Molecular Evidence for an African Origin of the Hawaiian Endemic Hesperomannia (Asteraceae)

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Evidence for an African Origin of the Hawaiian Endemic Hesperomannia (Asteraceae) Proc. Natl. Acad. Sci. USA Vol. 95, pp. 15440–15445, December 1998 Evolution Molecular evidence for an African origin of the Hawaiian endemic Hesperomannia (Asteraceae) HYI-GYUNG KIM*†,STERLING C. KEELEY‡,PETER S. VROOM‡, AND ROBERT K. JANSEN*§ *Department of Botany and Institute of Cellular and Molecular Biology, University of Texas, Austin, TX 78713; and ‡Department of Botany, University of Hawaii, Honolulu, HI 96822 Communicated by Peter H. Raven, Missouri Botanical Garden, St. Louis, MO, October 14, 1998 (received for review June 4, 1998) ABSTRACT Identification of the progenitors of plants en- Hawaiian plants are more complicated than those of plants of demic to oceanic islands often is complicated by extreme mor- other volcanic oceanic archipelagos. phological divergence between island and continental taxa. This We have been examining phylogenetic relationships of the is especially true for the Hawaiian Islands, which are 3,900 km Hawaiian endemic genus Hesperomannia, a member of the from any continental source. We examine the origin of Hespero- flowering plant family Asteraceae, one of the largest families in mannia, a genus of three species endemic to Hawaii that always the Hawaiian Islands (2). Previous workers considered this small have been placed in the tribe Mutisieae of the sunflower family. genus of three species to be a close relative of several South Phylogenetic analyses of representatives from all tribes in this American genera of the tribe Mutisieae (10–13). Hesperomannia family using the chloroplast gene ndhF (where ndhF is the ND5 was considered basal in the tribe, and its position was used to protein of chloroplast NADH dehydrogenase) indicate that Hes- support the thesis that the Asteraceae originated in South Amer- peromannia belongs to the tribe Vernonieae. Phylogenetic com- ica (12). Our DNA phylogenies disagree with all previous studies parisons within the Vernonieae using sequences of both ndhF and and clearly indicate that Hesperomannia is closely allied to the internal transcribed spacer regions of nuclear ribosomal African members of the tribe Vernonieae. This result confirms a DNA reveal that Hesperomannia is sister to African species of source area for the highly endemic and morphologically distinc- Vernonia. Long-distance dispersal northeastward from Africa to tive Hawaiian biota. southeast Asia and across the many Pacific Ocean island chains is the most likely explanation for this unusual biogeographic MATERIALS AND METHODS connection. The 17- to 26-million-year divergence time between DNA Sequencing. Phylogenetic analyses were conducted by African Vernonia and Hesperomannia estimated by the DNA using sequences of the chloroplast gene ndhF (ndhF is the ND5 sequences predates the age of the eight existing Hawaiian Is- lands. These estimates are consistent with an hypothesis that the protein of chloroplast NADH dehydrogenase) and the internal progenitor of Hesperomannia arrived at one of the low islands of transcribed spacer (ITS) region of nuclear ribosomal DNA. Total genomic DNA was isolated from fresh leaves (14), followed by the Hawaiian-Emperor chain between the late Oligocene and y mid-Miocene when these islands were above sea level. Subse- purification in cesium chloride ethidium bromide gradients. quent to its arrival the southeast Pacific island chains served as DNA extractions from herbarium specimens and silica-dried steppingstones for dispersal to the existing Hawaiian Islands. leaves were performed (15). Amplifications were performed in 50 ml with 1 ml of unquantified genomic DNA, 20 pmol of primer, 3 The Hawaiian Islands are 3,900 km from the closest continent and 1 Tfl polymerase buffer, 0.5 units of Tfl polymerase (Epicentre are one of the most remote land masses in the world. Despite