4 Optimal Control of Diesel Engines 219 4.1 Problem Formulation

Total Page:16

File Type:pdf, Size:1020Kb

4 Optimal Control of Diesel Engines 219 4.1 Problem Formulation Research Collection Doctoral Thesis Optimal control of diesel engines modelling, numerical methods, and applications Author(s): Asprion, Jonas Publication Date: 2013 Permanent Link: https://doi.org/10.3929/ethz-a-010050065 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 21593 OPTIMAL CONTROL OF DIESEL ENGINES Modelling, Numerical Methods, and Applications Jonas Asprion 2013 Jonas Asprion OPTIMAL CONTROL OF DIESEL ENGINES DISS. ETH Nr. 21593 OPTIMAL CONTROL OF DIESEL ENGINES: MODELLING, NUMERICAL METHODS, AND APPLICATIONS ABHANDLUNG zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN der ETH ZÜRICH (Dr. sc. ETH Zürich) vorgelegt von JONAS ASPRION MSc ETH in Mechanical Engineering geboren am 17.04.1984 von Escholzmatt, LU Angenommen auf Antrag von Prof. Dr. Lino Guzzella, Referent Prof. Dr. Moritz Diehl, Korreferent 2013 Jonas Asprion [email protected] © 2013 ETH Zurich Institute for Dynamic Systems and Control Sonneggstrasse 3 CH-8092 Zurich Switzerland When you truly love something you’re doing, you can’t do nothing wrong. — Ryan Dungey, 2010 To Marieken, Milla and Lilith. Leonhard Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti. Lausannae & Genevae: apud Marcum-Michaelem Bous- quet, 1744, p. 245. [http://dx.doi.org/10.3931/e-rara-1490] Nothing in the world takes place without optimization, and there is no doubt that all aspects of the world that have a ratio- nal basis can be explained by optimization methods.? ? Free translation by Martin Grötschel in the introduction of Optimization Stories, Documenta Mathematica, 2012. The original text is reproduced more closely by the translation provided in J.D. Barrow and F.J. Tipler, The Anthropic Cosmological Principle, Clarendon Press, 1986, on page 150: “For since the fabric of the universe is most perfect and the work of a most wise Creator, nothing at all takes place in the universe in which some rule of maximum or minimum does not appear ... there is absolutely no doubt that every affect in the universe can be explained satisfactorily from final causes, by the aid of the method of maxima and minima, as it can be from the effective causes themselves.” Acknowledgements During the past four years, my life often felt like an optimal control problem. The resource “personal energy” as a state variable needed to be wisely allocated to optimise several contrasting objectives and to sometimes work around seemingly infeasible constraints. Concurrently, the energy had to be regenerated regularly. The problem to be solved thus always was a problem of optimal time management. In this context, which is nicely captured by Leonhard Euler in his “De Curvis Elasticis”, I took the role of the optimisation algorithm that constantly tried to solve the problem “PhD thesis versus the rest of my life”. Without the help and the support from numerous persons, this algorithm would have had neither the necessary computational power available nor would it have converged sufficiently fast. Above all, I thank my wife Marieken. In the presence of “infeasible constraints”, she always agreed to slacken her demands to restore fea- sibility. Furthermore, she always helped me to recharge my personal energy – which also holds for our two children. However, the most im- portant role my wife takes is to keep showing me that some aspects of life do not belong to any optimisation problem but have to be enjoyed just as they come. Oscar Chinellato, my co-supervisor at FPT Motorenforschung AG, initiated the project “Model-Based Engine Calibration”. Besides pro- xi Acknowledgements viding this fundamental contribution, he kept asking critical questions and often provided ideas on how to tackle certain problems. The discus- sions with him were always sources of inspiration and motivation, and they helped to keep my “Newton steps” headed in the right direction. Another important person at FPT is Theo Auckenthaler, who initially “hired” me to perform my industrial internship as well as to do the re- search for my master thesis with the company. It was his persistent and successful pursuit of the model-based approach that paved the way for the realisation of such an innovative project in industry. The Institute for Dynamic Systems and Control laid the groundwork for this thesis. The lectures held by Prof. Lino Guzzella and Dr. Christo- pher Onder were some of the best I ever attended, and they inspired me throughout my bachelor and master studies. I am indebted to Prof. Lino Guzzella for providing me with the opportunity to pursue my doc- toral studies on a