Next-Generation Sequencing to Diagnose Suspected Genetic Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Next-Generation Sequencing to Diagnose Suspected Genetic Disorders The new england journal of medicine Review Article Frontiers in Medicine Next-Generation Sequencing to Diagnose Suspected Genetic Disorders David R. Adams, M.D., Ph.D., and Christine M. Eng, M.D.​​ linical next-generation sequencing is being used frequently in From the Office of the Clinical Director, medical practices in which genetic testing has traditionally taken place — National Human Genome Research In- stitute, and the Undiagnosed Diseases for example, medical genetics and medical subspecialties such as neuroge- Program, National Institutes of Health, C Bethesda, MD (D.R.A.); and the Depart- netics. Emerging diagnostic applications include rapid-reporting approaches in intensive care settings (especially neonatal and pediatric)1 and use early in the course ment of Molecular and Human Genetics, 2 Baylor College of Medicine, and Baylor of complex disease. Large-scale projects in the United States, China, and else- Genetics — both in Houston (C.M.E.). where are exploring and developing the role of clinical next-generation sequencing Address reprint requests to Dr. Adams at in precision medicine.3,4 This suggests a future in which genomic data will influence the Undiagnosed Diseases Program, Na- tional Institutes of Health, Bldg. 10, Rm. medical decision making for a diverse and growing group of patients (see video). 10C103E, 10 Center Dr., Bethesda, MD 20892, or at david . adams@ nih . gov. Clinical Next-Generation Sequencing N Engl J Med 2018;379:1353-62. as a Diagnostic Tool DOI: 10.1056/NEJMra1711801 Copyright © 2018 Massachusetts Medical Society. The laboratory techniques that are used in clinical next-generation sequencing have been described in numerous reviews5; proposed guidelines for their application to diagnostic testing have been published.6 The technology generates accurate and reliable sequence information for most parts of the genome. In a comparison of data from exome sequencing and Sanger sequencing (considered the standard of sequenc- ing) for 684 participants in five genes, the validation rate for the exome sequencing results was 99.97%. Furthermore, discrepant results in high-quality exome sequenc- An illustrated glossary and a ing regions were more likely to be correct in the exome sequencing data than in the video overview of first round of Sanger sequencing data.7 next-generation A clinical next-generation sequencing test can be designed to target a panel of se- sequencing are lected genes, the exome (all known genes, or approximately 1 to 2% of the genome), available at NEJM.org or the entire genome. Gene panels target curated sets of genes associated with specific clinical phenotypes. Phenotypes may be narrow, with 4 genes in the panel for familial hypercholesterolemia, or broad, with more than 1000 genes in the panel for intellectual disability. Clinical exome sequencing targets approximately 22,000 protein-coding genes. Clinical genome sequencing is untargeted, generating se- quence data from a region that is 50 to 100 times as large as that covered by exome sequencing and that includes regulatory, intronic, and intergenic regions (Fig. 1). Clinical decision making about which test to order is an area of active research. Genome sequencing generates more uniform sequencing in some regions than does exome sequencing. Emerging analytic approaches can use genome sequencing to detect structural variants and expansion of short nucleotide repeats associated with disease. However, bioinformatic tools for genome sequencing are overall less devel- oped than those available for exome sequencing. In addition, the cost of genome sequencing remains higher than that of exome sequencing, partly because of the cost of data management and analysis. n engl j med 379;14 nejm.org October 4, 2018 1353 The New England Journal of Medicine Downloaded from nejm.org at HOUSTON ACADEMY OF MEDICINE on October 4, 2018. For personal use only. No other uses without permission. Copyright © 2018 Massachusetts Medical Society. All rights reserved. The new england journal of medicine Gene 1 Gene 2 Gene 3 DNA Exon Exon Exon Exon Exon Exon Exon Intergenic Intron Difficult-to- region sequence region Sanger Sequencing NGS Gene Panel (only a selection of genes are targeted) Depth-of-coverage graph Aligned reads at base resolution: Gene 2 not targeted for sequencing ... AATCTGACA ... ... AATCTGACA ... ... AATCTGACA AATCAGACA