Molecular Platforms Utilized to Detect BRAF V600E Mutation in Melanoma Jonathan L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mechanism of Activation of Monomeric B-Raf V600E
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.06.438646; this version posted June 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The Mechanism of Activation of Monomeric B-Raf V600E Ryan C. Maloneya, Mingzhen Zhanga, Hyunbum Janga and Ruth Nussinova,b,* a Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, U.S.A b Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel * Author for correspondence: Tel: 1-301-846-5579 E-mail: [email protected] Declarations of interest: none 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.06.438646; this version posted June 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Oncogenic mutations in the serine/threonine kinase B-Raf, particularly the V600E mutation, are frequent in cancer, making it a major drug target. Although much is known about B-Raf’s active and inactive states, questions remain about the mechanism by which the protein changes between these two states. Here, we utilize molecular dynamics to investigate both wild-type and V600E B-Raf to gain mechanistic insights into the impact of the Val to Glu mutation. -
Bacteriophage T7 DNA Polymerase – Sequenase
Bacteriophage T7 DNA polymerase – sequenase The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Zhu, Bin. 2014. “Bacteriophage T7 DNA polymerase – sequenase.” Frontiers in Microbiology 5 (1): 181. doi:10.3389/fmicb.2014.00181. http://dx.doi.org/10.3389/fmicb.2014.00181. Published Version doi:10.3389/fmicb.2014.00181 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12407012 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA REVIEW ARTICLE published: 16 April 2014 doi: 10.3389/fmicb.2014.00181 BacteriophageT7 DNA polymerase – sequenase Bin Zhu* Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA Edited by: An ideal DNA polymerase for chain-terminating DNA sequencing should possess the Andrew F.Gardner, New England following features: (1) incorporate dideoxy- and other modified nucleotides at an efficiency Biolabs, USA similar to that of the cognate deoxynucleotides; (2) high processivity; (3) high fidelity in Reviewed by: the absence of proofreading/exonuclease activity; and (4) production of clear and uniform Kirk Matthew Schnorr, Novozymes A/S, Denmark signals for detection. The DNA polymerase encoded by bacteriophage T7 is naturally Samir Hamdan, King Abdullah endowed with or can be engineered to have all these characteristics. The chemically or University of Science and Technology, genetically modified enzyme (Sequenase) expedited significantly the development of DNA Saudi Arabia sequencing technology. -
Sequencing.Pdf
Sequencing. Biological sciences has a long and storied history of natural science – identifying, cataloging, and classifying organisms in different environments. Every aspect of biological sciences is being revolutionized by two dominant technologies: cheap and ubiquitous access to DNA sequencing, and cheap and ubiquitous access to high performance computing. Molecular biology was forever altered by the introduction of the polymerase chain reaction (PCR), and that invention, more than any other, has enabled the sequencing revolution. Taxonomy, one of the oldest endeavors of the biologist, is changing from char- acterizing organisms based on morphology to characterizing organisms based on DNA sequences. Revisionist taxonomic approaches are being introduced throughout the tree of life, and no branch on the tree can avoid the sequenc- ing machine. For example, microbial and viral taxonomy are being completely rewritten because of the analysis of DNA sequences (Rohwer & Edwards, 2002; Thompson et al., 2015). All aspects of ecology are being affected by the intro- duction of DNA sequencing: for example, in the marine environment the ecology of everything from the largest (Cammen et al., 2016) to the smallest (Chow & Suttle, 2015; Haggerty & Dinsdale, 2017) organisms is being revised because of sequence analysis. Evolutionary theories about plants and animals are being upended because of the introduction of genome skimming techniques and deep sequencing (Hollingsworth et al., 2016). Sanger Sequencing Two-time nobel Laureate Dr. Fred Sanger developed this sequencing technol- ogy in 1977. The approach uses terminators, dideoxynucleotide triphosphates (ddNTPs), that terminate DNA extension during replication and do not allow the strand to be synthesized further. Thus, every time a ddNTP is added to the growing DNA strand, synthesis stops and the fragement can not be made any longer. -
Sanger Sequencing – a Hands-On Simulation Background And
