Microbiome Composition Within a Sympatric Species Complex of Intertidal Isopods (Jaera Albifrons)

Total Page:16

File Type:pdf, Size:1020Kb

Microbiome Composition Within a Sympatric Species Complex of Intertidal Isopods (Jaera Albifrons) RESEARCH ARTICLE Microbiome composition within a sympatric species complex of intertidal isopods (Jaera albifrons) Marius A. Wenzel*, Alex Douglas, Stuart B. Piertney School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 The increasingly recognised effects of microbiomes on the eco-evolutionary dynamics of their hosts are promoting a view of the ªhologenomeº as an integral host-symbiont evolution- ary entity. For example, sex-ratio distorting reproductive parasites such as Wolbachia are well-studied pivotal drivers of invertebrate reproductive processes, and more recent work is OPEN ACCESS highlighting novel effects of microbiome assemblages on host mating behaviour and devel- Citation: Wenzel MA, Douglas A, Piertney SB opmental incompatibilities that underpin or reinforce reproductive isolation processes. How- (2018) Microbiome composition within a ever, examining the hologenome and its eco-evolutionary effects in natural populations is sympatric species complex of intertidal isopods challenging because microbiome composition is considerably influenced by environmental (Jaera albifrons). PLoS ONE 13(8): e0202212. https://doi.org/10.1371/journal.pone.0202212 factors. Here we illustrate these challenges in a sympatric species complex of intertidal isopods (Jaera albifrons spp.) with pervasive sex-ratio distortion and ecological and beha- Editor: Cheryl S. Rosenfeld, University of Missouri Columbia, UNITED STATES vioural reproductive isolation mechanisms. We deep-sequence the bacterial 16S rRNA gene among males and females collected in spring and summer from two coasts in north- Received: February 20, 2018 east Scotland, and examine microbiome composition with a particular focus on reproductive Accepted: July 29, 2018 parasites. Microbiomes of all species were diverse (overall 3,317 unique sequences among Published: August 29, 2018 3.8 million reads) and comprised mainly Proteobacteria and Bacteroidetes taxa typical of Copyright: © 2018 Wenzel et al. This is an open the marine intertidal zone, in particular Vibrio spp. However, we found little evidence of the access article distributed under the terms of the reproductive parasites Wolbachia, Rickettsia, Spiroplasma and Cardinium, suggesting alter- Creative Commons Attribution License, which native causes of sex-ratio distortion. Notwithstanding, a significant proportion of the vari- permits unrestricted use, distribution, and reproduction in any medium, provided the original ance in microbiome composition among samples was explained by sex (14.1 %), nested author and source are credited. within geographic (26.9 %) and seasonal (39.6 %) variance components. The functional rel- Data Availability Statement: Raw sequence data evance of this sex signal was difficult to ascertain given the absence of reproductive para- alongside all relevant metadata are deposited in the sites, the ephemeral nature of the species assemblages and substantial environmental NCBI short-read archive (SRA) at accession variability. These results establish the Jaera albifrons species complex as an intriguing sys- SRP132549. tem for examining the effects of microbiomes on reproductive processes and speciation, Funding: This work was funded by the UK Natural and highlight the difficulties associated with snapshot assays of microbiome composition in Environment Research Council (NERC), grant NE/ M015661/1, awarded to SBP and AD. The funders dynamic and complex environments. had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing interests: The authors have declared that no competing interests exist. PLOS ONE | https://doi.org/10.1371/journal.pone.0202212 August 29, 2018 1 / 19 Microbiome composition in Jaera albifrons spp. Introduction Microbiomes have long been recognised as important functional extensions of their host's physiological and broader ecological phenotype. For example, microbiomes affect fundamen- tal physiological processes associated with digestion, immune system function, disease aetiol- ogy and behaviour [1±3], ecological processes such as nutrient cycling at the plant-root/soil interface [4, 5] and calcification, proliferation and community structure of coral reefs [6, 7], as well as key evolutionary transitions such as the origin of mitochondria [8], gain of photosyn- thetic function in eukaryotic cells [9] or the parallel and convergent evolution of biolumines- cent ªlight organsº in squid and angler fishes [10, 11]. From an evolutionary perspective, microbiome composition is also implicated in reproductive isolation and speciation via affect- ing chemosensory cues essential for mating preference [12] or causing fundamental develop- mental incompatibilities and hybrid breakdown [13]. These insights