challenging topic. During my doctorate, he focussed on forcing my steps to maintain a reasonable length, even if I could not see any progress at that time. In retrospect, I appreciate this “school of hard knocks” – it forced me to make progress in leaps, not only from a technical point of view, but also personally. I also acknowledge the help I received from Brigitte Rohrbach who copy-edited all my publications. Her knowledge of the English language greatly helped me to improve the quality of my manuscripts. My co-referee, Prof. Moritz Diehl, had a significant impact on the course of my doctoral studies. In the spring term of 2011 he gave a lecture on “Numerical Optimal Control” at the Institute for Automation in the Department of Electrical Engineering. Until that time I had investigated mainly the heuristic type of optimisation strategies and had only recently discovered the power of the direct methods. His lecture encouraged me to focus my research concerning optimal control on this approach, which turned out to be the perfectly right choice. I am xii Acknowledgements grateful to him for bringing me into the right “region of attraction”. His fascination for the topic was contagious, and I greatly profited from his profound knowledge. Last but no least, my colleagues helped me throughout the time at the institute, some by technical or personal discussions, some by an auspicious collaboration. Others managed to act as an example for not taking this part of life overly serious or some step-enforcing measures from the supervisors too personal. In particular, I thank Stephan Zentner for all the joy and the sorrows we shared during our four common years as doctoral students. J. A. xiii Abstract In response to the increasingly stringent emission regulations and a demand for ever lower fuel consumption, diesel engines have become complex systems. The exploitation of any leftover potential during tran- sient operation is crucial. However, even an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high de- mand for test-bench time. Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This thesis presents the methods required to implement such an approach. Optimisation-oriented models for the air path and for the in-cylinder processes of diesel engines are derived, and the numerical methods re- quired to solve the corresponding large-scale optimal control problems are presented. The models are shown to be applicable to engines of var- ious sizes and configurations, and a transient experimental validation highlights their accuracy. A self-contained framework for numerical optimal control is implemented. The convergence behaviour and the computational performance of this framework when applied to the problem at hand are analysed. Finally, the resulting optimal control- trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for causal control strate- xv Abstract gies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the engine control unit is conceiv- able. An experimental validation of the overall approach demonstrates the applicability of these results. The measurement results show that the dynamic optimisation predicts the reduction of the fuel consump- tion and the cumulative pollutant emissions with a relative error of around 10% on highly transient driving cycles. xvi Zusammenfassung Um die stetig strenger werdenden Emissionsvorschriften zu erfüllen und gleichzeitig dem Wunsch nach noch geringerem Treibstoffver- brauch nachzukommen, muss der transiente Betrieb von Dieselmoto- ren optimiert werden. Um das verbleibende Potential auszuschöpfen, stellt ein aktueller Dieselmotor viele, sich jedoch gegenseitig beeinflus- sende Aktuatoren zur Verfügung. Selbst ein erfahrener Applikationsin- genieur benötigt viele Iterationen, um eine akzeptable Bedatung aller Kennfelder und Reglerstrukturen für dieses komplexe System zu erlan- gen. Da komplette dynamische Fahrzyklen betrachtet werden müssen, resultiert ein immenser Bedarf an Prüfstandszeit. Das Ziel dieser Arbeit ist die Erstellung eines Werkzeugs, das den Ingenieur insbesondere für die Applikation des transienten Betriebes unterstützt und somit die kostenintensive Prüfstandszeit reduziert. Auf physikalischen Grundge- setzen bauende, mathematische Modelle für alle Prozesse im Motor sind dazu genauso nötig wie eine numerische Methodik, um schnell und verlässlich dynamische Optimierungsprobleme zu lösen. Die Mo- delle werden
Recommended publications
  • Treball (1.484Mb)