Aligned NGS ... fragments ... AATCAGACA... (“reads”) Exome Sequencing Depth-of-coverage graph Aligned NGS fragments (“reads”) Genome Sequencing Intergenic Depth-of-coverage graph Exon region Intron Aligned NGS fragments (“reads”) The primary goal for any diagnostic genetic test tify potential risk variants for genetic disease that is the identification of DNA sequence variants that is absent or has not been diagnosed at the time of may be confidently associated with the presenting testing; these results are referred to as secondary, signs and symptoms. Other test results may iden- incidental, or medically actionable findings. Pa- 1354 n engl j med 379;14 nejm.org October 4, 2018 The New England Journal of Medicine Downloaded from nejm.org at HOUSTON ACADEMY OF MEDICINE on October 4, 2018. For personal use only. No other uses without permission. Copyright © 2018 Massachusetts Medical Society. All rights reserved. Next-Generation Sequencing and Genetic Disorders Figure 1 (facing page). Clinical Next-Generation ment categories: pathogenic, likely pathogenic, Sequencing (NGS) Test Types. likely benign, benign, and variant of unknown Exome, genome, and panel NGS tests have different significance. Databases of previously assessed vari- genomic coverage characteristics. NGS gene panel ants, such as ClinVar, have been established to tests cover a set of genes defined by the clinical diag- collect and distribute information about previous- nostic laboratory. The panel will typically cover genes ly interpreted variants.14 ClinVar uses a categorical associated with a set of related medical conditions (e.g., heritable epilepsy disorders). Exome sequencing rating system to indicate the level of evidence for covers the majority of known genes, including genes submitted interpretations. Variants are also priori- that have not yet been associated with human disease. tized on the basis of association with the pheno- Genome sequencing covers a majority of both genes type of the patient, although the possibility of and intergenic regions. Each test type has an associat- phenotypic heterogeneity and blended phenotypes ed pattern of false negative results. For instance, a gene panel may not include a mutated gene and an (more than one mendelian disorder manifesting 15 exome may miss deep intronic splice mutation. In ad- in an individual patient) must be considered. dition, some regions of the genome are difficult to se- Clinical laboratories primarily report variants quence with any existing method. in genes for which the gene–disease association is well established. In other cases, the proposed association will be novel, creating an “N = 1” situa- tients with these risk variants may benefit from tion (in which the diagnosis cannot be claimed early screening and management efforts. Guide- to be definitive) and the opportunity to establish lines for the clinical reporting of this category of a new gene–disease association.10 The risk of findings have been published.8 falsely associating diseases with genes and vari- ants is regularly illustrated by the reclassification Variant Classification of previously established pathogenic variants as the result of improvements in frequency databas- Next-generation sequencing generates thousands es.16 One innovative way to locate additional cases of sequence variants that must be filtered and pri- is through the use of matching databases. Gene- oritized for clinical interpretation, which results in Matcher (https://genematcher.org/), DECIPHER the reporting of a limited number of variants per (https://decipher.sanger.ac.uk/), and Phenome- report. This process may differ slightly among Central (https://www.phenomecentral.org/) iden- individual laboratories, but it generally includes tify matching cases with the use of deidentified annotation of variants, application of frequency data, such as gene names or disease features.17-19 filters and database searches to enrich for rare The Matchmaker Exchange protocol allows match- variants and eliminate common variants, and pre- es between such databases.20 These tools are pub- diction of functional effect. Clinical evaluation of licly available and do not require computational a DNA sequence variant includes an assessment of expertise. potential effects on the function of one or more genes and an assessment of the evidence support- Diagnostic R ate ing attribution of the illness at presentation to the and Testing Strategy affected gene or genes.9 Both assessments benefit from strong association information (e.g., variant Gene Panels to disease and absence of variant to absence of Gene panels (selected genes sequenced by a next- disease).10 However, such evidence may be difficult generation sequencing method) often have higher to obtain for rare variants or diseases. diagnostic rates than exome sequencing or ge- Variants are evaluated according to evolution- nome sequencing, being designed to maximize ary conservation, population frequency, and mod- coverage, sensitivity, and specificity for the includ- eled (or measured) effect on protein function. ed genes. An exception may occur in the context of Large-scale genomic sequencing databases, includ- greater
