Stygobites) in England and Wales

Total Page:16

File Type:pdf, Size:1020Kb

Stygobites) in England and Wales DOCTORAL THESIS An investigation into the distribution of obligate groundwater animals (stygobites) in England and Wales Weitowitz, Damiano Award date: 2017 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 An investigation into the distribution of obligate groundwater animals (stygobites) in England and Wales N. kochianus captured from the Chalk in England, UK. Damiano C Weitowitz BSc, MSc A thesis submitted in partial fulfilment of the requirements for the degree of PhD Department of Life Sciences University of Roehampton 2016 II Abstract Aquifers and their biota (stygobites) are some of the least well known ecosystems. Previous research indicates geology is an important control of stygobites and the primary thesis aim was therefore to examine how geology shapes the distributions of stygobites across different spatial scales, considering high lithological detail. The food web functionality of groundwater ecosystems is also rarely explored and the secondary thesis aim was therefore to examine the trophic effects of stygobites in experimental groundwater microcosms. The new habitat typology shows that 11 higher resolution geo- habitats are characterised by significantly different hydrochemistry and a heterogeneous distribution of high-quality habitat patches. Furthermore, the habitat scoring system developed based on the variability of influential abiotic parameters shows that overall geo-habitat quality varies considerably, with karstic geo-habitats (e.g. Chalk) having a higher quality than most porous and fractured geo-habitats. Major parts of England and Wales are covered by poor quality habitats, probably limiting dispersal. Testing the new typology on species distributions shows that biodiverse and / or abundant communities occur in all geo-habitats. Karstic aquifers generally form the best habitats with the highest stygobite species diversity and frequency of occurrence. However, some fractured aquifers (e.g. Igneous Rock) are also significant habitats for stygobites, while more geological detail needs to be considered to explain stygobite communities in other fractured aquifers (e.g. Mudstones & Siltstones). However, many species are not distributed throughout entire connected aquifers, and in individual sites copepod biomass is not explained by geology, showing that other environmental controls (glacial history, site characteristics) may supersede geological controls. The grazing experiments show 2 Abstract that stygobites significantly increase protozoan abundance and morphotype diversity, and alter microbial community structure, indicating they may modulate the ecosystem services provided by these groups. Overall, this thesis enhances our knowledge of the factors governing the distribution and functionality of groundwater ecosystems. 3 III Contents Title Page………………………………………………………………………………………………………………………p.1 II Abstract……………………………………………………………………………………………………………………..p.2 III Contents……………………………………………………………………………………………………………………p.4 Tables………………………………………………………………………………………………………………………..p.9 Figures…………………………………………………………………………………………………………………………p.11 Appendices………………………………………………………………………………………………………………….p.15 IV Acknowledgments…………………………………………………………………………………………………. p.18 1. General Introduction……………………………………………………………………………………………p.20 1.1 Summary of thesis aims……………………………………………………………………………………p.20 1.2 Groundwater characteristics…………………………………………………………………………….p.22 1.3 Conservation status of groundwater ecosystems……………………………………………..p.29 1.4 Geology – A control across multiple scales……………………………………………………….p.30 1.5 Current habitat typologies……………………………………………………………………………….p.32 1.6 A global sampling bias………………………………………………………………………………………p.37 1.7 Groundwater controls on faunal biomass…………………………………………………………p.41 1.8 Geology and associated heterogeneity as stygobite controls……………………………p.44 1.9 Surface water and groundwater food webs……………………………………………………..p.47 2. Defining geo-habitats for groundwater ecosystem assessment (submitted to Hydrogeology journal)……………………………………………………………………….p.53 2.1 