BASSOON the Bassoon Is a Double Reed Instrument

Total Page:16

File Type:pdf, Size:1020Kb

BASSOON the Bassoon Is a Double Reed Instrument BASSOON The bassoon is a double reed instrument. Because of its size, it plays very low notes, giving it a lower sound than the other woodwind instruments. The bassoon's double reed produces a characteristic nasal quality, two octaves lower than the range of the oboe, that lends distinctive color to the woodwind instruments. The contrabassoon or double bassoon, has a range one octave lower than the bassoon. Developed in the 17th century, it's the ancestor of the English curtal and French sordone used in the Renaissance. Bassoon Links http://bassoonresource.org/ How the sound is made Sound on a woodwind instrument comes from a vibrating column of air inside the instrument. The player makes this column of air vibrate in one of three ways: as air is blown across the top of an instrument (like the flute), across a single reed (like the clarinet), or across two reeds (like the oboe). A single reed is clamped to a mouthpiece at the top of the instrument and vibrates against the mouthpiece when air is blown between the reed and the mouthpiece. Two reeds tied together are commonly known as a double reed. This double reed fits into a tube at the top of the instrument and vibrates when air is forced between the two reeds. How the pitch is changed Woodwind pitch depends on the volume of air that is vibrating. A larger volume vibrates more slowly, for lower pitch; a smaller volume vibrates more quickly, for a higher pitch. For most woodwinds, the player changes pitch by opening and closing holes along the instrument's length. Closing more holes makes the instrument longer, making the notes lower. .
Recommended publications
  • The KNIGHT REVISION of HORNBOSTEL-SACHS: a New Look at Musical Instrument Classification
    The KNIGHT REVISION of HORNBOSTEL-SACHS: a new look at musical instrument classification by Roderic C. Knight, Professor of Ethnomusicology Oberlin College Conservatory of Music, © 2015, Rev. 2017 Introduction The year 2015 marks the beginning of the second century for Hornbostel-Sachs, the venerable classification system for musical instruments, created by Erich M. von Hornbostel and Curt Sachs as Systematik der Musikinstrumente in 1914. In addition to pursuing their own interest in the subject, the authors were answering a need for museum scientists and musicologists to accurately identify musical instruments that were being brought to museums from around the globe. As a guiding principle for their classification, they focused on the mechanism by which an instrument sets the air in motion. The idea was not new. The Indian sage Bharata, working nearly 2000 years earlier, in compiling the knowledge of his era on dance, drama and music in the treatise Natyashastra, (ca. 200 C.E.) grouped musical instruments into four great classes, or vadya, based on this very idea: sushira, instruments you blow into; tata, instruments with strings to set the air in motion; avanaddha, instruments with membranes (i.e. drums), and ghana, instruments, usually of metal, that you strike. (This itemization and Bharata’s further discussion of the instruments is in Chapter 28 of the Natyashastra, first translated into English in 1961 by Manomohan Ghosh (Calcutta: The Asiatic Society, v.2). The immediate predecessor of the Systematik was a catalog for a newly-acquired collection at the Royal Conservatory of Music in Brussels. The collection included a large number of instruments from India, and the curator, Victor-Charles Mahillon, familiar with the Indian four-part system, decided to apply it in preparing his catalog, published in 1880 (this is best documented by Nazir Jairazbhoy in Selected Reports in Ethnomusicology – see 1990 in the timeline below).
    [Show full text]
  • Jodyjazz Super Jet Tenor Sax Mouthpiece
    Toolshed Sax Dakota SDT-XR 52 Tenor Saxophone Highly Responsive, Aesthetically Detailed he SDT-XR 52 Tenor Saxophone from Sax Dakota is an ergo- King Zephyr saxophone models), and I was pleased to nomically deigned, aesthetically detailed and highly respon- find that choosing one over another really did make a Tsive instrument. It’s the company’s top-line tenor, made of difference in airstream control and physical comfort. raw bronze with a semi-matte Black Onyx finish on the body, bow Additional professional touches include a con- and bell, and a bright Black Onyx finish on the inside of the bell. veniently located front high-F lever, an adjust- The SDT-XR 52’s neck is silver-plated, and the keywork, trim and able right-hand thumb rest and a high F# key. grille-style keyguards are unfinished, sporting a distinct art deco-like Stainless steel key rods help enhance the action. design. The neck and bell are decorated with attractive hand-engrav- Black oxide steel springs and pivot screws ing. The raw bronze body of the SDT-XR 52 is essentially a brass alloy team with custom Italian pads and tone with increased copper content (77 percent), resulting in a smooth and boosters. The reinforced double arms on the highly resonant sound that’s reminiscent of certain post-World War low C/B/B-flat keys, along with Pisoni Pro II vintage horns. Playing it, I experienced a pleasing feeling of vibra- key pads, are designed to aid response and tion in the instrument’s body, even on upper-stack fingerings.
