Microsatellite Marker Development in Peony Using Next Generation Sequencing

Total Page:16

File Type:pdf, Size:1020Kb

Load more

J. AMER.SOC.HORT.SCI. 138(1):64–74. 2013. Microsatellite Marker Development in Peony using Next Generation Sequencing Barbara Gilmore Formerly at USDA ARS Arctic and Subarctic Plant Gene Bank, 1509 South Georgeson Road, Palmer, AK 99645 Nahla Bassil and April Nyberg USDA ARS National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, OR 97333 Brian Knaus USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331 Don Smith Yellow Peonies and More, West Newton, MA 02465 Danny L. Barney USDA ARS North Central Regional Plant Introduction Station, G212 Agronomy Building, Ames, IA 50011 Kim Hummer1 USDA ARS National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, OR 97333 ADDITIONAL INDEX WORDS. Paeonia lactiflora, Paeonia ·suffruticosa, intersectional, simple sequence repeat primers, Illumina libraries ABSTRACT. Peonies (Paeonia), the grand garden perennial of spring and early summer, are economically important to the international cut flower market. Herbaceous peonies (Paeonia section Paeonia), tree peonies (Paeonia section Moutan), and intersectional crosses between the two types (Itoh Paeonia hybrids) are of interest to gardeners, growers, and nursery producers. Thousands of peony cultivars exist and identity is traditionally determined by experienced horticulturists knowledgeable in plant and bloom characteristics. With DNA extraction possible during any time of the year, molecular markers can provide genotype identity confirmation for dormant roots or mature post-bloom plants. The primary objective of our research was to rapidly and inexpensively develop microsatellite markers in a range of Paeonia species using barcoded Illumina libraries. A secondary objective was to apply these simple sequence repeat (SSR) markers to fingerprint 93 accessions that include tree, intersectional, and herbaceous peonies. We used 21 primers to distinguish cultivars and their close relatives. Also from our sequence information, greater than 9000 primers were designed and are made available. Peonies, family Paeoniaceae, were first recognized as (Harding, 1917). Peonies are heritage perennial flowers that hold a medicinal plant in Asia several thousand years ago (Hsu special cultural value in the United States. They are a traditional et al., 1986). In the late 1700s, peonies were imported from Asia Memorial Day cut flower and have become a popular wedding and Europe into North America for use as a garden flower flower (D. Hollingsworth, personal communication). These plants are produced as a commercial nursery crop, and the blooms are a significant component of the cut flower industry. Received for publication 26 July 2012. Accepted for publication 27 Sept. 2012. This work was supported by USDA-ARS CRIS 5341-21000-004-00D and These flowers have been widely sold in European markets for 5358-21000-038-00D. centuries and were first sold in Chicago in 1884 (Rogers, 1995). We appreciate funding from ARS CRIS 5341-21000-004-00D and the generous Commercial production is found on every continent except donation of plant materials from Adelman Peony Gardens, Brooks, OR, and Jim Antarctica. Production areas in North America range from Alaska Oliphant, Corvallis, OR. The Illumina sequencing was performed at the Center for Genome Research and Biocomputing at Oregon State University, Corvallis, OR. and Canada in the North through northern California through the We are indebted to Caprice Rosato, Mark Dasenko, and Chris Sullivan for their center of the continent to North Carolina in the South. In 2009, technical advice on the bioanalyzer, sequencing, and core facility computing sup- world peony sales through Dutch auctions resulted in nearly 63 port. We greatly appreciate the support of the Alaska Peony Growers Association for million stems sold, valued at almost V24 million [$30 million their support of this project. We appreciate Pat Holloway and Barbara Reed for (Vakblad voor de Bloemisterji, 2012)]. critical review of this manuscript. We are grateful to Charlotte Boches, Jeremy Jones, and Estefania Elorriaga for their assistance with field and laboratory work. Jakubowski et al. (2007) listed the names and descriptions of Mention of a trademark, proprietary product, or vendor does not constitute 7995 peony cultivars worldwide. Many more cultivars have been a guarantee or warranty of the product by the U.S. Dept. of Agriculture and named each year since then. Peonies are generally recognized as does not imply its approval to the exclusion of other products or vendors that three distinct types. Herbaceous peonies are perennial plants that also may be suitable. Dedicated to the memory of Charlotte (Charlie) Boches, 1987–2011, for all she have soft, succulent, green stems that die back to the ground will never do. every fall. The crowns of the plants are below the surface of the 1Corresponding author. E-mail: [email protected]. ground and can survive extremely cold winter temperatures and 64 J. AMER.SOC.HORT.SCI. 138(1):64–74. 