have given rise to the ªhologenomeº concept of considering the host macro-organism and its associated microbiome as an integral evolutionary entity [14±16]. As such, studying the multi-layered effects of host- microbiome interactions holds immense value for a broad array of pure and applied disci- plines ranging from medicine and agriculture to molecular physiology and ecosystem ecology and evolution [14, 17, 18]. A centrally important phenomenon that underlines how microbiomes may affect eco-evo- lutionary processes in their hosts is sex-ratio distortion in invertebrates caused by infection with cytoplasmic reproductive endoparasites. Wolbachia, Rickettsia, Spiroplasma, Cardinium bacteria and Microsporidian fungi infect the reproductive organs of many arthropod and nematode species and are cytoplasmically transmitted from mother to offspring [19±23]. As a means of promoting transmission and infection prevalence in the population, these parasites manipulate host reproductive biology to distort host sex-ratios in favour of infected females by induction of parthenogenesis, feminization of male offspring, killing of male embryos, disrup- tion of sex-chromosome inheritance, or cytoplasmic incompatibility between individuals with different infection statuses [19, 22, 24]. This demographic disruption can lead to erosion of genetic diversity and phylogenetic signal akin to a bottleneck or selective sweep since most of the population will eventually be descended from few infected matrilines [25, 26]. Con- versely, Wolbachia infection can also promote diversification via horizontal gene transfer to the host [22], and initiation or reinforcement of reproductive isolation and speciation through cytoplasmic incompatibility between populations with mixed infections [27, 28]. Not least, Wolbachia infection can perturb overall microbiome composition, often in sex-specific fashion with downstream physiological effects [29±32]. In concert, these factors firmly establish Wol- bachia and other reproductive parasites as pivotal agents in driving the evolution of many invertebrates. Beyond the obvious value in studying prominently important taxa such as Wolbachia and other reproductive parasites, key to gaining a proper understanding of the effects of the holo- genome on any facet of eco-evolutionary dynamics is the capacity to examine microbiome- wide patterns of diversity in free-living non-model systems. The wide availability of high- throughput DNA sequencing has enabled rapid characterisation of microbial species composi- tion in virtually any type of field sample, and is poised to revolutionise our understanding of how the hologenome operates and evolves in the wild [33, 34]. However, a pre-requisite to thoroughly understanding microbiome composition is an appreciation of potential environ- mental sources of variation. Abiotic factors in dynamic natural environments may confer considerable spatio-temporal variation in ephemeral uptake and proliferation of commensal microbionts that may not necessarily be functionally linked to host metabolism. For example, microbiome composition in marine copepods is contingent on seasonal and spatial differences PLOS ONE | https://doi.org/10.1371/journal.pone.0202212 August 29, 2018 2 / 19 Microbiome composition in Jaera albifrons spp. in water temperatures [35], and littoral Hymeniacidon heliophila sponges can display small- scale variation in microbiome composition between subtidal and intertidal specimens [36]. Conversely, the microbiomes of various marine nematode species are not obviously structured across habitats even on a global scale [37]. These examples highlight the need for an initial assessment of the degree of environmental variation in microbiomes before attempts are made to identify functionally relevant variation in the hologenome and its contribution to host ecol- ogy and evolution [38]. The Jaera albifrons (sensu lato) species complex of sympatric intertidal isopods is an intui- tively attractive study system for examining the links between reproductive parasites, micro- biomes and host eco-evolutionary processes. In Europe, the complex comprises Jaera albifrons sensu stricto, Jaera ischiosetosa, Jaera praehirsuta and Jaera forsmani, with Jaera nordmanni as a congeneric outgroup taxon [39±41]. All species are common across North Atlantic coasts and often form mixed populations in sympatry or parapatry along the intertidal zone. The ingroup species are reproductively isolated through female preference for tactile courtship stimuli administered by males [41, 42], genetic incompatibilities conferring rapid hybrid breakdown [41, 42], and ecological zonation due to species-specific
Recommended publications
  • Belgian Register of Marine Species
    BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ...........................................................................................................................................