this Technologies, Madison, WI), 10 mM of MgCl2, and 0.2 mM of distance the islands have an exceptionally diverse flora. Estimates each dNTP. The first thermal cycle consisted of 3 min denatur- of endemism for major archipelagos show that Hawaii has the ation at 94°C, 1 min of annealing at 50°C, and 1 min and 20 sec highest known (90%) compared with 40% for the Galapagos and of polymerization at 72°C. This cycle was followed by 34 cycles at 25% for the Canaries (1). It is estimated that the 1,000 species of 94°C for 1 min, 50°C for 1 min, and 72°C for 1 min and 20 sec, native Hawaiian flowering plants originated from 270–280 pro- followed by a final extension cycle of 72°C for 7 min. The genitors (2), all as waif elements brought by long-distance dis- amplified DNA was purified by electrophoresis in a 1% agarose persal. Identification of specific progenitors and source regions is gel and the GeneClean II system (Bio 101). The purified PCR difficult because of the disharmonic nature of the flora and product was sequenced by the snap-chill method (16) using number of possible source areas. Suggested floristic affinities SEQUENASE version 2.0 (United States Biochemical product no. include Malaysia, North America, northern South America, 70770) and 35S-dATP labeling. Australia, New Zealand, and pantropical or southern South Amplifications of the ITS region used primers ITS5 and ITS4 America (2–4). Recent molecular phylogenetic studies of Hawai- (17) as modified by Downie and Katz-Downie (18). Complemen- ian endemic plants have provided many new insights into the tary strands of the ITS region were sequenced by using primers origin and evolution of the flora, including the identification of P2, P3, P4, and P5 (17). For tribal level analyses, the chloroplast continental relatives from western North America (5, 6) and New gene ndhF was amplified by using two primers, 252 and 1607, Guinea (7) and both single (5, 8) and multiple colonizations (9) and sequenced with 12 forward primers (19). For intergeneric of the archipelago. The existence of a chain of Hawaiian islands comparisons within the Vernonieae, only the highly variable 39 for the past 70 million years (myr) adds to the complexity of end of ndhF was sequenced. determining the origin of the endemic flora. The affinities of the flora to disparate geographic regions and the large distances to Abbreviations: ITS, internal transcribed spacer; myr, million years; source areas suggests that the biogeographic histories of endemic ndhF, ND5 protein of chloroplast NADH dehydrogenase. Data deposition: The sequences reported in this paper have been The publication costs of this article were defrayed in part by page charge deposited in the GenBank database (accession nos. AF092584– AF092607 for ndhF and AF092608–AF092637 for ITS). payment. This article must therefore be hereby marked ‘‘advertisement’’ in †Present address: Laboratory of Molecular Systematics, Smithsonian accordance with 18 U.S.C. §1734 solely to indicate this fact. Institution, 4210 Silver Hill Road, Suitland, MD 20746. © 1998 by The National Academy of Sciences 0027-8424y98y9515440-6$2.00y0 §To whom reprint requests should be addressed. e-mail: rjansen@ PNAS is available online at www.pnas.org. utxvms.cc.utexas.edu. 15440 Downloaded by guest on September 26, 2021 Evolution: Kim et al. Proc. Natl. Acad. Sci. USA 95 (1998) 15441 DNA sequences were aligned manually in MACCLADE (20) for ymous differences by using the complete-deletion option for gaps both ndhF and ITS data. The ITS sequences also were aligned by and missing data because of different evolutionary rates at the using CLUSTAL V (21) followed by minor manual corrections. The different codon positions. Pairwise distance comparisons of boundaries of ITS-1 and ITS-2 were determined by comparing noncoding regions (ITS sequences) were calculated with the the aligned sequence with published sequences from other As- transitionytransversion ratio set to 1.03 by using the pairwise- teraceae (22). MACCLADE