Sanger sequencing – a hands-on simulation Background and Guidelines for Instructor Jared Young Correspondence concerning this article should be addressed to Jared Young, Mills College 5000 MacArthur Blvd, Oakland, CA 94613 Contact: [email protected] Synopsis This hands-on simulation teaches the Sanger (dideoxy) method of DNA sequencing. In the process of carrying out the exercise, students also confront DNA synthesis, especially as it relates to chemical structure, and the stochastic nature of biological processes. The exercise is designed for an introductory undergraduate genetics course for biology majors. The exercise can be completed in around 90-minutes, which can be broken up into a 50-minute period for the simulation and a follow-up 50-minute (or less) period for discussion. This follow-up could also take place in a Teaching Assistant (TA) led section. The exercise involves interactions between student pairs and the entire class. There is an accompanying student handout with prompts that should be invoked where indicated in these instructions. Introduction Sanger sequencing is an important technique: it revolutionized the field of Genetics and is still in wide use today. Sanger sequencing is a powerful pedagogical tool well-suited for inducing multiple “aha” moments: in achieving a deep understanding of the technique, students gain a better understanding of DNA and nucleotide structure, DNA synthesis, the stochastic nature of biological processes, the utility of visible chemical modifications (in this case, fluorescent dyes), gel electrophoresis, and the connection between a physical molecule and the information it contains. Sanger sequencing is beautiful: a truly elegant method that can bring a deep sense of satisfaction when it is fully understood. -
DNA Sequencing
DNA Sequencing: Sanger Method (Dideoxynucleotide chain termination) Sanger sequencing is a DNA sequencing method in which target DNA is denatured and annealed to an oligonucleotide primer, which is then extended by DNA polymerase using a mixture of deoxynucleotide triphosphates (normal dNTPs) and chain-terminating dideoxynucleotide triphosphates (ddNTPs). ddNTPs lack the 3’ OH group to which the next dNTP of the growing DNA chain is added. Without the 3’ OH, no more nucleotides can be added, and DNA polymerase falls off. The resulting newly synthesized DNA chains will be a mixture of lengths, depending on how long the chain was when a ddNTP was randomly incorporated. Manual DNA sequencing example: • First, anneal the primer to the DNA template (must be single stranded): 5’ -GAATGTCCTTTCTCTAAG 3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5' • Then split the sample into four aliquots including the following nucleotides: "G" tube: All four dNTPs, one of which is radiolabeled, plus ddGTP (low concentration) "A" tube: All four dNTPs, one of which is radiolabeled, plus ddATP "T" tube: All four dNTPs, one of which is radiolabeled, plus ddTTP "C" tube: All four dNTPs, one of which is radiolabeled, plus ddCTP • When a DNA polymerase (e.g. Klenow fragment) is added to the tubes, the synthetic reaction proceeds until, by chance, a dideoxynucleotide is incorporated instead of a deoxynucleotide. This is a "chain termination" event, because there is a 3' H instead of a 3' OH group. Since the synthesized DNA is labeled (classically with 35S-dATP), the products can be detected and distinguished from the template. Note that the higher the concentration of the ddNTP in the reaction, the shorter the products will be, hence, you will get sequence CLOSER to your primer. -
Sanger Sequencing 14
Molecular Biology and History of DNA Sequencing 02-223 Sept. 9 2014 History of DNA Thomas Morgan first James Watson and described Francis Crick proposed Gregor Mendel first linkage and that DNA is a double described patterns of recombination strand with a double inheritance helical structure 1866 1869 1911 1950 1953 Fredrich Edwin Chargaff Miescher first discovered that A and isolated DNA T, and G and C have equal amounts http://www.nature.com/scitable/content/dna-is-a-double-helix-24263 History of DNA Frederick Sanger Arthur Kornberg Hamilton Smith developed dideoxy replicated DNA in- discovered DNA Commercial DNA sequencing ~100 vitro using DNA restriction automated DNA bases/reaction polymerase enzymes synthesizer PCR developed ~1000 bases/ by Kary Mullis reaction 1957 1961 1970 1971 1977 1983 1986 1996 First genome sequenced using Leroy Hood Marshall in-vitro replication by Ray Wu, developed Nirenberg A.D. Kaiser, and Ellen Taylor . automated elucidated the Phage λ, ~5000 nt took over 3 sequencing codons years DNA Polymerase h"p://www.virology.ws/2009/05/10/the-error-prone-ways-of-rna-synthesis/ Even with proofreading, mistakes made every 107-109 Bases 6 Billion Bases in human genome! h"p://www.virology.ws/2009/05/10/the-error-prone-ways-of-rna-synthesis/ Molecular Biology of the Cell. 4th edition. Alberts B, Johnson A, Lewis J, et al. New York: Garland Science; 2002. PCR • Polymerase Chain ReacJon • Invented in 1983 • DNA polymerase from Thermus aqua+cus • 2.2x105 error rate Polymerase Chain Reaction (PCR) overview buffer, ssDNA primers, -
Microrna Deregulation in Papillary Thyroid Cancer and Its