Recommended publications
  • Bacteriophage T7 DNA Polymerase – Sequenase
    Bacteriophage T7 DNA polymerase – sequenase The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Zhu, Bin. 2014. “Bacteriophage T7 DNA polymerase – sequenase.” Frontiers in Microbiology 5 (1): 181. doi:10.3389/fmicb.2014.00181. http://dx.doi.org/10.3389/fmicb.2014.00181. Published Version doi:10.3389/fmicb.2014.00181 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12407012 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA REVIEW ARTICLE published: 16 April 2014 doi: 10.3389/fmicb.2014.00181 BacteriophageT7 DNA polymerase – sequenase Bin Zhu* Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA Edited by: An ideal DNA polymerase for chain-terminating DNA sequencing should possess the Andrew F.Gardner, New England following features: (1) incorporate dideoxy- and other modified nucleotides at an efficiency Biolabs, USA similar to that of the cognate deoxynucleotides; (2) high processivity; (3) high fidelity in Reviewed by: the absence of proofreading/exonuclease activity; and (4) production of clear and uniform Kirk Matthew Schnorr, Novozymes A/S, Denmark signals for detection. The DNA polymerase encoded by bacteriophage T7 is naturally Samir Hamdan, King Abdullah endowed with or can be engineered to have all these characteristics. The chemically or University of Science and Technology, genetically modified enzyme (Sequenase) expedited significantly the development of DNA Saudi Arabia sequencing technology.
    [Show full text]
  • Sequencing.Pdf
    Sequencing. Biological sciences has a long and storied history of natural science – identifying, cataloging, and classifying organisms in different environments. Every aspect of biological sciences is being revolutionized by two dominant technologies: cheap and ubiquitous access to DNA sequencing, and cheap and ubiquitous access to high performance computing. Molecular biology was forever altered by the introduction of the polymerase chain reaction (PCR), and that invention, more than any other, has enabled the sequencing revolution. Taxonomy, one of the oldest endeavors of the biologist, is changing from char- acterizing organisms based on morphology to characterizing organisms based on DNA sequences. Revisionist taxonomic approaches are being introduced throughout the tree of life, and no branch on the tree can avoid the sequenc- ing machine. For example, microbial and viral taxonomy are being completely rewritten because of the analysis of DNA sequences (Rohwer & Edwards, 2002; Thompson et al., 2015). All aspects of ecology are being affected by the intro- duction of DNA sequencing: for example, in the marine environment the ecology of everything from the largest (Cammen et al., 2016) to the smallest (Chow & Suttle, 2015; Haggerty & Dinsdale, 2017) organisms is being revised because of sequence analysis. Evolutionary theories about plants and animals are being upended because of the introduction of genome skimming techniques and deep sequencing (Hollingsworth et al., 2016). Sanger Sequencing Two-time nobel Laureate Dr. Fred Sanger developed this sequencing technol- ogy in 1977. The approach uses terminators, dideoxynucleotide triphosphates (ddNTPs), that terminate DNA extension during replication and do not allow the strand to be synthesized further. Thus, every time a ddNTP is added to the growing DNA strand, synthesis stops and the fragement can not be made any longer.
    [Show full text]
  • Next-Gen Sequencing Identifies Non-Coding Variation Disrupting
    OPEN Molecular Psychiatry (2018) 23, 1375–1384 www.nature.com/mp ORIGINAL ARTICLE Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders P Devanna1, XS Chen2,JHo1,2, D Gajewski1, SD Smith3, A Gialluisi2,4, C Francks2,5, SE Fisher2,5, DF Newbury6,7 and SC Vernes1,5 Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3′UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders.