2013. resume growth in spring. These new shoots grow, flower, set the relationships between three tree species, P. yananensis, seed, and die at the end of the season. The tree peonies are P. jishanensis,andP. rockii (Yuan et al., 2010). Paeonia perennial plants that have woody stems above the ground at all yananensis was found to be a hybrid of P. jishanensis and times of the year. Their stem buds break in the spring and the P. rockii (Yuan et al., 2010). Eight additional SSRs were stems elongate over the years to form a bush 1 to 1.5 m in reported to cross-amplify in six Peonia species (Homolka height. Because of the exposed stems, tree peonies are unable to et al., 2010). In 2011, researchers used seven of 21 SSRs, survive temperatures as low as the herbaceous types. Intersec- developed from peony expressed sequence tags, in cultivar tional hybrids are crosses between the two groups. Intersec- identification of tree peonies (Zhang et al., 2012). Fewer tionals (Itohs) have a similar growth pattern to herbaceous SSRs have been developed for P. lactiflora where only 20 peonies, so they are able to withstand temperatures that would polymorphic SSRs are reported (Li et al., 2011; Sun et al., kill tree peonies, but their foliage and the flowers have the tree 2011). peony appearance (La Pivoinerie D#Aoust Peony Nursery, The objectives of this study were to develop new SSR 2012). Itohs are named for Toichi Itoh, who made the first markers using barcoded multiplexed libraries of multiple peony successful cross in 1948 between an herbaceous peony and tree species, and to evaluate these markers for fingerprinting peony (Rogers, 2004). herbaceous peony (P. lactiflora and hybrids), tree peony Currently, the standard way to identify cultivars requires (moutan), and intersectional (Itohs) individuals. knowledge and experience in recognizing the morphological characteristics of the flower and plant. Misidentification of cultivars can sometimes cost thousands of dollars as a result of Methods and Materials incorrect sales. Adding to the complexity of identity determi- nation, growers attest that some cultivars produce variant PLANT MATERIALS. In early Spring 2010, leaf material was flower colors when grown in different regions or countries obtained from seven peony individuals from multiple sources. (D. Hollingsworth, personal communication). Growers may Leaves of P. lactiflora ‘Bowl of Beauty’, P. lutea · P. often wait two to 10 years for bloom appearance to confirm the ·suffruticosa hybrid ‘Souvenir de Maxime Cornu’, P. identity of planted stock. ·suffruticosa ‘Feng deng bai’, and P. delavayi were collected Identity determination of other horticultural crops such as from the U.S. Department of Agriculture (USDA), Agricultural blueberry [Vaccinium corymbosum (Boches et al., 2005)], Research Service (ARS), National Clonal Germplasm Repos- peach [Prunus persica (Rojas et al., 2008)], and mango itory (NCGR), Corvallis, OR. Samples from P. tenuifolia [Mangifera indica (Wahdan et al., 2011)] benefitted from using ‘Rubra Flora Plena’ and P. peregrina were obtained from SSRs as molecular markers for identity verification. SSRs are plants donated by Adelman Peony Gardens, Brooks, OR, easy to use, codominant, multiple allelic, abundant, and highly whereas leaves of P. rockii were obtained from J. Oliphant, reproducible across laboratories for genotype identification Corvallis, OR (Table 1). Leaf samples were collected, bagged, (Powell et al., 1996). Application of this technique to peony kept cool, and transported to the laboratory. Each leaf sample cultivars could simplify the identification process for growers was placed in a ceramic mortar and ground with liquid nitrogen. and allow identification of rhizomes or leaves at an early stage The ground leaf material was stored at –80 °C until extraction. of production. The DNA extraction protocol for the library preparation was To develop SSRs, many laboratories use the chain termina- performed using Qiagen (Valencia, CA) reagents (Gilmore tion method of DNA sequencing that was developed by Sanger in et al., 2011). 1975 (Sanger et al., 1977). This protocol entails construction of DNA SEQUENCING. The Illumina library preparation of the genomic libraries using enriched recombinant DNA (Boccacci DNA for sequencing included fragmentation of purified geno- et al., 2005; Boches et al., 2005; Castillo et al., 2010), resulting mic DNA. This was accomplished by sonication [Bioruptor in a procedure that is time- and labor-intensive and ultimately XL(BR_XL); Diagenode, Denville, NJ]. An aliquot of the DNA yields low numbers
Recommended publications
  • Bacteriophage T7 DNA Polymerase – Sequenase