    Treball Final de Màster MÀSTER EN ENGINYERIA INFORMÀTICA Escola Politècnica Superior Universitat de Lleida Mòdul d’Optimització per a Recursos del Transport Adrià Vall-llaura Salas Tutors: Antonio Llubes, Josep Lluís Lérida Data: Juny 2017 Pròleg Aquest projecte s’ha desenvolupat per donar solució a un problema de l’ordre del dia d’una empresa de transports. Es basa en el disseny i implementació d’un model matemàtic que ha de permetre optimitzar i automatitzar el sistema de planificació de viatges de l’empresa. Per tal de poder implementar l’algoritme s’han hagut de crear diversos mòduls que extreuen les dades del sistema ERP, les tracten, les envien a un servei web (REST) i aquest retorna un emparellament òptim entre els vehicles de l’empresa i les ordres dels clients. La primera fase del projecte, la teòrica, ha estat llarga en comparació amb les altres. En aquesta fase s’ha estudiat l’estat de l’art en la matèria i s’han repassat molts dels models més importants relacionats amb el transport per comprendre’n les seves particularitats. Amb els conceptes ben estudiats, s’ha procedit a desenvolupar un nou model matemàtic adaptat a les necessitats de la lògica de negoci de l’empresa de transports objecte d’aquest treball. Posteriorment s’ha passat a la fase d’implementació dels mòduls. En aquesta fase m’he trobat amb diferents limitacions tecnològiques degudes a l’antiguitat de l’ERP i a l’ús del sistema operatiu Windows. També han sorgit diferents problemes de rendiment que m’han fet redissenyar l’extracció de dades de l’ERP, el càlcul de distàncies i el mòdul d’optimització.
    [Show full text]
  • OPTIMAL CONTROL of NONHOLONOMIC MECHANICAL SYSTEMS By
    OPTIMAL CONTROL OF NONHOLONOMIC MECHANICAL SYSTEMS by Stuart Marcus Rogers A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Department of Mathematical and Statistical Sciences University of Alberta ⃝c Stuart Marcus Rogers, 2017 Abstract This thesis investigates the optimal control of two nonholonomic mechanical systems, Suslov's problem and the rolling ball. Suslov's problem is a nonholonomic variation of the classical rotating free rigid body problem, in which the body angular velocity Ω(t) must always be orthogonal to a prescribed, time-varying body frame vector ξ(t), i.e. hΩ(t); ξ(t)i = 0. The motion of the rigid body in Suslov's problem is actuated via ξ(t), while the motion of the rolling ball is actuated via internal point masses that move along rails fixed within the ball. First, by applying Lagrange-d'Alembert's principle with Euler-Poincar´e'smethod, the uncontrolled equations of motion are derived. Then, by applying Pontryagin's minimum principle, the controlled equations of motion are derived, a solution of which obeys the uncontrolled equations of motion, satisfies prescribed initial and final conditions, and minimizes a prescribed performance index. Finally, the controlled equations of motion are solved numerically by a continuation method, starting from an initial solution obtained analytically (in the case of Suslov's problem) or via a direct method (in the case of the rolling ball). ii Preface This thesis contains material that has appeared in a pair of papers, one on Suslov's problem and the other on rolling ball robots, co-authored with my supervisor, Vakhtang Putkaradze.
    [Show full text]
  • Clean Sky – Awacs Final Report
    Clean Sky Joint Undertaking AWACs – Adaptation of WORHP to Avionics Constraints Clean Sky – AWACs Final Report Table of Contents 1 Executive Summary ......................................................................................................................... 2 2 Summary Description of Project Context and Objectives ............................................................... 3 3 Description of the main S&T results/foregrounds .......................................................................... 5 3.1 Analysis of Optimisation Environment .................................................................................... 5 3.1.1 Problem sparsity .............................................................................................................. 6 3.1.2 Certification aspects ........................................................................................................ 6 3.2 New solver interfaces .............................................................................................................. 6 3.3 Conservative iteration mode ................................................................................................... 6 3.4 Robustness to erroneous inputs ............................................................................................. 7 3.5 Direct multiple shooting .......................................................................................................... 7 3.6 Grid refinement ......................................................................................................................