was used to calculate transitiony deletion option for gaps and missing data. The DNADIST program transversion ratios from the most parsimonious trees. of PHYLIP (27) was used to calculate nucleotide sequence diver- Phylogenetic Analyses. Phylogenetic analyses were conducted gence under Kimura’s two-parameter model (28) and with Jukes by using three data sets. The aligned sequences for all data sets and Cantor’s one-parameter method (29) for 534 bp of ITS and were deposited in TreeBASE (http:yyherbaria.harvard.eduy 804 bp of ndhF, respectively. To assess rate homogeneity between treebasey). The first data set examined the tribal position of different lineages, a relative-rate test (30, 31) was performed. Hesperomannia and it included the entire ndhF gene (2,235 bp) Vernonia populifolia was used as the reference taxon for both tests for 50 representative genera from eight tribes and all three because this lineage was sister to the rest of the taxa. Standard subfamilies of Asteraceae (see ref. 23 for voucher information). errors for estimated relative rate differences between the lineages Three genera of the subfamily Barnadesioideae were used as were calculated according to Li and Tanimura (31) and Kimura outgroups (19, 24). The two other data sets were designed to (28), and were used for significance tests to assess whether a examine the position of Hesperomannia within the Vernonieae molecular clock could be rejected. The average rate of nucleotide (Table 1). One data set included the 39 end of ndhF (804 bp) for substitutions between two clades was calculated by using per- two of the three species of Hesperomannia, 19 worldwide repre- centage change per site per unit time. sentatives of Vernonieae, and three genera of Liabeae as out- groups. The other used the ITS region and sampled the same two RESULTS taxa of Hesperomannia, 16 representatives of Vernonieae from Tribal Position of Hesperomannia. To investigate the tribal North and South America, Asia, and Africa, and one outgroup position of Hesperomannia, we compared the entire chloroplast from the Liabeae. Sampling was not identical for these two data gene ndhF from 50 representative genera of all of the currently sets because it was not possible to amplify both ndhF and ITS for recognized tribes of the Asteraceae, with more extensive sam- all available taxa.
Recommended publications
  • The Plant Press
    Special Symposium Issue continues on page 14 Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 20 - No. 3 July-September 2017 Botany Profile Plant Expeditions: History Has Its Eyes On You By Gary A. Krupnick he 15th Smithsonian Botani- as specimens (living or dried) in centuries field explorers to continue what they are cal Symposium was held at the past. doing. National Museum of Natural The symposium began with Laurence T he morning session began with a History (NMNH) and the U.S. Botanic Dorr (Chair of Botany, NMNH) giv- th Garden (USBG) on May 19, 2017. The ing opening remarks. Since the lectures series of talks focusing on the 18 symposium, titled “Exploring the Natural were taking place in Baird Auditorium, Tcentury explorations of Canada World: Plants, People and Places,” Dorr took the opportunity to talk about and the United States. Jacques Cayouette focused on the history of plant expedi- the theater’s namesake, Spencer Baird. A (Agriculture and Agri-Food Canada) tions. Over 200 participants gathered to naturalist, ornithologist, ichthyologist, and presented the first talk, “Moravian Mis- hear stories dedicated col- sionaries as Pioneers of Botanical Explo- and learn about lector, Baird was ration in Labrador (1765-1954).” He what moti- the first curator explained that missionaries of the Mora- vated botanical to be named vian Church, one of the oldest Protestant explorers of at the Smith- denominations, established missions the Western sonian Institu- along coastal Labrador in Canada in the Hemisphere in the 18th, 19th, and 20th tion and eventually served as Secretary late 1700s.