    [Show full text]
  • Crustacea of the Environs of St. John, New Brunswick, Canada
    Proceedings of the Iowa Academy of Science Volume 74 Annual Issue Article 38 1967 Crustacea of the Environs of St. John, New Brunswick, Canada Richard W. Coleman Upper Iowa College Let us know how access to this document benefits ouy Copyright ©1967 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Coleman, Richard W. (1967) "Crustacea of the Environs of St. John, New Brunswick, Canada," Proceedings of the Iowa Academy of Science, 74(1), 240-246. Available at: https://scholarworks.uni.edu/pias/vol74/iss1/38 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Coleman: Crustacea of the Environs of St. John, New Brunswick, Canada Crustacea of the Environs of St. John, New Brunswick,. Canada RICHARD w. COLEMAN 1 Abstract. The following species of crustacea were col­ lected in a survey of the environs of St. John, New Bruns­ wick, Canada: Crangonyx gracilis Smith, Gammarus duebeni Lilly, Gammarus lawrencianus Bousfield, Gammarus ocean­ icus Segerstrale, Gammarus tigrinus Sexton, Hyale nilssoni Rathke, Hyalella azteca Sauss., ]aera albifrons Leach, Mar­ inogammarus finmarchicus Dahl, Marinogammarus obtusatus Dahl and Marinogammarus stoerensis Reid: Hyalella azteca was the predominant species in purely fresh water lakes; Gammarus Ugrinus predominated in fresh to brackish waters; and Hyale nilssoni appeared to be the dominant species from marine sources. This discussion is based upon a paper entitled "A Report to the Provincial Department of Public Health, Province of New Brunswick, Fredericton, New Brunswick, Canada, on a Survey for Certain Crustacea of the Environs of St.
    [Show full text]
  • Some Malacostracan Crustacean Assemblages in the Southern and Western Baltic Sea
    Rostock. Meeresbiolog. Beitr. (2001) 9, 127-143 Michael L. ZETTLER Some malacostracan crustacean assemblages in the southern and western Baltic Sea Runnning head: Crustacean assemblages in the Baltic Sea Abstract The paper presents a survey of four crustacean benthic assemblages in the southern and western Baltic Sea. Relative abundance and a multivariate method (cluster analysis) were used to describe these assemblages in German Baltic wa- ters. This study is based mainly on 17 sampling events carried out during 1998/99. The salinity ranged between 2 and 22 psu and the depth varied between 0.4 and 47.3 m. The habitats were silty sands with Mytilus-aggregates, the silt zone below 20 m, shallow stone and boulder grounds and lagoons and fjord-like bays. For as- sessment of sediment structure, current, patchiness and larger crustaceans (e.g. Crangon crangon, Carcinus maenas) in the deeper parts an underwater video- camera was used which was mounted on a sledge. In total 43 species were recor- ded. The most common and important species were Diastylis rathkei, Gammarus salinus, G. zaddachi, Gastrosaccus spinifer, Pontoporeia femorata, Calliopius lae- viusculus, Corophium insidiosum, Leptocheirus pilosus, Jaera albifrons s.l. and Sphaeroma hookeri. One habitat (Kleines Haff, Oder estuary) is characterised through some non-indigenous species, such as Pontogammarus robustoides, Gammarus tigrinus and Corophium curvispinum, especially. Kurzfassung Die Studie präsentiert einen Untersuchung über 4 benthische Krebsgemein- schaften in der südlichen und westlichen Ostsee. Mit relativen Abundanzen und der Cluster-Analyse werden diese Gemeinschaften beschrieben. Die Studie basiert hauptsächlich auf 17 Beprobungen zwischen 1998 und 1999. Die Salinität rangierte zwischen 2 und 22 psu und die Wassertiefe lag zwischen 0,4 und 47,3 m.
    [Show full text]
  • Sexual Isolation with and Without Ecological Isolation in Marine Isopods Jaera Albifrons and J
    Sexual isolation with and without ecological isolation in marine isopods Jaera albifrons and J. praehirsuta Ambre Ribardière, Elsa Pabion, Jérôme Coudret, Claire Daguin-Thiébaut, Céline Houbin, Stéphane Loisel, Sébastien Henry, Thomas Broquet To cite this version: Ambre Ribardière, Elsa Pabion, Jérôme Coudret, Claire Daguin-Thiébaut, Céline Houbin, et al.. Sex- ual isolation with and without ecological isolation in marine isopods Jaera albifrons and J. praehirsuta. Journal of Evolutionary Biology, Wiley, In press, 10.1111/jeb.13559. hal-02349248 HAL Id: hal-02349248 https://hal.sorbonne-universite.fr/hal-02349248 Submitted on 5 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sexual isolation with and without ecological isolation in marine isopods Jaera albifrons and J. praehirsuta. Ambre Ribardière1, Elsa Pabion1, Jérôme Coudret1, Claire Daguin-Thiébaut1, Céline Houbin1,2, 5 Stéphane Loisel1, Sébastien Henry1,2, Thomas Broquet1 1- CNRS & Sorbonne Université, UMR 7144, Station Biologique de Roscoff, 29680 Roscoff, France. 2- CNRS & Sorbonne Université, FR2424, Station Biologique de Roscoff, 29680 Roscoff, France. 10 Corresponding author: Thomas Broquet, Station Biologique de Roscoff, 29680 Roscoff, France. E- mail: [email protected], phone number +33 2 98 29 23 51 15 1 Abstract Sexual barriers associated with mate choice are often found to be associated with some level of ecological isolation between species.