Abstract……………………………………………………………………………………………………………p.54 2.2 Introduction……………………………………………………………………………………………………..p.55 2.3 Methodology……………………………………………………………………………………………………p.58 4 Contents 2.3.1 Assessing geo-habitat distribution………………………………………………………..p.59 Determining geo-habitat categories………………………………………….p.59 Assigning geological units to geo-habitats…………………………………p.62 2.3.2 Assessing geo-habitat characteristics……………………………………………………p.65 Data Collection………………………………………………………………………….p.65 Comparing Geo-Habitat Characteristics…………………………………….p.66 2.3.3 Evaluation of Geo-Habitat Quality………………………………………………………..p.67 Identification of thresholds and additional parameters…………….p.67 Calculation………………………………………………………………………………..p.68 2.4 Results……………………………………………………………………………………………………………..p.70 2.4.1 Distribution of geo-habitats………………………………………………………………….p.70 2.4.2 Geo-habitat characteristics…………………………………………………………………..p.72 Hydrogeology……………………………………………………………………………p.74 Hydrochemistry…………………………………………………………………………p.77 2.4.3 Geo-habitat quality………………………………………………………………………………p.79 2.5 Discussion………………………………………………………………………………………………………..p.84 2.5.1 Assessing the new typology………………………………………………………………….p.84 2.5.2 Geo-habitat characteristics and quality………………………………………………..p.86 2.5.3 Distribution of geo-habitats………………………………………………………………….p.91 2.6 Conclusion……………………………………………………………………………………………………….p.94 2.7 Acknowledgments……………………………………………………………………………………………p.95 2.8 References……………………………………………………………………………………………………….p.96 2.9 Appendices…………………………………………………………………………………………………….p.106 3. The groundwater ecology of poorly sampled geologies in England and Wales………………………………………………………………………………………………..p.111 3.1 Abstract………………………………………………………………………………………………………….p.112 3.2 Introduction…………………………………………………………………………………………………..p.114 3.3 Methodology………………………………………………………………………………………………….p.118 3.3.1 Distribution of fauna…………………………………………………………………………..p.118 5 Contents Selection of geologies and sampling areas………………………………p.118 Field sampling…………………………………………………………………………p.120 Laboratory sorting and identification………………………………………p.122 Assessing species distributions……………………………………………….p.123 3.3.2 Calculating individual and total biomass…………………………………………….p.125 Individual biomass…………………………………………………………………..p.125 Total biomass in geologies………………………………………………………p.125 3.3.3 Assessing environmental predictors of copepod biomass and…………….p.125 abundance 3.4 Results……………………………………………………………………………………………………………p.128 3.4.1 Faunal distributions in geologies…………………………………………………………p.128 3.4.2 Biomass trends in geologies……………………………………………………………….p.137 3.4.3 Individual copepod biomass and abundance………………………………………p.139 Local site effects……………………………………………………………………..p.139 Other environmental effects…………………………………………………..p.140 3.5 Discussion………………………………………………………………………………………………………p.144 3.5.1 Stygobite distributions in the four geologies………………………………………p.144 3.5.2 Overall biomass pattern……………………………………………………………………..p.148 3.5.3 Influences on copepod biomass and abundance…………………………………p.151 3.6 Conclusion……………………………………………………………………………………………………..p.154 3.7 Acknowledgments………………………………………………………………………………………….p.156 3.8 References……………………………………………………………………………………………………..p.157 3.9 Appendices…………………………………………………………………………………………………….p.170 4. Geological controls on stygobite distributions in England and Wales………………….p.175 4.1 Abstract………………………………………………………………………………………………………….p.176 4.2 Introduction…………………………………………………………………………………………………..p.177 4.3 Methodology………………………………………………………………………………………………….p.181 4.3.1 National-scale assessment of stygobite distributions………………………….p.181 Data Sources…………………………………………………………………………..p.181 6 Contents Geo-habitat suitability for stygobites………………………………………p.184 Geological controls of stygobite distributions…………………………p.185 4.3.2 Stygobite habitat chemistry………………………………………………………………..p.186 Data Sources…………………………………………………………………………..p.186 Water chemistry ranges of stygobites…………………………………….p.187 4.4 Results……………………………………………………………………………………………………………p.188 4.4.1 Geo-habitat suitability for stygobites………………………………………………….p.188 4.4.2 Geological controls of stygobite distributions…………………………………….p.189 4.4.3 Species habitat chemistry differences…………………………………………………p.202 4.5 Discussion………………………………………………………………………………………………………p.205 4.5.1 Geo-habitat suitability for stygobites………………………………………………….p.205 4.5.2 Geological controls on stygobite distributions…………………………………….p.209 4.5.3 Stygobite water chemistry ranges………………………………………………………p.216 4.6 Conclusions……………………………………………………………………………………………………p.218 4.7 Acknowledgments………………………………………………………………………………………….p.220 4.8 References……………………………………………………………………………………………………..p.221 4.9 Appendices…………………………………………………………………………………………………….p.233 5. Consumers mediate interactions in a simple