in vivo 35 : 319-323 (2021) doi:10.21873/invivo.12262 MicroRNA Deregulation in Papillary Thyroid Cancer and its Relationship With BRAF V600E Mutation PETR CELAKOVSKY 1, HELENA KOVARIKOVA 2, VIKTOR CHROBOK 1, JAN MEJZLIK 1, JAN LACO 3, HANA VOSMIKOVA 3, MARCELA CHMELAROVA 2 and ALES RYSKA 3 1Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Hradec Králové, Králové, Czech Republic; 2Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Králové, Czech Republic; 3Fingerland Department of Pathology, University Hospital Hradec Králové, Králové, Czech Republic Abstract. Background: MicroRNAs (miRNAs) are non- miRNAs in PTC compared to normal thyroid gland tissue coding regulatory molecules 18-25 nucleotides in length and nodular goitre was found. Moreover, miR-221 may that act as post-transcriptional regulators of gene serve as a prognostic marker as its over-expression was expression. MiRNAs affect various biological processes significantly associated with recurrent tumors. including carcinogenesis. Deregulation of miRNAa expression has been described in a variety of tumors Thyroid cancer is the most common malignant tumor of the including papillary thyroid carcinoma (PTC). The aim of the endocrine system (1-2). The incidence of thyroid cancer has present study was to investigate the role of selected miRNAs increased dramatically over last three decades (3). Papillary in PTC and find associations between miRNA expression thyroid carcinoma (PTC) represents the majority of and the BRAF (V600E) mutation. Materials and Methods: malignant thyroid tumors, accounting for approximately 80% The study group comprised a total of 62 patients with of all thyroid cancers (4-5). Its overall prognosis is surgically treated PTC. -
A Beginner's Guide to Next Generation Sequencing
A BEGINNER’S GUIDE TO NEXT GENERATION SEQUENCING youseq.com Next Generation Sequencing Let’s keep things simple. The world of Next Generation Sequencing (NGS) can seem complex and intimidating. It need not be. Let’s start by reminding ourselves what its useful for and why we use it. All of life is coded in it’s DNA. A remarkably simple code of four molecules that act as a blue print to define the proteins that we and all of the organisms we share our planet with are made of. Reading this code is one of the most astonishing achievements that the human species has ever and will ever accomplish. Reading this code helps us to understand how we are made, how we are all related, how errors or mutations in our DNA cause disease and how we may respond best to medicines. It holds the promise to revolutionise healthcare and has already begun to do so. The first human genome “read” was competed in 2001. It took 10 years and the best part of $2.7bn. It was achieved by DNA sequencing. A method by which the sequence of the DNA is read painstakingly in small fragments and then reassembled to create a complete sequence. Sanger Sequencing as it is known, was the method used to achieve the first publication of the first human genome. Next Generation Sequencing is a phrase used to describe a range of technologies that speed up and reduce the cost of DNA sequencing vs the traditional Sanger sequencing. What are all these different Next Generation Sequencing Technologies? Well there are quite a few of them. -
1596.Full-Text.Pdf
Published OnlineFirst May 12, 2017; DOI: 10.1158/1535-7163.MCT-16-0798 Cancer Biology and Signal Transduction Molecular Cancer Therapeutics Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non–Small Cell Lung Cancer Cells Kayleigh C. Ross1, Andrew J. Andrews1,2, Christopher D. Marion1, Timothy J. Yen2, and Vikram Bhattacharjee1 Abstract Metastatic melanoma cells commonly acquire resistance to to BRAF WT tumor cell lines that are intrinsically resistant to BRAF V600E inhibitors (BRAFi). In this study, we identified vemurafenib and dabrafenib. Pretreatment of pancreatic serine biosynthesis as a critical mechanism of resistance. Prote- cancer and non–small cell lung cancer cell lines with sublethal omic assays revealed differential protein expression of serine dosesof50and5nmol/Lofgemcitabine,respectively, biosynthetic enzymes PHGDH, PSPH, and PSAT1 following enhanced killing by both vemurafenib and dabrafenib. The vemurafenib (BRAFi) treatment in sensitive versus acquired novel aspects of this study are the direct identification of serine resistant melanoma cells. Ablation of PHGDH via siRNA sen- biosynthesis as a critical mechanism of BRAF V600E inhibitor sitizedacquiredresistantcells to vemurafenib. Inhibiting the resistance and the first successful example of using gemcitabine folate cycle, directly downstream of serine synthesis, with þ BRAFis in combination to kill previously drug-resistant methotrexate also displayed similar sensitization. Using cancer cells, creating the translational potential of pretreatment the DNA-damaging drug gemcitabine, we show that gemcita- with gemcitabine prior to BRAFi treatment of tumor cells to bine pretreatment sensitized resistant melanoma cells to BRA- reverse resistance within the mutational profile and the WT. Fis vemurafenib and dabrafenib. -