    [Show full text]
  • Systematics, Zoogeography, Evolution and Biodiversity of Antarctic Deep-Sea Isopoda (Crustacea: Malacostraca)
    Systematics, zoogeography, evolution and biodiversity of Antarctic deep-sea Isopoda (Crustacea: Malacostraca) Dissertation zur Erlangung des Doktorgrades des Fachbereichs Biologie der Universität Hamburg vorgelegt von Wiebke Brökeland aus Essen Hamburg 2005 Our knowledge can only be finite, while our ignorance must necessarily be infinite. Karl Raimund Popper According to ICZN article 8.3 all names and nomenclatural acts in this thesis are disclaimed for nomenclatural purposes. Table of contents Summary..................................................................................................................................... i 1 Introduction............................................................................................................................ 1 1.1 The deep sea................................................................................................................................. 1 1.2 The Southern Ocean ................................................................................................................... 2 1.3 Deep-sea Isopoda......................................................................................................................... 3 1.4 Aims and questions ..................................................................................................................... 5 2 Material and Methods ............................................................................................................ 6 2.1 Sampling .....................................................................................................................................
    [Show full text]
  • A Tale of Two Biodiversity Levels Inferred from DNA Barcoding Of
    UNIVERSITÉ DU QUÉBEC À RIMOUSKI A TALE OF TWO BIODIVERSITY LEVELS INFERRED FROM DNA BARCODING OF SELECTED NORTH ATLANTIC CRUSTACEANS DISSERTATION PRESENTED AS PARTIAL REQUIREMENT OF THE DOCTORATE OF BIOLOGY EXTENDED FROM UNIVERSITÉ DU QUÉBEC À MONTRÉAL BY ADRIANA E. RADULOVICI MARCH 2012 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de cette thèse se fait dans le rèspect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522- Rév.01-2006). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'lnternE?t. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.» UNIVERSITÉ DU QUÉBEC À RIMOUSKI L'HISTOIRE DE DEUX NIVEAUX DE BIODIVERSITÉ DEMONTRÉE PAR LE CODE-BARRE D'ADN CHEZ LES CRUSTACÉS DE L'ATLANTIQUE DU NORD THÉ SE PRÉSENTÉE COMME EXIGENCE PARTIELLE DU DOCTORAT EN BIOLOGIE EXTENSIONNÉ DE L'UNIVERSITÉ DU QUÉBEC À MONTRÉAL PAR ADRIANA E.
    [Show full text]
  • Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod
    microorganisms Article Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod Marius Bredon 1 , Elisabeth Depuydt 1, Lucas Brisson 1, Laurent Moulin 2, Ciriac Charles 2,3, Sophie Haenn 2, Bouziane Moumen 1 and Didier Bouchon 1,* 1 UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; [email protected] (M.B.); [email protected] (E.D.); [email protected] (L.B.); [email protected] (B.M.) 2 Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; [email protected] (L.M.); [email protected] (C.C.); [email protected] (S.H.) 3 Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, F-94700 Maisons-Alfort, France * Correspondence: [email protected]; Tel.: +33-(0)5-49-45-38-95; Fax: +33-(0)5-49-45-40-15 Abstract: The crucial role of microbes in the evolution, development, health, and ecological interac- tions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose.