    [Show full text]
  • Optimal Control for Constrained Hybrid System Computational Libraries and Applications
    FINAL REPORT: FEUP2013.LTPAIVA.01 Optimal Control for Constrained Hybrid System Computational Libraries and Applications L.T. Paiva 1 1 Department of Electrical and Computer Engineering University of Porto, Faculty of Engineering - Rua Dr. Roberto Frias, s/n, 4200–465 Porto, Portugal ) [email protected] % 22 508 1450 February 28, 2013 Abstract This final report briefly describes the work carried out under the project PTDC/EEA- CRO/116014/2009 – “Optimal Control for Constrained Hybrid System”. The aim was to build and maintain a software platform to test an illustrate the use of the conceptual tools developed during the overall project: not only in academic examples but also in case studies in the areas of robotics, medicine and exploitation of renewable resources. The grand holder developed a critical hands–on knowledge of the available optimal control solvers as well as package based on non–linear programming solvers. 1 2 Contents 1 OC & NLP Interfaces 7 1.1 Introduction . .7 1.2 AMPL . .7 1.3 ACADO – Automatic Control And Dynamic Optimization . .8 1.4 BOCOP – The optimal control solver . .9 1.5 DIDO – Automatic Control And Dynamic Optimization . 10 1.6 ICLOCS – Imperial College London Optimal Control Software . 12 1.7 TACO – Toolkit for AMPL Control Optimization . 12 1.8 Pseudospectral Methods in Optimal Control . 13 2 NLP Solvers 17 2.1 Introduction . 17 2.2 IPOPT – Interior Point OPTimizer . 17 2.3 KNITRO . 25 2.4 WORHP – WORHP Optimises Really Huge Problems . 31 2.5 Other Commercial Packages . 33 3 Project webpage 35 4 Optimal Control Toolbox 37 5 Applications 39 5.1 Car–Like .
    [Show full text]
  • Using SCIP to Solve Your Favorite Integer Optimization Problem
    Using SCIP to Solve Your Favorite Integer Optimization Problem Gregor Hendel, [email protected] Hiroshima University October 5, 2018 Gregor Hendel, [email protected] – Using SCIP 1/76 What is SCIP? SCIP (Solving Constraint Integer Programs) … • provides a full-scale MIP and MINLP solver, • is constraint based, • incorporates • MIP features (cutting planes, LP relaxation), and • MINLP features (spatial branch-and-bound, OBBT) • CP features (domain propagation), • SAT-solving features (conflict analysis, restarts), • is a branch-cut-and-price framework, • has a modular structure via plugins, • is free for academic purposes, • and is available in source-code under http://scip.zib.de ! Gregor Hendel, [email protected] – Using SCIP 2/76 Meet the SCIP Team 31 active developers • 7 running Bachelor and Master projects • 16 running PhD projects • 8 postdocs and professors 4 development centers in Germany • ZIB: SCIP, SoPlex, UG, ZIMPL • TU Darmstadt: SCIP and SCIP-SDP • FAU Erlangen-Nürnberg: SCIP • RWTH Aachen: GCG Many international contributors and users • more than 10 000 downloads per year from 100+ countries Careers • 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV • 7 former developers are now building commercial optimization sotware at CPLEX, FICO Xpress, Gurobi, MOSEK, and GAMS Gregor Hendel, [email protected] – Using SCIP 3/76 Outline SCIP – Solving Constraint Integer Programs http://scip.zib.de Gregor Hendel, [email protected] – Using SCIP 4/76 Outline SCIP – Solving Constraint Integer Programs http://scip.zib.de Gregor Hendel, [email protected] – Using SCIP 5/76 ZIMPL • model and generate LPs, MIPs, and MINLPs SCIP • MIP, MINLP and CIP solver, branch-cut-and-price framework SoPlex • revised primal and dual simplex algorithm GCG • generic branch-cut-and-price solver UG • framework for parallelization of MIP and MINLP solvers SCIP Optimization Suite • Toolbox for generating and solving constraint integer programs, in particular Mixed Integer (Non-)Linear Programs.