    [Show full text]
  • Proceedings of the Biological Society of Washington
    PROC. BIOL. SOC. WASH. 103(1), 1990, pp. 248-253 SIX NEW COMBINATIONS IN BACCHAROIDES MOENCH AND CYANTHILLIUM "SUJME (VERNONIEAE: ASTERACEAE) Harold Robinson Abstract.— ThvQQ species, Vernonia adoensis Schultz-Bip. ex Walp., V. gui- neensis Benth., and V. lasiopus O. HofFm. in Engl., are transferred to the genus Baccharoides Moench, and three species, Conyza cinerea L., C. patula Ait., and Herderia stellulifera Benth. are transferred to the genus Cyanthillium Blume. The present paper provides six new com- tinct from the Western Hemisphere mem- binations of Old World Vemonieae that are bers of that genus. Although generic limits known to belong to the genera Baccharoides were not discussed by Jones, his study placed Moench and Cyanthillium Blume. The ap- the Old World Vernonia in a group on the plicability of these generic names to these opposite side the basic division in the genus species groups was first noted by the author from typical Vernonia in the eastern United almost ten years ago (Robinson et al. 1 980), States. Subsequent studies by Jones (1979b, and it was anticipated that other workers 1981) showed that certain pollen types also more familiar with the paleotropical mem- were restricted to Old World members of bers of the Vernonieae would provide the Vernonia s.l., types that are shared by some necessary combinations. A recent study of Old World members of the tribe tradition- eastern African members of the tribe by Jef- ally placed in other genera. The characters frey (1988) also cites these generic names as noted by Jones have been treated by the synonyms under his Vernonia Group 2 present author as evidence of a basic divi- subgroup C and Vernonia Group 4, al- sion in the Vernonieae between groups that though he retains the broad concept of Ver- have included many genera in each hemi- nonia.
    [Show full text]
  • In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora Trichocarpha
    275 In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora trichocarpha SAÚDE-GUIMARÃES, D.A.1*; RASLAN, D.S.2; OLIVEIRA, A.B.3 1Laboratório de Plantas Medicinais (LAPLAMED), Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto. Rua Costa Sena, 171, Centro, CEP: 354000-000, Ouro Preto, Minas Gerais, Brazil *[email protected] 2Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. 3Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil. ABSTRACT: The sesquiterpene lactones lychnopholide and eremantholide C were isolated from Lychnophora trichocarpha Spreng. (Asteraceae), which is a plant species native to the Brazilian Savannah or Cerrado and popularly known as arnica. Sesquiterpene lactones are known to present a variety of biological activities including antitumor activity. The present paper reports on the evaluation of the in vitro antitumor activity of lychnopholide and eremantholide C, in the National Cancer Institute, USA (NCI, USA), against a panel of 52 human tumor cell lines of major human tumors derived from nine cancer types. Lychnopholide disclosed significant activity against 30 cell lines of seven cancer types with IC100 (total growth concentration inhibition) values between 0.41 µM and 2.82 µM. Eremantholide C showed significant activity against 30 cell lines of eight cancer types with IC100 values between 21.40 µM and 53.70 µM. Lychnopholide showed values of lethal concentration 50 % (LC50) for 30 human tumor cell lines between 0.72 and 10.00 µM, whereas eremantholide C presented values of LC50 for 21 human tumor cell lines between 52.50 and 91.20 µM.
    [Show full text]
  • Morphological and Anatomical Study of Bidens Pilosa Var.Pdf (440.3
    1 Morphological and Anatomical Study of Bidens pilosa var. minor (Blume.) Sher. From Tribe Heliantheae Dr Ngu Wah Win1 & Min Htay Wai Linn2 Abstract In this research, morphology and anatomy of Bidens pilosa var. minor (Blume) Sher. of tribe Heliantheae belonging to the family Asteraceae were studied, photomicrographed and described. The plant is annual erect herb. Leaves are trifoliolate compound and the florets of rays and disc in a head are bisexual and monoecious heads are also found. In anatomical characters, although endodermis are inconspicuous only in roots, it is conspicuous in stem and root. The stomata types are anomocytic and vascular bundles are bicollateral, open and covered by one-layer of bundle sheath. The resulting characters are valuable for the identification of study species for further researchers. Key words – Asteraceae, endodermis, vascular bundles, bicollateral Introduction Asteraceae also called Sunflower family is one of the most important economic family and the second largest of flowering plant families. It consists of several tribes. Its flowers have two types of florets. Disc florets are in the center of head and ray florets in the outer. Many plants of Asteraceae family are economically important as weed, ornamentals, medicinal, green vegetables and poisonus plants. Commercially the flowers of this Asteraceae family are very famous of their colourful florets and beautiful petals. Several plants of this family are commonly cultivated for ornamental purpose in the gardens plots and field. The studied species of this Asteraceae family are native of America, Africa, India and all warmer countries (Grierson 1980). The study species is widely distributed in Pyin Oo Lwin of Mandalay Region.