    [Show full text]
  • A Morphological and Molecular Study of Diversity and Connectivity Among Anchialine Shrimp
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-10-2020 Connections in the Underworld: A Morphological and Molecular Study of Diversity and Connectivity among Anchialine Shrimp. Robert Eugene Ditter Florida International University, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biodiversity Commons, Bioinformatics Commons, Biology Commons, Ecology and Evolutionary Biology Commons, Genetics and Genomics Commons, Marine Biology Commons, Natural Resources and Conservation Commons, Oceanography Commons, Other Environmental Sciences Commons, Speleology Commons, and the Zoology Commons Recommended Citation Ditter, Robert Eugene, "Connections in the Underworld: A Morphological and Molecular Study of Diversity and Connectivity among Anchialine Shrimp." (2020). FIU Electronic Theses and Dissertations. 4561. https://digitalcommons.fiu.edu/etd/4561 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida CONNECTIONS IN THE UNDERWORLD: A MORPHOLOGICAL AND MOLECULAR STUDY OF DIVERSITY AND CONNECTIVITY AMONG ANCHIALINE SHRIMP A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Robert E. Ditter 2020 To: Dean Michael R. Heithaus College of Arts, Sciences and Education This dissertation, written by Robert E. Ditter, and entitled Connections in the Underworld: A Morphological and Molecular Study of Diversity and Connectivity among Anchialine Shrimp, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • Aspects of the Breeding Biology of Janaira Gracilis Moreira & Pires
    Bolm Inst. oceanogr., S Paulo, 26:181-199, 1977 ASPECTS OF THE BREEDING BIOLOGY OF JANAIRA GRACILIS MOREIRA & PIRES (CRUSTACEA J ISOPODA J ASELLOTA) PLiNIO SOARES MOREIRA & ANA MARIA SETUBAL PIRES* Instituto Oceanográfico da Universidade de são Paulo SYNOPS I S The bio1ogica1 aspects of incubating females of Janaira gra­ cilis Moreira & Pires, are described. The marsupium is formed by 4 pairs of oostegites arising from pereopods I-IV. The oostegites appear for the first time at the post-marsupia1 stage 7 (preparatory stage 1), growing successive1y at each mou1t until stage 9 (brooding stage 1), when they reach fu11y development. The sizes of the eggs increase with the body size of the females. The number of eggs, per fema1e, is a linear functi on of the body volume, i.e., the fecundity increases with the fema1e's body size. The number of eggs, embryos and juveni1es decrease during the marsupial deve1opment. This de­ crease in brood number is higher between the 1ast two marsupial stages, i.e., from stage C to D, than between the preceding mar­ supial stages. The average and overal1 brood morta1ity rate is of 38.95%. INTRODUCTION The deve10pment of the isopods is processed through a variab1e number of stages. The first stages of deve10pment is carried on inside the fema1e brood pouch or marsupium. This period is ca11ed incubatory or marsupial period, and lasts from the newly deposited eggs to the release of juveni1es * Supported by a fellowship given by the Fundação de Amparo ã Pesquisa do Estado de são Paulo (FAPESP). PUBL. Nr 391 IX) INST.
    [Show full text]
  • Native and Exotic Amphipoda and Other Peracarida in the River Meuse: New Assemblages Emerge from a Fast Changing Fauna
    Hydrobiologia (2005) 542:203–220 Ó Springer 2005 H. Segers & K. Martens (eds), Aquatic Biodiversity II DOI 10.1007/s10750-004-8930-9 Native and exotic Amphipoda and other Peracarida in the River Meuse: new assemblages emerge from a fast changing fauna Guy Josens1,*, Abraham Bij de Vaate2, Philippe Usseglio-Polatera3, Roger Cammaerts1,4, Fre´de´ric Che´rot1,4, Fre´de´ric Grisez1,4, Pierre Verboonen1 & Jean-Pierre Vanden Bossche1,4 1Universite´ Libre de Bruxelles, Service de syste´matique et d’e´cologie animales, av. Roosevelt, 50, cp 160/13, B-1050 Bruxelles 2Institute for Inland Water Management & Waste Water Treatment, Lelystad, The Netherlands 3Universite´ de Metz, LBFE, e´quipe de De´moe´cologie, av. Ge´ne´ral Delestraint, F-57070 Metz 4Centre de Recherche de la Nature, des Foreˆts et du Bois, DGRNE, Ministe`re de la Re´gion wallonne, Avenue Mare´chal Juin, 23, B-5030 Gembloux (*Author for correspondence: e-mail: [email protected]) Key words: aquatic biodiversity, alien species, invasive species, invasibility, community dynamics, Dikerogammarus villosus, Chelicorophium curvispinum Abstract Samples issued from intensive sampling in the Netherlands (1992–2001) and from extensive sampling carried out in the context of international campaigns (1998, 2000 and 2001) were revisited. Additional samples from artificial substrates (1992–2003) and other techniques (various periods) were analysed. The combined data provide a global and dynamic view on the Peracarida community of the River Meuse, with the focus on the Amphipoda. Among the recent exotic species found, Crangonyx pseudogracilis is regressing, Dikerogammarus haemobaphes is restricted to the Condroz course of the river, Gammarus tigrinus is restricted to the lowlands and seems to regress, Jaera istri is restricted to the ‘tidal’ Meuse, Chelicorophium curvispinum is still migrating upstream into the Lorraine course without any strong impact on the other amphipod species.