    [Show full text]
  • Common Reed Phragmites Australis (Cav.) Trin. Ex Steud. Grass Family (Poaceae)
    FACT SHEET: GIANT REED Common Reed Phragmites australis (Cav.) Trin. ex Steud. Grass family (Poaceae) NATIVE RANGE Eurasia DESCRIPTION Common reed, or Phragmites, is a tall, perennial grass that can grow to over 15 feet in height. In North America, both native phragmites (Phragmites australis ssp. americanus Saltonstall, P.M. Peterson & Soreng) and introduced subspecies are found. Introduced Phragmites forms dense stands which include both live stems and standing dead stems from previous year’s growth. Leaves are elongate and typically 1-1.5 inches wide at their widest point. Flowers form bushy panicles in late July and August and are usually purple or golden in color. As seeds mature, the panicles begin to look “fluffy” due to the hairs on the seeds and they take on a grey sheen. Below ground, Phragmites forms a dense network of roots and rhizomes which can go down several feet in depth. The plant spreads horizontally by sending out rhizome runners which can grow 10 or more feet in a single growing season if conditions are optimal. Please see the table below for information on distinguishing betweeen native and introduced Phragmites. ECOLOGICAL THREAT Once introduced Phragmites invades a site it quickly can take over a marsh community, crowding out native plants, changing marsh hydrology, altering wildlife habitat, and increasing fire potential. Its high biomass blocks light to other plants and occupies all the growing space belowground so plant communities can turn into a Phragmites monoculture very quickly. Phragmites can spread both by seed dispersal and by vegetative spread via fragments of rhizomes that break off and are transported elsewhere.
    [Show full text]
  • Weltmeister Akkordeon Manufaktur Gmbh the World's Oldest Accordion
    MADE IN GERMANY Weltmeister Akkordeon Manufaktur GmbH The world’s oldest accordion manufacturer | Since 1852 Our “Weltmeister” brand is famous among accordion enthusiasts the world over. At Weltmeister Akkordeon Manufaktur GmbH, we supply the music world with Weltmeister solo, button, piano and folklore accordions, as well as diatonic button accordions. Every day, our expert craftsmen and accordion makers create accordions designed to meet musicians’ needs. And the benchmark in all areas of our shop is, of course, quality. 160 years of instrument making at Weltmeister Akkordeon Manufaktur GmbH in Klingenthal, Germany, are rooted in sound craftsmanship, experience and knowledge, passed down carefully from master to apprentice. Each new generation that learns the trade of accordion making at Weltmeister helps ensure the longevity of the company’s incomparable expertise. History Klingenthal, a centre of music, is a small town in the Saxon Vogtland region, directly bordering on Bohemia. As early as the middle of the 17th century, instrument makers settled down here, starting with violin makers from Bohemia. Later, woodwinds and brasswinds were also made here. In the 19th century, mouth organ ma- king came to town and soon dominated the townscape with a multitude of workshops. By the year 1840 or thereabouts, this boom had turned Klingenthal into Germany’s largest centre for the manufacture of mouth organs. Production consolidation also had its benefits. More than 30 engineers and technicians worked to stre- Accordion production started in 1852, when Adolph amline the instrument making process and improve Herold brought the accordion along from Magdeburg. quality and customer service. A number of inventions At that time the accordion was a much simpler instru- also came about at that time, including the plastic key- ment, very similar to the mouth organ, and so it was board supported on two axes and the plastic and metal easily reproduced.