Recommended publications
  • Zoogeography of Epigean Freshwater Amphipoda (Crustacea) in Romania: Fragmented Distributions and Wide Altitudinal Variability
    Zootaxa 3893 (2): 243–260 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3893.2.5 http://zoobank.org/urn:lsid:zoobank.org:pub:8336FFDA-F1A5-4026-A5B6-CCEBFF84F40A Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability DENIS COPILAȘ-CIOCIANU1, MICHAŁ GRABOWSKI2, LUCIAN PÂRVULESCU3 & ADAM PETRUSEK1 1Charles University in Prague, Faculty of Science, Department of Ecology, Viničná 7, 12844, Prague, Czech Republic. E-mail: [email protected], [email protected] 2University of Łódź, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology & Hydrobiology, Banacha 12/16, 90-237, Łódź, Poland. E-mail: [email protected] 3West University of Timișoara, Faculty of Chemistry, Biology, Geography, Department of Biology and Chemistry, Pestalozzi 16A, 300115, Timișoara, Romania. E-mail: [email protected] Abstract Inland epigean freshwater amphipods of Romania are diverse and abundant for this region has a favourable geographical position between the Balkans and the Black Sea. Excluding Ponto-Caspian species originating in brackish waters and freshwater subterranean taxa, there are 11 formally recognized epigean freshwater species recorded from this country. They belong to 3 genera, each representing a different family: Gammarus (Gammaridae, 8 species or species complexes), Niphargus (Niphargidae, 2 epigean species) and Synurella (Crangonyctidae, one species). Their large-scale distribution patterns nevertheless remain obscure due to insufficient data, consequently limiting biogeographical interpretations. We provide extensive new data with high resolution distribution maps, thus improving the knowledge of the ranges of these taxa.
    [Show full text]
  • Amblyopsidae, Amblyopsis)
    A peer-reviewed open-access journal ZooKeys 412:The 41–57 Hoosier(2014) cavefish, a new and endangered species( Amblyopsidae, Amblyopsis)... 41 doi: 10.3897/zookeys.412.7245 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana Prosanta Chakrabarty1,†, Jacques A. Prejean1,‡, Matthew L. Niemiller1,2,§ 1 Museum of Natural Science, Ichthyology Section, 119 Foster Hall, Department of Biological Sciences, Loui- siana State University, Baton Rouge, Louisiana 70803, USA 2 University of Kentucky, Department of Biology, 200 Thomas Hunt Morgan Building, Lexington, KY 40506, USA † http://zoobank.org/0983DBAB-2F7E-477E-9138-63CED74455D3 ‡ http://zoobank.org/C71C7313-142D-4A34-AA9F-16F6757F15D1 § http://zoobank.org/8A0C3B1F-7D0A-4801-8299-D03B6C22AD34 Corresponding author: Prosanta Chakrabarty ([email protected]) Academic editor: C. Baldwin | Received 12 February 2014 | Accepted 13 May 2014 | Published 29 May 2014 http://zoobank.org/C618D622-395E-4FB7-B2DE-16C65053762F Citation: Chakrabarty P, Prejean JA, Niemiller ML (2014) The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana. ZooKeys 412: 41–57. doi: 10.3897/zookeys.412.7245 Abstract We describe a new species of amblyopsid cavefish (Percopsiformes: Amblyopsidae) in the genus Amblyopsis from subterranean habitats of southern Indiana, USA. The Hoosier Cavefish, Amblyopsis hoosieri sp. n., is distinguished from A. spelaea, its only congener, based on genetic, geographic, and morphological evi- dence. Several morphological features distinguish the new species, including a much plumper, Bibendum- like wrinkled body with rounded fins, and the absence of a premature stop codon in the gene rhodopsin.