    [Show full text]
  • On Scaled Stopping Criteria for a Safeguarded Augmented Lagrangian Method with Theoretical Guarantees
    Noname manuscript No. (will be inserted by the editor) On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees R. Andreani · G. Haeser · M. L. Schuverdt · L. D. Secchin · P. J. S. Silva Received: date / Accepted: date Abstract This paper discusses the use of a stopping criterion based on the scaling of the Karush-Kuhn-Tucker (KKT) conditions by the norm of the ap- proximate Lagrange multiplier in the ALGENCAN implementation of a safe- guarded augmented Lagrangian method. Such stopping criterion is already used in several nonlinear programming solvers, but it has not yet been con- sidered in ALGENCAN due to its firm commitment with finding a true KKT point even when the multiplier set is not bounded. In contrast with this view, we present a strong global convergence theory under the quasi-normality con- straint qualification, that allows for unbounded multiplier sets, accompanied by an extensive numerical test which shows that the scaled stopping criterion is more efficient in detecting convergence sooner. In particular, by scaling, ALGENCAN is able to recover a solution in some difficult problems where the original implementation fails, while the behavior of the algorithm in the easier instances is maintained. Furthermore, we show that, in some cases, a R. Andreani · P. J. S. Silva Department of Applied Mathematics, University of Campinas, Rua S´ergio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil. E-mail: [email protected], [email protected] G. Haeser Department of Applied Mathematics, University of S~aoPaulo, Rua do Mat~ao, 1010, Cidade Universit´aria,05508-090, S~aoPaulo, SP, Brazil.
    [Show full text]
  • Technical Program
    TECHNICAL PROGRAM Wednesday, 9:00-10:30 Wednesday, 11:00-12:40 WA-01 WB-01 Wednesday, 9:00-10:30 - 1a. Europe a Wednesday, 11:00-12:40 - 1a. Europe a Opening session - Plenary I. Ljubic Planning and Operating Metropolitan Passenger Transport Networks Stream: Plenaries and Semi-Plenaries Invited session Stream: Traffic, Mobility and Passenger Transportation Chair: Bernard Fortz Invited session Chair: Oded Cats 1 - From Game Theory to Graph Theory: A Bilevel Jour- ney 1 - Frequency and Vehicle Capacity Determination using Ivana Ljubic a Dynamic Transit Assignment Model In bilevel optimization there are two decision makers, commonly de- Oded Cats noted as the leader and the follower, and decisions are made in a hier- The determination of frequencies and vehicle capacities is a crucial archical manner: the leader makes the first move, and then the follower tactical decision when planning public transport services. All meth- reacts optimally to the leader’s action. It is assumed that the leader can ods developed so far use static assignment approaches which assume anticipate the decisions of the follower, hence the leader optimization average and perfectly reliable supply conditions. The objective of this task is a nested optimization problem that takes into consideration the study is to determine frequency and vehicle capacity at the network- follower’s response. level while accounting for the impact of service variations on users In this talk we focus on new branch-and-cut (B&C) algorithms for and operator costs. To this end, we propose a simulation-based op- dealing with mixed-integer bilevel linear programs (MIBLPs).