    Bacteriophage T7 DNA Polymerase – Sequenase

    Bacteriophage T7 DNA polymerase – sequenase The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Zhu, Bin. 2014. “Bacteriophage T7 DNA polymerase – sequenase.” Frontiers in Microbiology 5 (1): 181. doi:10.3389/fmicb.2014.00181. http://dx.doi.org/10.3389/fmicb.2014.00181. Published Version doi:10.3389/fmicb.2014.00181 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12407012 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA REVIEW ARTICLE published: 16 April 2014 doi: 10.3389/fmicb.2014.00181 BacteriophageT7 DNA polymerase – sequenase Bin Zhu* Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA Edited by: An ideal DNA polymerase for chain-terminating DNA sequencing should possess the Andrew F.Gardner, New England following features: (1) incorporate dideoxy- and other modified nucleotides at an efficiency Biolabs, USA similar to that of the cognate deoxynucleotides; (2) high processivity; (3) high fidelity in Reviewed by: the absence of proofreading/exonuclease activity; and (4) production of clear and uniform Kirk Matthew Schnorr, Novozymes A/S, Denmark signals for detection. The DNA polymerase encoded by bacteriophage T7 is naturally Samir Hamdan, King Abdullah endowed with or can be engineered to have all these characteristics. The chemically or University of Science and Technology, genetically modified enzyme (Sequenase) expedited significantly the development of DNA Saudi Arabia sequencing technology.
  • Sequencing.Pdf

    Sequencing.Pdf

    Sequencing. Biological sciences has a long and storied history of natural science – identifying, cataloging, and classifying organisms in different environments. Every aspect of biological sciences is being revolutionized by two dominant technologies: cheap and ubiquitous access to DNA sequencing, and cheap and ubiquitous access to high performance computing. Molecular biology was forever altered by the introduction of the polymerase chain reaction (PCR), and that invention, more than any other, has enabled the sequencing revolution. Taxonomy, one of the oldest endeavors of the biologist, is changing from char- acterizing organisms based on morphology to characterizing organisms based on DNA sequences. Revisionist taxonomic approaches are being introduced throughout the tree of life, and no branch on the tree can avoid the sequenc- ing machine. For example, microbial and viral taxonomy are being completely rewritten because of the analysis of DNA sequences (Rohwer & Edwards, 2002; Thompson et al., 2015). All aspects of ecology are being affected by the intro- duction of DNA sequencing: for example, in the marine environment the ecology of everything from the largest (Cammen et al., 2016) to the smallest (Chow & Suttle, 2015; Haggerty & Dinsdale, 2017) organisms is being revised because of sequence analysis. Evolutionary theories about plants and animals are being upended because of the introduction of genome skimming techniques and deep sequencing (Hollingsworth et al., 2016). Sanger Sequencing Two-time nobel Laureate Dr. Fred Sanger developed this sequencing technol- ogy in 1977. The approach uses terminators, dideoxynucleotide triphosphates (ddNTPs), that terminate DNA extension during replication and do not allow the strand to be synthesized further. Thus, every time a ddNTP is added to the growing DNA strand, synthesis stops and the fragement can not be made any longer.
  • Sanger Sequencing – a Hands-On Simulation Background And