    [Show full text]
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • Biological and Landscape Diversity in Slovenia
    MINISTRY OF THE ENVIRONMENT AND SPATIAL PLANNING ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA Biological and Landscape Diversity in Slovenia An overview CBD Ljubljana, 2001 MINISTRY OF THE ENVIRONMENTAL AND SPATIAL PLANNING ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA Published by: Ministry of the Environment and Spatial Planning - Environmental Agency of the Republic of Slovenia Editors in chief and executive editors: Branka Hlad and Peter Skoberne Technical editor: Darja Jeglič Reviewers of the draft text: Kazimir Tarman Ph.D., Andrej Martinčič Ph.D., Fedor Černe Ph.D. English translation: Andreja Naraks Gordana Beltram Ph.D. (chapter on Invasive Species, ......., comments on the figures), Andrej Golob (chapter on Communication, Education and Public Awareness) Revision of the English text: Alan McConnell-Duff Ian Mitchell (chapter on Communication, Education and Public Awareness) Gordana Beltram Ph.D. Designed and printed by: Littera Picta d.o.o. Photographs were contributed by: Milan Orožen Adamič (2), Matjaž Bedjanič (12), Gordana Beltram (3), Andrej Bibič (2), Janez Božič (1), Robert Bolješič (1), Branka Hlad (15), Andrej Hudoklin (10), Hojka Kraigher (1), Valika Kuštor (1), Bojan Marčeta (1), Ciril Mlinar (3), Marko Simić (91), Peter Skoberne (57), Baldomir Svetličič (1), Martin Šolar (1), Dorotea Verša (1) and Jana Vidic (2). Edition: 700 copies CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 502.3(497.4)(082) 574(497.4)(082) BIOLOGICAL and landscape diversity in Slovenia : an overview / (editors in chief Branka Hlad and Peter Skoberne ; English translation Andreja Naraks, Gordana Beltram, Andrej Golob; photographs were contributed by Milan Orožen Adamič... et. al.). - Ljubljana : Ministry of the Environment and Spatial Planning, Environmental Agency of the Republic of Slovenia, 2001 ISBN 961-6324-17-9 I.
    [Show full text]
  • Guzik IS07040.Qxd
    CSIRO PUBLISHING www.publish.csiro.au/journals/is Invertebrate Systematics, 2008, 22, 205–216 Phylogeography of the ancient Parabathynellidae (Crustacea:Bathynellacea) from the Yilgarn region of Western Australia M. T. Guzik A,E, K. M. Abrams A, S. J. B. Cooper A,B, W. F. HumphreysC, J.-L. ChoD and A. D. Austin A AAustralian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, The University of Adelaide, SA 5005, Australia. BEvolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia. CWestern Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. DInternational Drinking Water Center, San 6-2, Yeonchuck-Dong, Daedok-Gu, Taejeon 306-711, Korea. ECorresponding author. Email: [email protected] Abstract. The crustacean order Bathynellacea is a primitive group of subterranean aquatic (stygobitic) invertebrates that typically inhabits freshwater interstitial spaces in alluvia. A striking diversity of species from the bathynellacean family Parabathynellidae have been found in the calcretes of the Yilgarn palaeodrainage system in Western Australia. Taxonomic studies show that most species are restricted in their distribution to a single calcrete, which is consistent with the findings of other phylogeographic studies of stygofauna. In this, the first molecular phylogenetic and phylogeographic study of interspecific relationships among parabathynellids, we aimed to explore the hypothesis that species are short-range endemics and restricted to single calcretes, and to investigate whether there were previously unidentified cryptic species. Analyses of sequence data based on a region of the mitochondrial (mt) DNA cytochrome c oxidase 1 gene showed the existence of divergent mtDNA lineages and species restricted in their distribution to a single calcrete, in support of the broader hypothesis that these calcretes are equivalent to closed island habitats comprising endemic taxa.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Draft Hunt Plan
    Ozark Plateau National Wildlife Refuge White-tailed Deer, Eastern Gray and Fox Squirrel, and Cottontail Rabbit Hunt Plan May 2019 U.S. Fish and Wildlife Service Ozark Plateau National Wildlife Refuge 16602 County Road465 Colcord, Oklahoma 74338-2215 Submitted By: Refuge Manager ______________________________________________ ____________ Signature Date Concurrence: Refuge Supervisor ______________________________________________ ____________ Signature Date Approved: Regional Chief, National Wildlife Refuge System ______________________________________________ ____________ Signature Date i Table of Contents I. Introduction ................................................................................................................................. 1 II. Statement of Objectives ............................................................................................................. 4 III. Description of Hunting Program ............................................................................................... 4 A. Areas to be Opened to Hunting ............................................................................................. 5 B. Species to be Taken, Hunting Periods, Hunting Access ........................................................ 5 C. Hunter Permit Requirements (if applicable) ........................................................................ 12 D. Consultation and Coordination with the State/ Tribes ......................................................... 12 E. Law Enforcement ................................................................................................................
