonora megashear. Contemporaneously, geologic data, the relative positions of incorporates into the Triassic Pangea re- Yucatan and fragments of pre-Cretaceous North and South America from Atlantic construction three microplates between rocks that compose parts of central and sea-floor magnetic anomalies, and the re- North and South America, thus avoiding western Cuba migrated northward toward quirement that the major transform faults the overlap of the Bullard fit. These plates their present positions. Rotation of Yuca- be compatible with the poles of rotation are the Yaqui, bounded on the north by tan was facilitated by considerable dis- for the appropriate relative motions be- the Mojave-Sonora megashear; the east placement along the proto-Motagua zone tween North and South America. Paleo- and west Maya plates, bounded on the and along a zone that is probably coinci- magnetic data from Middle America are north by the Mexican volcanic zone and dent with the modern Salina Cruz fault. -
Paleogeography of the Caribbean Region: Implications for Cenozoic Biogeography
PALEOGEOGRAPHY OF THE CARIBBEAN REGION: IMPLICATIONS FOR CENOZOIC BIOGEOGRAPHY MANUEL A. ITURRALDE-VINENT Research Associate, Department of Mammalogy American Museum of Natural History Curator, Geology and Paleontology Group Museo Nacional de Historia Natural Obispo #61, Plaza de Armas, CH-10100, Cuba R.D.E. MA~PHEE Chairman and Curator, Department of Mammalogy American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 238, 95 pages, 22 figures, 2 appendices Issued April 28, 1999 Price: $10.60 a copy Copyright O American Museum of Natural History 1999 ISSN 0003-0090 CONTENTS Abstract ....................................................................... 3 Resumen ....................................................................... 4 Resumo ........................................................................ 5 Introduction .................................................................... 6 Acknowledgments ............................................................ 8 Abbreviations ................................................................ 9 Statement of Problem and Methods ............................................... 9 Paleogeography of the Caribbean Region: Evidence and Analysis .................. 18 Early Middle Jurassic to Late Eocene Paleogeography .......................... 18 Latest Eocene to Middle Miocene Paleogeography .............................. 27 Eocene-Oligocene Transition (35±33 Ma) .................................... 27 Late Oligocene (27±25 Ma) ............................................... -
Caribbean Markets for US Wood Products
,~~~~United States Department of i_/ Agriculture Caribbean Markets Forest Service Southern Forest for U.S. Wood Experiment Station New Orleans, Products Louisiana Research Paper SO-225 July 1986 Harold W. Wisdom, James E. Granskog, and Keith A. Blatner Mexico I SUMMARY The West Indies and the continental countries bordering the Caribbean Sea constitute a significant market for U.S. wood products. In 1983, wood product exports to the region totaled almost $157 million. The Caribbean Basin primar- ily is a market for softwood products, with pine lumber being the most promi- nent item. The flow of exports to the region is dominated by (1) overseas shipments from southern ports to the West Indies and (2) overland shipments from the Southwestern United States to Mexico. CONTENTS INTRODUCTION ................................................. 1 THE CARIBBEAN BASIN .......................................... 1 Forests .......................................................... 1 Mexico ........................................................ 2 Central America ............................................... 2 South Rim ..................................................... 3 West Indies .................................................... 3 Wood Production and Trade ....................................... 3 U.S. WOOD EXPORTS ............................................. 4 Roundwood ...................................................... 5 Logs ........................................................... 5 Poles ......................................................... -
Sea Turtles : the Importance of Sea Turtles to Marine Ecosystems
PHOTO TIM CALVER WHY HEALTHY OCEANS NEED SEA TURTLES : THE IMPORTANCE OF SEA TURTLES TO MARINE ECOSYSTEMS Wilson, E.G., Miller, K.L., Allison, D. and Magliocca, M. oceana.org/seaturtles S E L T R U T Acknowledgements The authors would like to thank Karen Bjorndal for her review of this report. We would also like to thank The Streisand Foundation for their support of Oceana’s work to save sea turtles. PHOTO MICHAEL STUBBLEFIELD OCEANA | Protecting the World’s Oceans TABLE OF CONTENTS WHY HEALTHY OCEANS NEED SEA TURTLES 3 Executive Summary 4 U.S. Sea Turtles 5 Importance of Sea Turtles to Healthy Oceans 6 Maintaining Habitat Importance of Green Sea Turtles on Seagrass Beds Impact of Hawksbill Sea Turtles on Coral Reefs Benefit of Sea Turtles to Beach Dunes 9 Maintaining a Balanced Food Web Sea Turtles and Jellyfish Sea Turtles Provide Food for Fish 11 Nutrient Cycling Loggerheads Benefit Ocean Floor Ecosystems Sea Turtles Improve Nesting Beaches 12 Providing Habitat 14 The Risk of Ecological Extinction 15 Conclusions oceana.org/seaturtles 1 S E L T R U T PHOTO TIM CALVER 2 OCEANA | Protecting the World’s Oceans EXECUTIVE SUMMARY Sea turtles have played vital roles in maintaining the health of the world’s oceans for more than 100 million years. These roles range from maintaining productive coral reef ecosystems to transporting essential nutrients from the oceans to beaches and coastal dunes. Major changes have occurred in the oceans because sea turtles have been virtually eliminated from many areas of the globe. Commercial fishing, loss of nesting habitat and climate change are among the human-caused threats pushing sea turtles towards extinction. -
Kinematic Evolution of the Gulf of Mexico and Caribbean
Kinematic Evolution of the Gulf of Mexico and Caribbean James Pindell Tectonic Analysis, Ltd., Cokes, Barn, West Burton, West Sussex RH20 1HD, England Also: Dept. Earth Science, Rice University, Houston, Texas, USA Email: [email protected] Lorcan Kennan Tectonic Analysis, Ltd., Cokes, Barn, West Burton, West Sussex RH20 1HD, England Abstract We present a series of 14 updated tectonic reconstructions for the Gulf of Mexico and Caribbean region since the Jurassic, giving due attention to plate kinematic and palinspastic accuracy. Primary elements of the model are: 1) a re-evaluation of the Mesozoic break-up of Pangea, to better define the Proto-Caribbean passive margin elements, the geology and kinematics of the Mexican and Colombian intra-arc basins, and the nature of the early Great Caribbean Arc; 2) pre-Albian circum-Caribbean rock assemblages are reconstructed into a primitive, west-facing, Mexico-Antilles-Ecuador arc (initial roots of Great Caribbean Arc) during the early separation of North and South America; 3) the subduction zone responsible for Caribbean Cretaceous HP/LT metamorphic assemblages was initiated during an Aptian subduction polarity reversal of the early Great Arc; the reversal was triggered by a strong westward acceleration of the Americas relative to the mantle which threw the original arc into compression; 4) the same acceleration led to the Aptian-Albian onset of back-arc closure and “Sevier” orogenesis in Mexico, the western USA, and the northern Andes, making this a nearly hemispheric event which must have