    Sanger Sequencing – a Hands-On Simulation Background And

    Sanger sequencing – a hands-on simulation Background and Guidelines for Instructor Jared Young Correspondence concerning this article should be addressed to Jared Young, Mills College 5000 MacArthur Blvd, Oakland, CA 94613 Contact: [email protected] Synopsis This hands-on simulation teaches the Sanger (dideoxy) method of DNA sequencing. In the process of carrying out the exercise, students also confront DNA synthesis, especially as it relates to chemical structure, and the stochastic nature of biological processes. The exercise is designed for an introductory undergraduate genetics course for biology majors. The exercise can be completed in around 90-minutes, which can be broken up into a 50-minute period for the simulation and a follow-up 50-minute (or less) period for discussion. This follow-up could also take place in a Teaching Assistant (TA) led section. The exercise involves interactions between student pairs and the entire class. There is an accompanying student handout with prompts that should be invoked where indicated in these instructions. Introduction Sanger sequencing is an important technique: it revolutionized the field of Genetics and is still in wide use today. Sanger sequencing is a powerful pedagogical tool well-suited for inducing multiple “aha” moments: in achieving a deep understanding of the technique, students gain a better understanding of DNA and nucleotide structure, DNA synthesis, the stochastic nature of biological processes, the utility of visible chemical modifications (in this case, fluorescent dyes), gel electrophoresis, and the connection between a physical molecule and the information it contains. Sanger sequencing is beautiful: a truly elegant method that can bring a deep sense of satisfaction when it is fully understood.
  • DNA Sequencing

    DNA Sequencing

    DNA Sequencing: Sanger Method (Dideoxynucleotide chain termination) Sanger sequencing is a DNA sequencing method in which target DNA is denatured and annealed to an oligonucleotide primer, which is then extended by DNA polymerase using a mixture of deoxynucleotide triphosphates (normal dNTPs) and chain-terminating dideoxynucleotide triphosphates (ddNTPs). ddNTPs lack the 3’ OH group to which the next dNTP of the growing DNA chain is added. Without the 3’ OH, no more nucleotides can be added, and DNA polymerase falls off. The resulting newly synthesized DNA chains will be a mixture of lengths, depending on how long the chain was when a ddNTP was randomly incorporated. Manual DNA sequencing example: • First, anneal the primer to the DNA template (must be single stranded): 5’ -GAATGTCCTTTCTCTAAG 3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5' • Then split the sample into four aliquots including the following nucleotides: "G" tube: All four dNTPs, one of which is radiolabeled, plus ddGTP (low concentration) "A" tube: All four dNTPs, one of which is radiolabeled, plus ddATP "T" tube: All four dNTPs, one of which is radiolabeled, plus ddTTP "C" tube: All four dNTPs, one of which is radiolabeled, plus ddCTP • When a DNA polymerase (e.g. Klenow fragment) is added to the tubes, the synthetic reaction proceeds until, by chance, a dideoxynucleotide is incorporated instead of a deoxynucleotide. This is a "chain termination" event, because there is a 3' H instead of a 3' OH group. Since the synthesized DNA is labeled (classically with 35S-dATP), the products can be detected and distinguished from the template. Note that the higher the concentration of the ddNTP in the reaction, the shorter the products will be, hence, you will get sequence CLOSER to your primer.
  • Sanger Sequencing 14