    [Show full text]
  • V. Munnozia Ortiziae (Liabeae), a New Species from the Andes of Pasco, Peru
    Pruski, J.F. 2012. Studies of Neotropical Compositae–V. Munnozia ortiziae (Liabeae), a new species from the Andes of Pasco, Peru. Phytoneuron 2012-2: 1–6. Published 1 January 2012. ISSN 2153 733X STUDIES OF NEOTROPICAL COMPOSITAE–V. MUNNOZIA ORTIZIAE (LIABEAE), A NEW SPECIES FROM THE ANDES OF PASCO, PERU JOHN F. PRUSKI Missouri Botanical Garden P.O. Box 299 St. Louis, Missouri 63166 ABSTRACT A new species, Munnozia ortiziae Pruski (Compositae: Liabeae: Munnoziinae), is described from the Andes of Pasco, Peru. It is most similiar to M. oxyphylla , also of Peru, in its pinnately veined, lanceolate to elliptic-lanceolate leaves and moderately large capitula in loose, open cymose capitulescences. KEY WORDS: Andes, Asteraceae, Compositae, Liabeae, Liabum , Munnozia , Munnoziinae, Pasco, Peru. Munnozia Ruiz & Pav. (Compositae: Liabeae: Munnoziinae) is an Andean-centered genus of more than 40 species (Robinson 1978, 1983). It was resurrected from synonymy of Liabum Adans. by Robinson and Brettell (1974) and differs from Liabum by black (vs. pale) anther thecae. A new species, Munnozia ortiziae Pruski, from the Andes of Pasco, Peru, is described herein. The new species appears most similar to M. oxyphylla (Cuatrec.) H. Rob., which is known from Huánuco and Pasco, Peru. MUNNOZIA ORTIZIAE Pruski, sp. nov. TYPE : PERU. Pasco. Prov. Oxapampa. Dist. Oxapampa: La Suiza Nueva, open forest with many tree ferns, 10°38' S, 75°27' W, 2240 m, 21 Jun 2003, H. van der Werff, R. Vásquez, B. Gray, R. Rojas, R. Ortiz , & N. Davila 17600 (holotype: MO; isotypes: AMAZ, F, HOXA, USM). Figures 1–5. Plantae herbaceae perennes vel fruticosae usque ca.
    [Show full text]
  • Inflorescence Development and Floral Organogenesis in Taraxacum Kok
    plants Article Inflorescence Development and Floral Organogenesis in Taraxacum kok-saghyz Carolina Schuchovski 1 , Tea Meulia 2, Bruno Francisco Sant’Anna-Santos 3 and Jonathan Fresnedo-Ramírez 4,* 1 Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Rua dos Funcionários, 1540 CEP 80035-050 Curitiba, Brazil; [email protected] 2 Molecular and Cellular Imaging Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; [email protected] 3 Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico, Jardim das Américas, C.P. 19031, 81531-980 Curitiba, Brazil; [email protected] 4 Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA * Correspondence: [email protected]; Tel.: +1-330-263-3822 Received: 13 August 2020; Accepted: 22 September 2020; Published: 24 September 2020 Abstract: Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK has demonstrated TK’s potential in industrial applications as a relevant natural rubber and latex-producing alternative crop. However, many aspects of its biology have been neglected in published studies. For example, floral development is still poorly characterized. TK inflorescences were studied by scanning electron microscopy. Nine stages of early inflorescence development are proposed, and floral micromorphology is detailed. Individual flower primordia development starts at the periphery and proceeds centripetally in the newly-formed inflorescence meristem.