    [Show full text]
  • Electrophonic Musical Instruments
    G10H CPC COOPERATIVE PATENT CLASSIFICATION G PHYSICS (NOTES omitted) INSTRUMENTS G10 MUSICAL INSTRUMENTS; ACOUSTICS (NOTES omitted) G10H ELECTROPHONIC MUSICAL INSTRUMENTS (electronic circuits in general H03) NOTE This subclass covers musical instruments in which individual notes are constituted as electric oscillations under the control of a performer and the oscillations are converted to sound-vibrations by a loud-speaker or equivalent instrument. WARNING In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme. 1/00 Details of electrophonic musical instruments 1/053 . during execution only {(voice controlled (keyboards applicable also to other musical instruments G10H 5/005)} instruments G10B, G10C; arrangements for producing 1/0535 . {by switches incorporating a mechanical a reverberation or echo sound G10K 15/08) vibrator, the envelope of the mechanical 1/0008 . {Associated control or indicating means (teaching vibration being used as modulating signal} of music per se G09B 15/00)} 1/055 . by switches with variable impedance 1/0016 . {Means for indicating which keys, frets or strings elements are to be actuated, e.g. using lights or leds} 1/0551 . {using variable capacitors} 1/0025 . {Automatic or semi-automatic music 1/0553 . {using optical or light-responsive means} composition, e.g. producing random music, 1/0555 . {using magnetic or electromagnetic applying rules from music theory or modifying a means} musical piece (automatically producing a series of 1/0556 . {using piezo-electric means} tones G10H 1/26)} 1/0558 . {using variable resistors} 1/0033 . {Recording/reproducing or transmission of 1/057 . by envelope-forming circuits music for electrophonic musical instruments (of 1/0575 .
    [Show full text]
  • Tuning In” Podcast Terminology
    H+H “TUNING IN” PODCAST TERMINOLOGY Alto A designation for a range of the human voice, between soprano and tenor. Both women and men perform in the alto range. Aria A song movement which features a soloist singing in a steady tempo (as opposed to the unmeasured, sung-speech style of the recitativ). In addition to the standard continuo accompaniment, an aria can call for a few additional instruments and sometimes even feature a solo instrument, such as the solo violin in “Erbarme dich”. Bass Used to describe a musical instrument and the lowest line of music, in this case it refers to a range of the human voice below tenor. Bass line The lowest written line of music, usually carried out by instruments such as cellos and double basses along with a doubling keyboard instrument such as the organ or harpsichord. In some instances, Bach composes a bass line for an instrument in a higher range, such as the oboe da caccia, but keeps the voice and other instrument or instruments above that range. Chorale A movement which typically features a four-part hymn supported by the orchestra such that the high-pitched instruments play the same line as the sopranos, mid-range instruments play the alto line, etc.; in a Lutheran service, chorale movements allowed the congregation to join in song. Continuo As in Basso Continuo, or “Continuous Bass.” Refers to the group of players who play the lowest line of the music, typically a keyboard instrument such as organ or harpsichord, sometimes a plucked instrument such as theorbo (bass lute), and a sustaining instrument such as the cello; bass instruments which provide the harmonic foundation throughout the entire Passion, even in solo vocal movements (for which the rest of the orchestra does not play).
    [Show full text]
  • Instruments of the Orchestra
    INSTRUMENTS OF THE ORCHESTRA String Family WHAT: Wooden, hollow-bodied instruments strung with metal strings across a bridge. WHERE: Find this family in the front of the orchestra and along the right side. HOW: Sound is produced by a vibrating string that is bowed with a bow made of horse tail hair. The air then resonates in the hollow body. Other playing techniques include pizzicato (plucking the strings), col legno (playing with the wooden part of the bow), and double-stopping (bowing two strings at once). WHY: Composers use these instruments for their singing quality and depth of sound. HOW MANY: There are four sizes of stringed instruments: violin, viola, cello and bass. A total of forty-four are used in full orchestras. The string family is the largest family in the orchestra, accounting for over half of the total number of musicians on stage. The string instruments all have carved, hollow, wooden bodies with four strings running from top to bottom. The instruments have basically the same shape but vary in size, from the smaller VIOLINS and VIOLAS, which are played by being held firmly under the chin and either bowed or plucked, to the larger CELLOS and BASSES, which stand on the floor, supported by a long rod called an end pin. The cello is always played in a seated position, while the bass is so large that a musician must stand or sit on a very high stool in order to play it. These stringed instruments developed from an older instrument called the viol, which had six strings.