    Sanger Sequencing 14

    Molecular Biology and History of DNA Sequencing 02-223 Sept. 9 2014 History of DNA Thomas Morgan first James Watson and described Francis Crick proposed Gregor Mendel first linkage and that DNA is a double described patterns of recombination strand with a double inheritance helical structure 1866 1869 1911 1950 1953 Fredrich Edwin Chargaff Miescher first discovered that A and isolated DNA T, and G and C have equal amounts http://www.nature.com/scitable/content/dna-is-a-double-helix-24263 History of DNA Frederick Sanger Arthur Kornberg Hamilton Smith developed dideoxy replicated DNA in- discovered DNA Commercial DNA sequencing ~100 vitro using DNA restriction automated DNA bases/reaction polymerase enzymes synthesizer PCR developed ~1000 bases/ by Kary Mullis reaction 1957 1961 1970 1971 1977 1983 1986 1996 First genome sequenced using Leroy Hood Marshall in-vitro replication by Ray Wu, developed Nirenberg A.D. Kaiser, and Ellen Taylor . automated elucidated the Phage λ, ~5000 nt took over 3 sequencing codons years DNA Polymerase h"p://www.virology.ws/2009/05/10/the-error-prone-ways-of-rna-synthesis/ Even with proofreading, mistakes made every 107-109 Bases 6 Billion Bases in human genome! h"p://www.virology.ws/2009/05/10/the-error-prone-ways-of-rna-synthesis/ Molecular Biology of the Cell. 4th edition. Alberts B, Johnson A, Lewis J, et al. New York: Garland Science; 2002. PCR • Polymerase Chain ReacJon • Invented in 1983 • DNA polymerase from Thermus aqua+cus • 2.2x105 error rate Polymerase Chain Reaction (PCR) overview buffer, ssDNA primers,
  • A Beginner's Guide to Next Generation Sequencing

    A Beginner's Guide to Next Generation Sequencing

    A BEGINNER’S GUIDE TO NEXT GENERATION SEQUENCING youseq.com Next Generation Sequencing Let’s keep things simple. The world of Next Generation Sequencing (NGS) can seem complex and intimidating. It need not be. Let’s start by reminding ourselves what its useful for and why we use it. All of life is coded in it’s DNA. A remarkably simple code of four molecules that act as a blue print to define the proteins that we and all of the organisms we share our planet with are made of. Reading this code is one of the most astonishing achievements that the human species has ever and will ever accomplish. Reading this code helps us to understand how we are made, how we are all related, how errors or mutations in our DNA cause disease and how we may respond best to medicines. It holds the promise to revolutionise healthcare and has already begun to do so. The first human genome “read” was competed in 2001. It took 10 years and the best part of $2.7bn. It was achieved by DNA sequencing. A method by which the sequence of the DNA is read painstakingly in small fragments and then reassembled to create a complete sequence. Sanger Sequencing as it is known, was the method used to achieve the first publication of the first human genome. Next Generation Sequencing is a phrase used to describe a range of technologies that speed up and reduce the cost of DNA sequencing vs the traditional Sanger sequencing. What are all these different Next Generation Sequencing Technologies? Well there are quite a few of them.
  • Discovery and Characterization Of

    Discovery and Characterization Of

    Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 pyrosequencing Margarita López-Uribe, Christine Santiago, Steve Bogdanowicz, Bryan Danforth To cite this version: Margarita López-Uribe, Christine Santiago, Steve Bogdanowicz, Bryan Danforth. Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 py- rosequencing. Apidologie, Springer Verlag, 2013, 44 (2), pp.163-172. 10.1007/s13592-012-0168-3. hal-01201284 HAL Id: hal-01201284 https://hal.archives-ouvertes.fr/hal-01201284 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:163–172 Original article * INRA, DIB and Springer-Verlag France, 2012 DOI: 10.1007/s13592-012-0168-3 Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 pyrosequencing 1 1 2 Margarita M. LÓPEZ-URIBE , Christine K. SANTIAGO , Steve M. BOGDANOWICZ , 1 Bryan N. DANFORTH 1Department of Entomology, Cornell University, Ithaca, NY 14853, USA 2Evolutionary Genetics Core Facilities, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA Received 5 June 2012 – Revised 8 August 2012 – Accepted 18 September 2012 Abstract – The recent implementation of next-generation sequencing for the discovery of microsatellite markers has made this technology the most effective method for generating genetic markers in non-model organisms.
  • Guide to Interpreting Genomic Reports: a Genomics Toolkit