    [Show full text]
  • Whole Exome and Whole Genome Sequencing
    UnitedHealthcare® Community Plan Medical Policy Whole Exome and Whole Genome Sequencing Policy Number: CS150.J Effective Date: October 1, 2021 Instructions for Use Table of Contents Page Related Community Plan Policies Application ..................................................................................... 1 • Chromosome Microarray Testing (Non-Oncology Coverage Rationale ....................................................................... 1 Conditions) Definitions ...................................................................................... 2 • Molecular Oncology Testing for Cancer Diagnosis, Applicable Codes .......................................................................... 3 Prognosis, and Treatment Decisions Description of Services ................................................................. 4 • Preimplantation Genetic Testing Clinical Evidence ........................................................................... 4 U.S. Food and Drug Administration ........................................... 22 Commercial Policy References ................................................................................... 22 • Whole Exome and Whole Genome Sequencing Policy History/Revision Information ........................................... 26 Medicare Advantage Coverage Summaries Instructions for Use ..................................................................... 26 • Genetic Testing • Laboratory Tests and Services Application This Medical Policy does not apply to the states listed below; refer to
    [Show full text]
  • Clinical Exome Sequencing Tip Sheet – Medicare Item Numbers 73358/73359
    Clinical exome sequencing Tip sheet – Medicare item numbers 73358/73359 Glossary Chromosome microarray (CMA or molecular Monogenic conditions (as opposed karyotype): CMA has a Medicare item number to polygenic or multifactorial conditions) are for patients presenting with intellectual caused by variants in a single gene. Variants disability, developmental delay, autism, or at may be inherited (dominant or recessive least two congenital anomalies. CMA is the fashion), or may occur spontaneously (de recommended first line test in these cases as novo) showing no family history. it can exclude a chromosome cause of disease which is unlikely to be detected by Whole exome sequence – sequencing only exome. the protein coding genes (exons). The exome is ~2% of the genome and contains ~85% of Gene panel is a set of genes that are known to disease-causing gene variants. be associated with a phenotype or disorder. They help narrow down the search Whole genome sequence – sequencing the for variants of interest to genes with evidence entire genome (all genes, including coding linking them to particular phenotypes and noncoding regions) Human phenotype ontology (HPO) terms Singleton – Analysis of the child only. describe a phenotypic abnormality using a Trio – analysis of the child and both biological standard nomenclature. Ideally, all clinicians parents. and scientists are using the same terms. Variant - A change in the DNA code that Mendeliome refers to the ~5,000 genes (out of differs from a reference genome. about 20,000 protein coding genes) that are known to be associated with monogenic disease. As variants in new genes are identified with evidence linking them with human disease, they are added to the Mendeliome.
    [Show full text]
  • Sanger Sequencing – a Hands-On Simulation Background And
    Sanger sequencing – a hands-on simulation Background and Guidelines for Instructor Jared Young Correspondence concerning this article should be addressed to Jared Young, Mills College 5000 MacArthur Blvd, Oakland, CA 94613 Contact: [email protected] Synopsis This hands-on simulation teaches the Sanger (dideoxy) method of DNA sequencing. In the process of carrying out the exercise, students also confront DNA synthesis, especially as it relates to chemical structure, and the stochastic nature of biological processes. The exercise is designed for an introductory undergraduate genetics course for biology majors. The exercise can be completed in around 90-minutes, which can be broken up into a 50-minute period for the simulation and a follow-up 50-minute (or less) period for discussion. This follow-up could also take place in a Teaching Assistant (TA) led section. The exercise involves interactions between student pairs and the entire class. There is an accompanying student handout with prompts that should be invoked where indicated in these instructions. Introduction Sanger sequencing is an important technique: it revolutionized the field of Genetics and is still in wide use today. Sanger sequencing is a powerful pedagogical tool well-suited for inducing multiple “aha” moments: in achieving a deep understanding of the technique, students gain a better understanding of DNA and nucleotide structure, DNA synthesis, the stochastic nature of biological processes, the utility of visible chemical modifications (in this case, fluorescent dyes), gel electrophoresis, and the connection between a physical molecule and the information it contains. Sanger sequencing is beautiful: a truly elegant method that can bring a deep sense of satisfaction when it is fully understood.