    [Show full text]
  • Hybrid Winds
    Hybrid Winds Linsey Pollak When I was about fifteen I had a dream that featured a wind instrument lives on the Sunshine Coast in whose sound I remembered clearly on Queensland and is a renowned waking. It reminded me of a somewhat community music facilitator, mellow crumhorn (Renaissance wind- composer and musical director who capped double reed pipe) or a sort of has built instruments for over 20 high-pitched baritone sax. That sound Figure 1: Gaidanet. years, specialising in aerophones eludes me now, for I have always been chasing that elusive, dreamt, wind- a semitone when it is opened. In fact it from Eastern Europe. He has a instrument sound. only works for the top half of the octave reputation for making and playing I started my instrument making in Macedonian gaidas, but for the full instruments made from rubber journey 25 years ago making bamboo range in Bulgarian gaidas which have a gloves, carrots, watering cans, flutes. That quickly led to a longer stint more conical bore. This enables a unique chairs, brooms, bins and other found of making wooden renaissance flutes, style of playing and ornamentation. objects. His ongoing obsession and an interest in other Renaissance and What I wanted to do was to have combines much of this: making medieval winds. But the real love affair access to the gaida style of playing and ornamentation while playing a lip-blown music more accessible to began 20 years ago with the Macedonian instrument like a clarinet. I experimented communities through instrument gaida (bagpipes), and so I travelled to Macedonia for eight months over three first with a clarinet mouthpiece and a building and playing workshops.
    [Show full text]
  • Preliminary Results Clarinet, Flute, Horn, Soprano Singer, Trumpet
    Performing Arts Aerosol Study Round one preliminary results Clarinet, Flute, Horn, Soprano Singer, Trumpet Study Chairs James Weaver - NFHS Director of Mark Spede – CBDNA President, Performing Arts and Sports Director of Bands, Clemson University Lead Funders Contributing Organizations Supporting Organizations American School Band Directors Association (ASBDA) International Music Council American String Teachers Association (ASTA) International Society for Music Education Arts Education in Maryland Schools (AEMS) League of American Orchestras Association Européenne des Conservatoires/Académies de Louisiana Music Educators Association Musique et Musikhochschulen (AEC) (LMEA) Buffet et Crampon MidWest Clinic Bundesverband der deutschen Minority Band Directors National Association Musikinstrumentenhersteller e.V Music Industries Association Chicago Children's Choir Musical America Worldwide Children's Chorus of Washington National Dance Education Organization Chorus America (NDEO) Confederation of European Music Industries (CAFIM) National Flute Association (NFA) Drum Corps International (DCI) National Guild for Community Arts Education Educational Theatre Association (EdTA) National Music Council of the US European Choral Association - Europa Cantat Percussive Arts Society (PAS) HBCU National Band Directors' Consortium Save the Music Foundation High School Directors National Association (HSBDNA) WGI Sport of the Arts International Conductors Guild Lead Researchers Dr. Shelly Miller Dr. Jelena Srebric University of Colorado Boulder University
    [Show full text]
  • Class Notes – October 24 Pipes with Holes; Recorders, Flutes
    The Physics of Musical Instruments Class Notes – October 24 Pipes with holes; Recorders, flutes The Physics of Musical Instruments – Fall 2017 – October 24 – 1 Topics • More on acoustic impedance • The end correction for a flute or recorder • The effect of a side hole • The flute – a pipe open at both ends with side holes The Physics of Musical Instruments – Fall 2017 – October 24 – 2 More Complex Pipes • We are now beginning to consider more complex pipes and air resonators – Bottles, blown across the top (fun stuff) but more seriously… – Bells at the end (why?) – Pipes with finger holes – And, eventually, pipes with non-cylindrical bores • The concept of acoustic impedance is very helpful here, even without getting highly quantitative. The Physics of Musical Instruments – Fall 2017 – October 24 – 3 Energy Transfer • When the impedance changes