    [Show full text]
  • Biographical Memoir Carl H. Eigenmann Leonhard
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XVIII—THIRTEENTH MEMOIR BIOGRAPHICAL MEMOIR OF CARL H. EIGENMANN 1863-1927 BY LEONHARD STEJNEGER PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1937 CARL H. EIGENMANN * 1863-1927 BY LEON HARD STEJNEGER Carl H. Eigenmann was born on March 9, 1863, in Flehingen, a small village near Karlsruhe, Baden, Germany, the son of Philip and Margaretha (Lieb) Eigenmann. Little is known of his ancestry, but both his physical and his mental character- istics, as we know them, proclaim him a true son of his Suabian fatherland. When fourteen years old he came to Rockport, southern Indiana, with an immigrant uncle and worked his way upward through the local school. He must have applied himself diligently to the English language and the elementary disciplines as taught in those days, for two years after his arrival in America we find him entering the University of Indiana, bent on studying law. At the time of his entrance the traditional course with Latin and Greek still dominated, but in his second year in college it was modified, allowing sophomores to choose between Latin and biology for a year's work. It is significant that the year of Eigenmann's entrance was also that of Dr. David Starr Jordan's appointment as professor of natural history. The latter had already established an enviable reputa- tion as an ichthyologist, and had brought with him from Butler University several enthusiastic students, among them Charles H. Gilbert who, although only twenty years of age, was asso- ciated with him in preparing the manuscript for the "Synopsis of North American Fishes," later published as Bulletin 19 of the United States National Museum.
    [Show full text]
  • Belgian Register of Marine Species
    BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ...........................................................................................................................................
    [Show full text]
  • Order HARPACTICOIDA Manual Versión Española
    Revista IDE@ - SEA, nº 91B (30-06-2015): 1–12. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Class: Maxillopoda: Copepoda Order HARPACTICOIDA Manual Versión española CLASS MAXILLOPODA: SUBCLASS COPEPODA: Order Harpacticoida Maria José Caramujo CE3C – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. [email protected] 1. Brief definition of the group and main diagnosing characters The Harpacticoida is one of the orders of the subclass Copepoda, and includes mainly free-living epibenthic aquatic organisms, although many species have successfully exploited other habitats, including semi-terrestial habitats and have established symbiotic relationships with other metazoans. Harpacticoids have a size range between 0.2 and 2.5 mm and have a podoplean morphology. This morphology is char- acterized by a body formed by several articulated segments, metameres or somites that form two separate regions; the anterior prosome and the posterior urosome. The division between the urosome and prosome may be present as a constriction in the more cylindric shaped harpacticoid families (e.g. Ectinosomatidae) or may be very pronounced in other familes (e.g. Tisbidae). The adults retain the central eye of the larval stages, with the exception of some underground species that lack visual organs. The harpacticoids have shorter first antennae, and relatively wider urosome than the copepods from other orders. The basic body plan of harpacticoids is more adapted to life in the benthic environment than in the pelagic environment i.e. they are more vermiform in shape than other copepods. Harpacticoida is a very diverse group of copepods both in terms of morphological diversity and in the species-richness of some of the families.