    [Show full text]
  • Datascientist Manual
    DATASCIENTIST MANUAL . 2 « Approcherait le comportement de la réalité, celui qui aimerait s’epanouir dans l’holistique, l’intégratif et le multiniveaux, l’énactif, l’incarné et le situé, le probabiliste et le non linéaire, pris à la fois dans l’empirique, le théorique, le logique et le philosophique. » 4 (* = not yet mastered) THEORY OF La théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés PROBABILITY par le hasard et l'incertitude. Elle consistue le socle des statistiques appliqué. Rubriques ↓ Back to top ↑_ Notations Formalisme de Kolmogorov Opération sur les ensembles Probabilités conditionnelles Espérences conditionnelles Densités & Fonctions de répartition Variables aleatoires Vecteurs aleatoires Lois de probabilités Convergences et théorèmes limites Divergences et dissimilarités entre les distributions Théorie générale de la mesure & Intégration ------------------------------------------------------------------------------------------------------------------------------------------ 6 Notations [pdf*] Formalisme de Kolmogorov Phé nomé né alé atoiré Expé riéncé alé atoiré L’univérs Ω Ré alisation éléméntairé (ω ∈ Ω) Evé némént Variablé aléatoiré → fonction dé l’univér Ω Opération sur les ensembles : Union / Intersection / Complémentaire …. Loi dé Augustus dé Morgan ? Independance & Probabilités conditionnelles (opération sur des ensembles) Espérences conditionnelles 8 Variables aleatoires (discret vs reel) … Vecteurs aleatoires : Multiplét dé variablés alé atoiré (discret vs reel) … Loi marginalés Loi
    [Show full text]
  • ICLOCS2: Solve Your Optimal Control Problems with Less Pain
    ICLOCS2: Solve your optimal control problems with less pain Yuanbo Nie ∗ Omar Faqir ∗∗ Eric C. Kerrigan ∗;∗∗ ∗ Department of Aeronautics, Imperial College London, UK (e-mail: [email protected]). ∗∗ Department of Electrical and Electronic Engineering, Imperial College London, UK (e-mails: [email protected], [email protected]) Abstract: ICLOCS2 is the new version of ICLOCS (pronounced `eye-clocks') and is a comprehensive software suite for solving nonlinear optimal control problems (OCPs) in Matlab and Simulink. The toolbox builds on a wide selection of numerical methods and automated tools to assist the design and implementation of OCPs. The aim is to reduce the requirements on the experience of the user, by providing a first port of call to solve a variety of OCPs. ICLOCS2 may not be the fastest solver for some problems, but it might work where other solvers fail. Keywords: Optimal control, trajectory optimization, direct transcription, orthogonal collocation, nonlinear model predictive control EXTENDED ABSTRACT Overview To enable the level of flexibility required, ICLOCS2 is Development Background equipped with state-of-the-art transcription methods and discretization methods (h/p/hp-adaptive) to transform the OCPs into large NLP problems with sparsity patterns Many existing OCP software packages are designed for off- that can be exploited. The users can then choose their line trajectory optimization, thus they pursue the most favourite NLP solver for robustly solving ill=conditioned accurate result at a high computational cost. Instead, problems as well as benefiting from faster warm starts. ICLOCS2 is designed to enable flexible trade-offs be- ICLOCS2 also allows various ways of supplying derivative tween accuracy and computational effort, aiming at bridg- information via analytical and numerical means.
    [Show full text]
  • A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm
    Journal name manuscript No. (will be inserted by the editor) A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm Renke Kuhlmann · Christof B¨uskens Received: date / Accepted: date Abstract Interior-point methods have been shown to be very efficient for large-scale nonlinear programming. The combination with penalty methods increases their robustness due to the regularization of the constraints caused by the penalty term. In this paper a primal-dual penalty-interior-point algo- rithm is proposed, that is based on an augmented Lagrangian approach with an `2-exact penalty function. Global convergence is maintained by a combina- tion of a merit function and a filter approach. Unlike other filter methods no separate feasibility restoration phase is required. The algorithm has been im- plemented within the solver WORHP to study different penalty and line search options and to compare its numerical performance to two other state-of-the- art nonlinear programming algorithms, the interior-point method IPOPT and the sequential quadratic programming method of WORHP. Keywords Nonlinear Programming · Constrained Optimization · Augmented Lagrangian · Penalty-Interior-Point Algorithm · Primal-Dual Method Mathematics Subject Classification (2000) 49M05 · 49M15 · 49M29 · 49M37 · 90C06 · 90C26 · 90C30 · 90C51 Renke Kuhlmann Optimization and Optimal Control, Center for Industrial Mathematics (ZeTeM), Biblio- thekstr. 5, 28359 Bremen, Germany E-mail: [email protected] Christof B¨uskens E-mail: [email protected] 2 Renke Kuhlmann, Christof B¨uskens 1 Introduction In this paper we consider the nonlinear optimization problem min f(x) n x2R s.t. c(x) = 0 (1.1) x ≥ 0 with twice continuously differentiable functions f : Rn ! R and c : Rn ! Rm, but the methods can easily be extended to the general case with l ≤ x ≤ g and c(x) ≤ 0 (cf.