    [Show full text]
  • DNA Sequencing
    DNA Sequencing: Sanger Method (Dideoxynucleotide chain termination) Sanger sequencing is a DNA sequencing method in which target DNA is denatured and annealed to an oligonucleotide primer, which is then extended by DNA polymerase using a mixture of deoxynucleotide triphosphates (normal dNTPs) and chain-terminating dideoxynucleotide triphosphates (ddNTPs). ddNTPs lack the 3’ OH group to which the next dNTP of the growing DNA chain is added. Without the 3’ OH, no more nucleotides can be added, and DNA polymerase falls off. The resulting newly synthesized DNA chains will be a mixture of lengths, depending on how long the chain was when a ddNTP was randomly incorporated. Manual DNA sequencing example: • First, anneal the primer to the DNA template (must be single stranded): 5’ -GAATGTCCTTTCTCTAAG 3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5' • Then split the sample into four aliquots including the following nucleotides: "G" tube: All four dNTPs, one of which is radiolabeled, plus ddGTP (low concentration) "A" tube: All four dNTPs, one of which is radiolabeled, plus ddATP "T" tube: All four dNTPs, one of which is radiolabeled, plus ddTTP "C" tube: All four dNTPs, one of which is radiolabeled, plus ddCTP • When a DNA polymerase (e.g. Klenow fragment) is added to the tubes, the synthetic reaction proceeds until, by chance, a dideoxynucleotide is incorporated instead of a deoxynucleotide. This is a "chain termination" event, because there is a 3' H instead of a 3' OH group. Since the synthesized DNA is labeled (classically with 35S-dATP), the products can be detected and distinguished from the template. Note that the higher the concentration of the ddNTP in the reaction, the shorter the products will be, hence, you will get sequence CLOSER to your primer.
    [Show full text]
  • Sanger Sequencing 14
    Molecular Biology and History of DNA Sequencing 02-223 Sept. 9 2014 History of DNA Thomas Morgan first James Watson and described Francis Crick proposed Gregor Mendel first linkage and that DNA is a double described patterns of recombination strand with a double inheritance helical structure 1866 1869 1911 1950 1953 Fredrich Edwin Chargaff Miescher first discovered that A and isolated DNA T, and G and C have equal amounts http://www.nature.com/scitable/content/dna-is-a-double-helix-24263 History of DNA Frederick Sanger Arthur Kornberg Hamilton Smith developed dideoxy replicated DNA in- discovered DNA Commercial DNA sequencing ~100 vitro using DNA restriction automated DNA bases/reaction polymerase enzymes synthesizer PCR developed ~1000 bases/ by Kary Mullis reaction 1957 1961 1970 1971 1977 1983 1986 1996 First genome sequenced using Leroy Hood Marshall in-vitro replication by Ray Wu, developed Nirenberg A.D. Kaiser, and Ellen Taylor . automated elucidated the Phage λ, ~5000 nt took over 3 sequencing codons years DNA Polymerase h"p://www.virology.ws/2009/05/10/the-error-prone-ways-of-rna-synthesis/ Even with proofreading, mistakes made every 107-109 Bases 6 Billion Bases in human genome! h"p://www.virology.ws/2009/05/10/the-error-prone-ways-of-rna-synthesis/ Molecular Biology of the Cell. 4th edition. Alberts B, Johnson A, Lewis J, et al. New York: Garland Science; 2002. PCR • Polymerase Chain ReacJon • Invented in 1983 • DNA polymerase from Thermus aqua+cus • 2.2x105 error rate Polymerase Chain Reaction (PCR) overview buffer, ssDNA primers,
    [Show full text]
  • The Genomics Era: the Future of Genetics in Medicine - Glossary
    The Genomics Era: the Future of Genetics in Medicine - Glossary The glossary below provides a list of key terms used throughout the course. You do not need to read them all now; we’ll be linking back to the main glossary step wherever these terms appear, so you may refer back to this list if you are unsure of the terminology being used. Term Definition The process of matching reads back to their original Alignment position in the reference genome. An allele is one of a number of alternative forms of the same gene or genetic locus. We inherit one copy Allele of our genetic code from our mother and one copy of our genetic code from our father. Each copy is known as an allele. Microarray based genomic comparative hybridisation. This is a technique used to detect chromosome imbalances by comparing patient and control DNA and comparing differences between the two sets. It is Array CGH a useful technique for detecting small chromosome deletions and duplications which would not have been detected with more traditional karyotyping techniques. A unit of DNA. There are four bases which form the Base cross links (or rungs) of the DNA double helix: adenine (A), thymine (T), guanine (G) and cytosine (C). Capture see Target enrichment. The process by which a cell becomes specialized in Cell differentiation order to perform a specific function. Centromere The point at which the sister chromatids are joined. #1 FutureLearn A structure located in the nucleus all living cells, comprised of DNA bound around proteins called histones. The normal number of chromosomes in each Chromosome human cell nucleus is 46 and is composed of 22 pairs of autosomes and a pair of sex chromosomes which determine gender: males have an X and a Y chromosome whilst females have two X chromosomes.