    [Show full text]
  • First Insights Into the Subterranean Crustacean Bathynellacea
    RESEARCH ARTICLE First Insights into the Subterranean Crustacean Bathynellacea Transcriptome: Transcriptionally Reduced Opsin Repertoire and Evidence of Conserved Homeostasis Regulatory Mechanisms Bo-Mi Kim1, Seunghyun Kang1, Do-Hwan Ahn1, Jin-Hyoung Kim1, Inhye Ahn1,2, Chi- Woo Lee3, Joo-Lae Cho4, Gi-Sik Min3*, Hyun Park1,2* a1111111111 1 Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea, 2 Polar Sciences, a1111111111 University of Science & Technology, Yuseong-gu, Daejeon, South Korea, 3 Department of Biological a1111111111 Sciences, Inha University, Incheon, South Korea, 4 Nakdonggang National Institute of Biological Resources, a1111111111 Sangju, South Korea a1111111111 * [email protected] (HP); [email protected] (GM) Abstract OPEN ACCESS Bathynellacea (Crustacea, Syncarida, Parabathynellidae) are subterranean aquatic crusta- Citation: Kim B-M, Kang S, Ahn D-H, Kim J-H, Ahn I, Lee C-W, et al. (2017) First Insights into the ceans that typically inhabit freshwater interstitial spaces (e.g., groundwater) and are occa- Subterranean Crustacean Bathynellacea sionally found in caves and even hot springs. In this study, we sequenced the whole Transcriptome: Transcriptionally Reduced Opsin transcriptome of Allobathynella bangokensis using RNA-seq. De novo sequence assembly Repertoire and Evidence of Conserved produced 74,866 contigs including 28,934 BLAST hits. Overall, the gene sequences were Homeostasis Regulatory Mechanisms. PLoS ONE 12(1): e0170424. doi:10.1371/journal. most similar to those of the waterflea Daphnia pulex. In the A. bangokensis transcriptome, pone.0170424 no opsin or related sequences were identified, and no contig aligned to the crustacean visual Editor: Peng Xu, Xiamen University, CHINA opsins and non-visual opsins (i.e.
    [Show full text]
  • Niphargus (Crustacea: Amphipoda) Species in Hungary: Literature Review, Current Taxonomy and the Updated Distribution of Valid Taxa
    Zootaxa 3974 (3): 361–376 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3974.3.4 http://zoobank.org/urn:lsid:zoobank.org:pub:54B50671-22A8-4BB1-9233-49133E598CB9 Niphargus (Crustacea: Amphipoda) species in Hungary: literature review, current taxonomy and the updated distribution of valid taxa GERGELY BALÁZS1, DOROTTYA ANGYAL2 & ELŐD KONDOROSY3 1 Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117. E-mail: [email protected] 2 Department of Zoology, Hungarian Natural History Museum, Baross u. 13., Budapest, H-1088. E-mail: [email protected] 3 Department of Animal Sciences and Animal Husbandry, University of Pannonia, Deák Ferenc u. 16., Keszthely, H-8360. E-mail: [email protected] Abstract Research of the Hungarian Niphargus species is a rather neglected field. This is due to the growing distance between the level of knowledge about Hungarian species and the elaboration determined by the international publications, which had caused a hardly negotiable inconvenience in the judgment of the state of the Hungarian species. The clarification of spe- cies in questionable positions could be the starting point of further inland research. During our work, the species with Hun- garian distributions were assigned based on the literature’s data, and were evaluated with morphological examinations of the specimens collected by us from their type localities and other habitats. Considering the validity of the species we cre- ated three categories. Eight of the 20 species proved to be invalid or non-inland species, three remain in an uncertain tax- onomic state, while nine are classifiable into the ’valid Hungarian species’ category.
    [Show full text]