    [Show full text]
  • OSE4 Workshop, March 27Th
    OSE4 4th European Optimisation in Space Engineering Workshop March 27th - 30th 2017 Zentrum für Technomathematik Moin!1 The 4th workshop on Optimisation in Space Engineering (OSE) is organised by the European Space Agency and the University of Bremen. The goal of the OSE initiative is to provide a forum for space companies, universities, research institutes and organisations to discuss recent advances in space technology and further research in the area of optimisation in space engineering. Scientific Program The OSE4 consists of: • On Monday, March 27th, tutorials will be given for the ESA NLP solver WORHP and the optimal control library TransWORHP. This day addresses especially to PhD students and active researchers. However, anyone is invited to participate. • From Tuesday to Thursday, March 28th to March 30th, the workshop including presen- tations of the participants and round table discussion take place. Each presentation takes 30 minutes, including discussion. Venue The venue for the OSE4 is the building MZH on the campus of the University of Bremen. • Registration is in MZH 1450 (first floor) • The tutorials on Monday as well as the workshop from Tuesday to Thursday will be held in the lecture room MZH 1470. • Coffee will be served directly in front of these rooms. • Lunch can be taken at the Mensa of the university, or in some nearby restaurants. • Free WiFi is available at the university for eduroam users. We organize WiFi access also for non university participants. Social Events • The mathematical city tour starts on Monday at 17:30 on the Marktplatz (market square) in the city center near the statue of Roland in front of the Rathaus (town hall).
    [Show full text]
  • The Non-Linear Parallel Optimization Tool (Nlparopt): a Software Overview and Efficiency Analysis
    © 2015 Laura Richardson THE NON-LINEAR PARALLEL OPTIMIZATION TOOL (NLPAROPT): A SOFTWARE OVERVIEW AND EFFICIENCY ANALYSIS BY LAURA RICHARDSON THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Adviser: Professor Victoria Coverstone ABSTRACT Modern spacecraft trajectory mission planning regularly involves some component of numerical optimization to provide a significant improvement in a solution, and in some instances is the only manner for finding an acceptable solution to a problem. One of the most useful constrained optimization formulations is the Non-Linear Programming (NLP) problem. NLP problem solvers have been used to analyze complex optimization problems by space mission designers as well as a wide variety of other fields such as economics and city planning. There are several state-of-the-art software packages that are currently used to solve NLPs in the aerospace industry, such as SNPOT, IPOPT, and WORHP. Most of the critical space trajectory design software tools in use today, such as OTIS, EMTG, and MALTO, are dependent on a drop-in NLP solver (typically SNOPT or IPOPT); this dependence is not unwarranted, as the existing solvers are especially adept at solving very large-scale, preferably sparse, non-linear programming problems. However, neither SNOPT nor any other NLP solver available exploits parallel programming techniques. Most trajectory design tools have already started to implement parallel techniques, and it is now the serial-execution nature of the existing packages that represents the largest bottleneck. A high-fidelity trajectory optimization NLP can take days, weeks, or even months before converging to a solution, resulting in a prohibitively expensive mission planning design tool, both in terms of time and cost.
    [Show full text]