    [Show full text]
  • Ecology and Systematics of a New Species of Uromunna (Crustacea: Isopoda) from Spanish Eelgrass Beds
    Helgol Mar Res (2014) 68:329–339 DOI 10.1007/s10152-014-0393-4 ORIGINAL ARTICLE Ecology and systematics of a new species of Uromunna (Crustacea: Isopoda) from Spanish eelgrass beds Patricia Esquete • George D. F. Wilson • Jesu´s S. Troncoso Received: 5 November 2013 / Revised: 20 March 2014 / Accepted: 24 March 2014 / Published online: 9 April 2014 Ó Springer-Verlag Berlin Heidelberg and AWI 2014 Abstract Uromunna naherba sp. nov. is described from substrate and shelter to many taxonomic groups (Fredette eelgrass beds (Zostera marina and Z. noltii) of the NW et al. 1990; Bostro¨m and Mattila 1999; Hasegawa et al. Iberian Peninsula. This is the second species of the genus 2008). Recent sampling of peracarid crustaceans in Spanish reported from the NE Atlantic, after U. petiti. The new seagrass habitats (Esquete et al. 2011) found several spe- species was more abundant on rhizomes than on the leaves cies of the asellotan isopod family Munnidae. Species of of the plants. Seasonal samples show that ovigerous Munnidae have been described or reported in eelgrasses, females are present throughout the year, but become more such as Uromunna brevicornis (Thomson, 1946) (Poore abundant in late spring and summer, when adult males 1984), Uromunna peterseni (Pires, 1985), Uromunna rey- decrease in frequency. Ovigerous females appear in only noldsi (Frankenberg and Menzies, 1966) (Kensley et al. one size class. Owing to the yearly productivity cycle of 1995). In ecological studies, munnids are often mentioned the eelgrasses, these data suggest that the species is se- only to generic level, owing to a lack of adequate identi- melparous and completes its lifecycle within 1 year.
    [Show full text]
  • The Fine Structure of the Compound Eyes of Shallow-Water Asellotes, Jaera Albifrons Leach and Asellus Aquaticus L
    Acta*.uui. (oiocKti.j M: 69—84 (1978) The Fine Structure of the Compound Eyes of Shallow-Water Asellotes, Jaera albifrons Leach and Asellus aquaticus L. (Crustacea: Isopoda) Heimo L. Nilsson Department of Zoology, University of Lund, Sweden (Accepted February 24, 1978) Abstract Nilsson, H. L. 1978. The fine structure of the compound eyes of shallow-water asellotes, Jaera albifrons Leach and Asellus aquaticus L. (Crustacea: Isopoda). (Department of Zoology, University of Lund, Sweden.) — Acta zool. (Stockh.) 59(2): 69—84. Both species have small sessile compound eyes. The dioptric apparatus of /. albifrons consists of a biconvex lens and a pyriform crystalline cone, the latter formed by two principal and two accessory cone cells. A. aquaticus has a reduced lens and a round cone formed by two to four principal cone cells with two to no accessory cone cells. Distal pigment cells and pigmented retinular cells lie between the ommatidia in /. albifrons. A. aquaticus has only the pigmented retinular cells. Both species have a fused, continuous (unbanded) rhabdom formed by eight retinular cells (Rl—8), one of which (R8) is situated distally. The retinular cells Rl—7 form, in /. albifrons, a cylinder- shaped middle portion with three microvillar directions (60° apart) and a proximal star-shaped portion. The entire rhabdom of A. aquaticus is star- shaped. Distal pigment-cell processes and basal cells form the fenestrated membrane in /. albifrons and ueye-cup cells" in A. aquaticus. Heimo L. Nilsson, Department of Zoology, University of Lund, Helgonavdgen 3, S-223 62 Lund, Sweden. dillo officinalis (Bengucrrah and Carricaburu Introduction 1976). A great variation in the organization of the isopod All of these above-cited investigations indicate retinae has been shown by previous light-micro­ that the isopod compound eye and visual proper­ scopic studies (e.g.
    [Show full text]