    Guide to Interpreting Genomic Reports: a Genomics Toolkit

    Guide to Interpreting Genomic Reports: A Genomics Toolkit A guide to genomic test results for non-genetics providers Created by the Practitioner Education Working Group of the Clinical Sequencing Exploratory Research (CSER) Consortium Genomic Report Toolkit Authors Kelly East, MS, CGC, Wendy Chung MD, PhD, Kate Foreman, MS, CGC, Mari Gilmore, MS, CGC, Michele Gornick, PhD, Lucia Hindorff, PhD, Tia Kauffman, MPH, Donna Messersmith , PhD, Cindy Prows, MSN, APRN, CNS, Elena Stoffel, MD, Joon-Ho Yu, MPh, PhD and Sharon Plon, MD, PhD About this resource This resource was created by a team of genomic testing experts. It is designed to help non-geneticist healthcare providers to understand genomic medicine and genome sequencing. The CSER Consortium1 is an NIH-funded group exploring genomic testing in clinical settings. Acknowledgements This work was conducted as part of the Clinical Sequencing Exploratory Research (CSER) Consortium, grants U01 HG006485, U01 HG006485, U01 HG006546, U01 HG006492, UM1 HG007301, UM1 HG007292, UM1 HG006508, U01 HG006487, U01 HG006507, R01 HG006618, and U01 HG007307. Special thanks to Alexandria Wyatt and Hugo O’Campo for graphic design and layout, Jill Pope for technical editing, and the entire CSER Practitioner Education Working Group for their time, energy, and support in developing this resource. Contents 1 Introduction and Overview ................................................................ 3 2 Diagnostic Results Related to Patient Symptoms: Pathogenic and Likely Pathogenic Variants . 8 3 Uncertain Results
  • DNA Polymerases Drive DNA Sequencing-By-Synthesis Technologies: Both Past and Present

    DNA Polymerases Drive DNA Sequencing-By-Synthesis Technologies: Both Past and Present

    View metadata, citation and similar papers at core.ac.uk brought to you by CORE REVIEW ARTICLEprovided by Frontiers - Publisher Connector published: 24 June 2014 doi: 10.3389/fmicb.2014.00305 DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present Cheng-Yao Chen* Protein Engineering Group, Illumina, San Diego, CA, USA Edited by: Next-generation sequencing (NGS) technologies have revolutionized modern biological and Andrew F.Gardner, New England biomedical research. The engines responsible for this innovation are DNA polymerases; Biolabs, USA they catalyze the biochemical reaction for deriving template sequence information. In fact, Reviewed by: DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Suleyman Yildirim, Walter Reed Army Institute of Research, USA Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized Andreas Marx, University of in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble Konstanz, Germany beginnings followed an explosion of organism-specific, genome sequence information *Correspondence: accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic Cheng-Yao Chen, Protein Engineering bacteria/archaea were modified and tested in today’s standard capillary electrophoresis Group, Illumina, 5200 Illumina Way, San Diego, CA 92122, USA (CE) and NGS sequencing platforms.These enzymes were selected for their efficient incor- e-mail: [email protected] poration of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage φ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate- labeled nucleoside polyphosphates.
  • Discovery of Single-Nucleotide Polymorphisms (Snps) in the Uncharacterized Genome of the Ascomycete Ophiognomonia Clavigignenti-Juglandacearum from 454 Sequence Data

    Discovery of Single-Nucleotide Polymorphisms (Snps) in the Uncharacterized Genome of the Ascomycete Ophiognomonia Clavigignenti-Juglandacearum from 454 Sequence Data

    Molecular Ecology Resources (2011) 11, 693–702 doi: 10.1111/j.1755-0998.2011.02998.x Discovery of single-nucleotide polymorphisms (SNPs) in the uncharacterized genome of the ascomycete Ophiognomonia clavigignenti-juglandacearum from 454 sequence data K.D.BRODERS,*K.E.WOESTE,†P.J.SANMIGUEL,‡ R. P. WESTERMAN‡ and G. J. BOLAND* *School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1, †USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN 47907, USA, ‡Department of Horticulture & Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA Abstract The benefits from recent improvement in sequencing technologies, such as the Roche GS FLX (454) pyrosequencing, may be even more valuable in non-model organisms, such as many plant pathogenic fungi of economic importance. One appli- cation of this new sequencing technology is the rapid generation of genomic information to identify putative single- nucleotide polymorphisms (SNPs) to be used for population genetic, evolutionary, and phylogeographic studies on non-model organisms. The focus of this research was to sequence, assemble, discover and validate SNPs in a fungal genome using 454 pyrosequencing when no reference sequence is available. Genomic DNA from eight isolates of Ophiognomonia clavigignenti-juglandacearum was pooled in one region of a four-region sequencing run on a Roche 454 GS FLX. This yielded 71 million total bases comprising 217 000 reads, 80% of which collapsed into 16 125 754 bases in 30 339 contigs upon assembly. By aligning reads from multiple isolates, we detected 298 SNPs using Roche’s GS Mapper.
  • An Introduction to Next-Generation Sequencing for Cardiology Table of Contents