    [Show full text]
  • Suitability of Root and Rhizome Anatomy for Taxonomic
    Scientia Pharmaceutica Article Suitability of Root and Rhizome Anatomy for Taxonomic Classification and Reconstruction of Phylogenetic Relationships in the Tribes Cardueae and Cichorieae (Asteraceae) Elisabeth Ginko 1,*, Christoph Dobeš 1,2,* and Johannes Saukel 1,* 1 Department of Pharmacognosy, Pharmacobotany, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria 2 Department of Forest Genetics, Research Centre for Forests, Seckendorff-Gudent-Weg 8, Vienna A-1131, Austria * Correspondence: [email protected] (E.G.); [email protected] (C.D.); [email protected] (J.S.); Tel.: +43-1-878-38-1265 (C.D.); +43-1-4277-55273 (J.S.) Academic Editor: Reinhard Länger Received: 18 August 2015; Accepted: 27 May 2016; Published: 27 May 2016 Abstract: The value of root and rhizome anatomy for the taxonomic characterisation of 59 species classified into 34 genera and 12 subtribes from the Asteraceae tribes Cardueae and Cichorieae was assessed. In addition, the evolutionary history of anatomical characters was reconstructed using a nuclear ribosomal DNA sequence-based phylogeny of the Cichorieae. Taxa were selected with a focus on pharmaceutically relevant species. A binary decision tree was constructed and discriminant function analyses were performed to extract taxonomically relevant anatomical characters and to infer the separability of infratribal taxa, respectively. The binary decision tree distinguished 33 species and two subspecies, but only five of the genera (sampled for at least two species) by a unique combination of hierarchically arranged characters. Accessions were discriminated—except for one sample worthy of discussion—according to their subtribal affiliation in the discriminant function analyses (DFA). However, constantly expressed subtribe-specific characters were almost missing and even in combination, did not discriminate the subtribes.
    [Show full text]
  • Pattern of Callose Deposition During the Course of Meiotic Diplospory in Chondrilla Juncea (Asteraceae, Cichorioideae)
    Protoplasma DOI 10.1007/s00709-016-1039-y ORIGINAL ARTICLE Pattern of callose deposition during the course of meiotic diplospory in Chondrilla juncea (Asteraceae, Cichorioideae) Krystyna Musiał1 & Maria Kościńska-Pająk1 Received: 21 September 2016 /Accepted: 26 October 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Total absence of callose in the ovules of dip- Keywords Apomixis . Callose . Megasporogenesis . Ovule . losporous species has been previously suggested. This paper Chondrilla . Rush skeletonweed is the first description of callose events in the ovules of Chondrilla juncea, which exhibits meiotic diplospory of the Taraxacum type. We found the presence of callose in the Introduction megasporocyte wall and stated that the pattern of callose de- position is dynamically changing during megasporogenesis. Callose, a β-1,3-linked homopolymer of glucose containing At the premeiotic stage, no callose was observed in the ovules. some β-1,6 branches, may be considered as a histological Callose appeared at the micropylar pole of the cell entering marker for a preliminary identification of the reproduction prophase of the first meioticdivision restitution but did not mode in angiosperms. In the majority of sexually reproducing surround the megasporocyte. After the formation of a restitu- flowering plants, the isolation of the spore mother cell and the tion nucleus, a conspicuous callose micropylar cap and dis- tetrad by callose walls is a striking feature of both micro- and persed deposits of callose were detected in the megasporocyte megasporogenesis (Rodkiewicz 1970; Bhandari 1984; Bouman wall. During the formation of a diplodyad, the micropylar 1984; Lersten 2004).