    [Show full text]
  • A Beginner's Guide to Next Generation Sequencing
    A BEGINNER’S GUIDE TO NEXT GENERATION SEQUENCING youseq.com Next Generation Sequencing Let’s keep things simple. The world of Next Generation Sequencing (NGS) can seem complex and intimidating. It need not be. Let’s start by reminding ourselves what its useful for and why we use it. All of life is coded in it’s DNA. A remarkably simple code of four molecules that act as a blue print to define the proteins that we and all of the organisms we share our planet with are made of. Reading this code is one of the most astonishing achievements that the human species has ever and will ever accomplish. Reading this code helps us to understand how we are made, how we are all related, how errors or mutations in our DNA cause disease and how we may respond best to medicines. It holds the promise to revolutionise healthcare and has already begun to do so. The first human genome “read” was competed in 2001. It took 10 years and the best part of $2.7bn. It was achieved by DNA sequencing. A method by which the sequence of the DNA is read painstakingly in small fragments and then reassembled to create a complete sequence. Sanger Sequencing as it is known, was the method used to achieve the first publication of the first human genome. Next Generation Sequencing is a phrase used to describe a range of technologies that speed up and reduce the cost of DNA sequencing vs the traditional Sanger sequencing. What are all these different Next Generation Sequencing Technologies? Well there are quite a few of them.
    [Show full text]
  • Discovery and Characterization Of
    Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 pyrosequencing Margarita López-Uribe, Christine Santiago, Steve Bogdanowicz, Bryan Danforth To cite this version: Margarita López-Uribe, Christine Santiago, Steve Bogdanowicz, Bryan Danforth. Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 py- rosequencing. Apidologie, Springer Verlag, 2013, 44 (2), pp.163-172. 10.1007/s13592-012-0168-3. hal-01201284 HAL Id: hal-01201284 https://hal.archives-ouvertes.fr/hal-01201284 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:163–172 Original article * INRA, DIB and Springer-Verlag France, 2012 DOI: 10.1007/s13592-012-0168-3 Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 pyrosequencing 1 1 2 Margarita M. LÓPEZ-URIBE , Christine K. SANTIAGO , Steve M. BOGDANOWICZ , 1 Bryan N. DANFORTH 1Department of Entomology, Cornell University, Ithaca, NY 14853, USA 2Evolutionary Genetics Core Facilities, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA Received 5 June 2012 – Revised 8 August 2012 – Accepted 18 September 2012 Abstract – The recent implementation of next-generation sequencing for the discovery of microsatellite markers has made this technology the most effective method for generating genetic markers in non-model organisms.
    [Show full text]
  • Whole Exome Sequencing (WES)
    Whole Exome Sequencing (WES) Turn Around Time: 30 Days TEST METHODOLOGY CPT Codes: Proband – 81415, Family Member – 81416 DNA will be extracted from whole blood or Test Includes: DNA Extraction other specimen types. Extracted DNA is Library Prep quantified and sheared to the correct size. The Exome Capture sample then undergoes library preparation and Library QC the exome is captured. After quality assurance, Illumina Platform Sequencing the captured library is then subjected to next Data Analysis generation DNA sequencing on the Illumina Sanger Variant Confirmation (if requested) platform. The reads from this sequencing are Interpreted Clinical Report aligned to a reference sequence and variations from this reference are identified. The sequence variants are then loaded into a commercial software package that contains data sources and Expedited WES testing is available. algorithms allowing for the evaluation of whole Contact the lab for more information. exome sequencing variants for evolutionary conservation, predicted impact on protein TEST DESCRIPTION structure and function (including Polyphen2 (5) and SIFT (6)), ability to disrupt conserved Whole Exome Sequencing (WES) is used to detect variants in a patient’s exome splice sites, and presence in databases including in order to determine the role of genomic variants in disease outcomes. The OMIM, dbSNP, and HGMD (1,2,3). The exome is a little more than 1% of the genome that codes for protein. The patient’s software annotates variants with this data, exome will be sequenced to an average depth of 100X with a minimum depth of considering both the reference gene model and coverage of 85X. Over 97% of the exome will be sequenced to a depth of 10X.
    [Show full text]