along an acoustic pipe, there can be a reflection • If one of the impedances is exactly zero, ALL OF THE ENERGY IS REFLECTED. • We used this idea to analyze the open end of an ideal pipe The Physics of Musical Instruments – Fall 2017 – October 24 – 4 A Finite Discontinuity • Consider a discontinuity in pipe radius • Energy reflection in this case is 1/9 or 11% The Physics of Musical Instruments – Fall 2017 – October 24 – 5 Add a Transition Piece • With a transition segment added, the impedance discontinuity is reduced, and there is less reflection • Only 6% is reflected The Physics of Musical Instruments – Fall 2017 – October 24 – 6 A Tapered Transition • The impedance is lowered gradually left
    [Show full text]
  • New Zealand Works for Contrabassoon
    Hayley Elizabeth Roud 300220780 NZSM596 Supervisor- Professor Donald Maurice Master of Musical Arts Exegesis 10 December 2010 New Zealand Works for Contrabassoon Contents 1 Introduction 3 2.1 History of the contrabassoon in the international context 3 Development of the instrument 3 Contrabassoonists 9 2.2 History of the contrabassoon in the New Zealand context 10 3 Selected New Zealand repertoire 16 Composers: 3.1 Bryony Jagger 16 3.2 Michael Norris 20 3.3 Chris Adams 26 3.4 Tristan Carter 31 3.5 Natalie Matias 35 4 Summary 38 Appendix A 39 Appendix B 45 Appendix C 47 Appendix D 54 Glossary 55 Bibliography 68 Hayley Roud, 300220780, New Zealand Works for Contrabassoon, 2010 3 Introduction The contrabassoon is seldom thought of as a solo instrument. Throughout the long history of contra- register double-reed instruments the assumed role has been to provide a foundation for the wind chord, along the same line as the double bass does for the strings. Due to the scale of these instruments - close to six metres in acoustic length, to reach the subcontra B flat’’, an octave below the bassoon’s lowest note, B flat’ - they have always been difficult and expensive to build, difficult to play, and often unsatisfactory in evenness of scale and dynamic range, and thus instruments and performers are relatively rare. Given this bleak outlook it is unusual to find a number of works written for solo contrabassoon by New Zealand composers. This exegesis considers the development of contra-register double-reed instruments both internationally and within New Zealand, and studies five works by New Zealand composers for solo contrabassoon, illuminating what it was that led them to compose for an instrument that has been described as the 'step-child' or 'Cinderella' of both the wind chord and instrument makers.
    [Show full text]
  • Instrument Descriptions
    RENAISSANCE INSTRUMENTS Shawm and Bagpipes The shawm is a member of a double reed tradition traceable back to ancient Egypt and prominent in many cultures (the Turkish zurna, Chinese so- na, Javanese sruni, Hindu shehnai). In Europe it was combined with brass instruments to form the principal ensemble of the wind band in the 15th and 16th centuries and gave rise in the 1660’s to the Baroque oboe. The reed of the shawm is manipulated directly by the player’s lips, allowing an extended range. The concept of inserting a reed into an airtight bag above a simple pipe is an old one, used in ancient Sumeria and Greece, and found in almost every culture. The bag acts as a reservoir for air, allowing for continuous sound. Many civic and court wind bands of the 15th and early 16th centuries include listings for bagpipes, but later they became the provenance of peasants, used for dances and festivities. Dulcian The dulcian, or bajón, as it was known in Spain, was developed somewhere in the second quarter of the 16th century, an attempt to create a bass reed instrument with a wide range but without the length of a bass shawm. This was accomplished by drilling a bore that doubled back on itself in the same piece of wood, producing an instrument effectively twice as long as the piece of wood that housed it and resulting in a sweeter and softer sound with greater dynamic flexibility. The dulcian provided the bass for brass and reed ensembles throughout its existence. During the 17th century, it became an important solo and continuo instrument and was played into the early 18th century, alongside the jointed bassoon which eventually displaced it.
    [Show full text]