COTELLIC™ (Cobimetinib) Oral Tablet
PHARMACY COVERAGE GUIDELINES ORIGINAL EFFECTIVE DATE: 1/21/2016 SECTION: DRUGS LAST REVIEW DATE: 2/18/2021 LAST CRITERIA REVISION DATE: 2/18/2021 ARCHIVE DATE: COTELLIC™ (cobimetinib) oral tablet Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Pharmacy Coverage Guideline must be read in its entirety to determine coverage eligibility, if any. This Pharmacy Coverage Guideline provides information related to coverage determinations only and does not imply that a service or treatment is clinically appropriate or inappropriate. The provider and the member are responsible for all decisions regarding the appropriateness of care. Providers should provide BCBSAZ complete medical rationale when requesting any exceptions to these guidelines. The section identified as “Description” defines or describes a service, procedure, medical device or drug and is in no way intended as a statement of medical necessity and/or coverage. The section identified as “Criteria” defines criteria to determine whether a service, procedure, medical device or drug is considered medically necessary or experimental or investigational. State or federal mandates, e.g., FEP program, may dictate that any drug, device or biological product approved by the U.S. Food and Drug Administration (FDA) may not be considered experimental or investigational and thus the drug, device or biological product may be assessed only on the basis of medical necessity. Pharmacy Coverage Guidelines are subject to change as new information becomes available. For purposes of this Pharmacy Coverage Guideline, the terms "experimental" and "investigational" are considered to be interchangeable. BLUE CROSS®, BLUE SHIELD® and the Cross and Shield Symbols are registered service marks of the Blue Cross and Blue Shield Association, an association of independent Blue Cross and Blue Shield Plans. -
Discovery and Characterization Of
Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 pyrosequencing Margarita López-Uribe, Christine Santiago, Steve Bogdanowicz, Bryan Danforth To cite this version: Margarita López-Uribe, Christine Santiago, Steve Bogdanowicz, Bryan Danforth. Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 py- rosequencing. Apidologie, Springer Verlag, 2013, 44 (2), pp.163-172. 10.1007/s13592-012-0168-3. hal-01201284 HAL Id: hal-01201284 https://hal.archives-ouvertes.fr/hal-01201284 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:163–172 Original article * INRA, DIB and Springer-Verlag France, 2012 DOI: 10.1007/s13592-012-0168-3 Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 pyrosequencing 1 1 2 Margarita M. LÓPEZ-URIBE , Christine K. SANTIAGO , Steve M. BOGDANOWICZ , 1 Bryan N. DANFORTH 1Department of Entomology, Cornell University, Ithaca, NY 14853, USA 2Evolutionary Genetics Core Facilities, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA Received 5 June 2012 – Revised 8 August 2012 – Accepted 18 September 2012 Abstract – The recent implementation of next-generation sequencing for the discovery of microsatellite markers has made this technology the most effective method for generating genetic markers in non-model organisms. -
Guide to Interpreting Genomic Reports: a Genomics Toolkit
Guide to Interpreting Genomic Reports: A Genomics Toolkit A guide to genomic test results for non-genetics providers Created by the Practitioner Education Working Group of the Clinical Sequencing Exploratory Research (CSER) Consortium Genomic Report Toolkit Authors Kelly East, MS, CGC, Wendy Chung MD, PhD, Kate Foreman, MS, CGC, Mari Gilmore, MS, CGC, Michele Gornick, PhD, Lucia Hindorff, PhD, Tia Kauffman, MPH, Donna Messersmith , PhD, Cindy Prows, MSN, APRN, CNS, Elena Stoffel, MD, Joon-Ho Yu, MPh, PhD and Sharon Plon, MD, PhD About this resource This resource was created by a team of genomic testing experts. It is designed to help non-geneticist healthcare providers to understand genomic medicine and genome sequencing. The CSER Consortium1 is an NIH-funded group exploring genomic testing in clinical settings. Acknowledgements This work was conducted as part of the Clinical Sequencing Exploratory Research (CSER) Consortium, grants U01 HG006485, U01 HG006485, U01 HG006546, U01 HG006492, UM1 HG007301, UM1 HG007292, UM1 HG006508, U01 HG006487, U01 HG006507, R01 HG006618, and U01 HG007307. Special thanks to Alexandria Wyatt and Hugo O’Campo for graphic design and layout, Jill Pope for technical editing, and the entire CSER Practitioner Education Working Group for their time, energy, and support in developing this resource. Contents 1 Introduction and Overview ................................................................ 3 2 Diagnostic Results Related to Patient Symptoms: Pathogenic and Likely Pathogenic Variants . 8 3 Uncertain Results