    An Introduction to Next-Generation Sequencing for Cardiology Table of Contents

    An Introduction to Next-Generation Sequencing for Cardiology www.illumina.com/technology/next-generation-sequencing.ilmn Table of Contents Part I. Welcome to Next-Generation Sequencing 3 NGS in Clinical Cardiology Research 3 Part II. What is Next-Generation Sequencing? 3 The Basic NGS Workflow 3 Multiplexing 5 Part III. NGS Applications 6 Whole-Genome Sequencing 6 Exome Sequencing 6 Targeted Sequencing 6 Part IV. Summary 6 Glossary 7 References 8 Part I. Welcome to Next-Generation Sequencing NGS in Clinical Cardiology Research In 1990, the beta cardiac myosin heavy chain gene (MYH7) was first implicated in hypertrophic cardiomyopathy (HCM). Since then, many genes have been associated with channelopathies, cardiomyopathies, and aortopathies, and investigators continue to look to the human genome for answers. Researchers can achieve 60% detection of causative variants for certain cardiac conditions (e.g., LQTS, HCM, ACM/ARVC, CPVT) and genetic testing may reveal whether family members are carriers or at high risk for sudden cardiac arrest.1 Recent advances in technology are removing many of the barriers that have traditionally made genetic testing difficult. The value of genetic testing is gaining recognition among leading organizations. For example, in 2011 the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA) published guidelines on the state of genetic testing for the channelopathies and cardiomyopathies.1 The introduction of next-generation sequencing (NGS) technology has transformed the way scientists and clinical researchers think about genetic information. NGS offers several advantages over existing methods, such as PCR and Sanger sequencing. Because NGS can assess multiple genes in a single assay, it eliminates the need for multiple single-gene tests to identify the causative variant or variants.
  • DNA Metabarcoding of Neotropical Ichthyoplankton: Enabling High Accuracy with Lower Cost

    DNA Metabarcoding of Neotropical Ichthyoplankton: Enabling High Accuracy with Lower Cost

    Metabarcoding and Metagenomics 3: 69–76 DOI 10.3897/mbmg.3.35060 Research Article DNA metabarcoding of Neotropical ichthyoplankton: Enabling high accuracy with lower cost André B. Nobile1, Diogo Freitas-Souza1, Francisco J. Ruiz-Ruano2,3, Maria Lígia M. O. Nobile1, Gabriela O. Costa1, Felipe P. de Lima1, Juan Pedro M. Camacho2, Fausto Foresti1, Claudio Oliveira1 1 Laboratório de Biologia e Genética de Peixes, Departamento de Morfologia, Unesp, Botucatu, Brazil. 2 Evolutionary Genetics group, Department of Genetics, University of Granada, Granada, Spain. 3 Present address: Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. Corresponding author: André B. Nobile ([email protected]) Academic editor: Filipe Costa | Received 8 April 2019 | Accepted 29 July 2019 | Published 5 September 2019 Abstract Knowledge of ichthyoplankton dynamics is extremely important for conservation management as it can provide information about preferential spawning sites, reproductive period, migratory routes and recruitment success, which can be used to guide management and conservation efforts. However, identification of the eggs and larvae of Neotropical freshwater fish is a difficult task. DNA- bar codes have emerged as an alternative and highly accurate approach for species identification, but DNA barcoding can be time-con- suming and costly. To solve this problem, we aimed to develop a simple protocol based on DNA metabarcoding, to investigate whether it is possible to detect and quantify all species present in a pool of organisms. To do this, 230 larvae were cut in half, one half was sequenced by the Sanger technique and the other half was used to compose six arrays with a pool of larvae that were sequenced using a next-generation technique (NGS).