    [Show full text]
  • A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
    Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U.
    [Show full text]
  • Redalyc.Lychnophoric Acid from Lychnophora Pinaster: a Complete and Unequivocal Assignment by NMR Spectroscopy
    Eclética Química ISSN: 0100-4670 [email protected] Universidade Estadual Paulista Júlio de Mesquita Filho Brasil Silveira, D.; de Souza Filho, J. D.; de Oliveira, A. B.; Raslan, D. S. Lychnophoric acid from Lychnophora pinaster: a complete and unequivocal assignment by NMR spectroscopy Eclética Química, vol. 30, núm. 1, janeiro-março, 2005, pp. 37-41 Universidade Estadual Paulista Júlio de Mesquita Filho Araraquara, Brasil Available in: http://www.redalyc.org/articulo.oa?id=42930105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative www.scielo.br/eq Volume 30, número 1, 2005 Lychnophoric acid from Lychnophora pinaster: a complete and unequivocal assignment by NMR spectroscopy. D. Silveira 1*, J. D. de Souza Filho 2, A. B. de Oliveira 3, D. S. Raslan 2 1Faculdade de Ciências da Saúde, UnB Asa Norte, Brasília, DF, Brazil 2Departamento de Química, ICEx, UFMG. Av. Antônio Carlos 6627, CEP 31270-010. Belo Horizonte, MG, Brazil. 3Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG . Av. Olegário Maciel, 2360, CEP 30180-112. Belo Horizonte, MG, Brazil. *To whom correspondence should be addressed; e-mail: [email protected] Abstract: The investigation of the hexane extract from aerial parts of Lychnophora pinaster provided, besides others substances, the E-isomer of lychnophoric acid, a sesquiterpene derivative previously isolated from L. affinis. Keywords: Lychnophora pinaster; Asteraceae; lychnophoic acid. Introduction Experimental Plant species of the genus Lychnophora General (Asteraceae) are known as “candeia”, “arnica” and “arnica da serra” and are used in folk medicine Melting point was determined on a Mettler o as anti-flogistic, anti-rheumatic, and analgesic [1].
    [Show full text]
  • November 2009 an Analysis of Possible Risk To
    Project Title An Analysis of Possible Risk to Threatened and Endangered Plant Species Associated with Glyphosate Use in Alfalfa: A County-Level Analysis Authors Thomas Priester, Ph.D. Rick Kemman, M.S. Ashlea Rives Frank, M.Ent. Larry Turner, Ph.D. Bernalyn McGaughey David Howes, Ph.D. Jeffrey Giddings, Ph.D. Stephanie Dressel Data Requirements Pesticide Assessment Guidelines Subdivision E—Hazard Evaluation: Wildlife and Aquatic Organisms Guideline Number 70-1-SS: Special Studies—Effects on Endangered Species Date Completed August 22, 2007 Prepared by Compliance Services International 7501 Bridgeport Way West Lakewood, WA 98499-2423 (253) 473-9007 Sponsor Monsanto Company 800 N. Lindbergh Blvd. Saint Louis, MO 63167 Project Identification Compliance Services International Study 06711 Monsanto Study ID CS-2005-125 RD 1695 Volume 3 of 18 Page 1 of 258 Threatened & Endangered Plant Species Analysis CSI 06711 Glyphosate/Alfalfa Monsanto Study ID CS-2005-125 Page 2 of 258 STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS The text below applies only to use of the data by the United States Environmental Protection Agency (US EPA) in connection with the provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA §10(d)(1)(A), (B), or (C). We submit this material to the United States Environmental Protection Agency specifically under the requirements set forth in FIFRA as amended, and consent to the use and disclosure of this material by EPA strictly in accordance with FIFRA. By submitting this material to EPA in accordance with the method and format requirements contained in PR Notice 86-5, we reserve and do not waive any rights involving this material that are or can be claimed by the company notwithstanding this submission to EPA.
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]