MINLP Solver Technology

Total Page:16

File Type:pdf, Size:1020Kb

MINLP Solver Technology MINLP Solver Technology Stefan Vigerske October 24, 2017 Outline Introduction Fundamental Methods Recap: Mixed-Integer Linear Programming Convex MINLP Nonconvex MINLP Bound Tightening Acceleration { Selected Topics Optimization-based bound tightening Synergies with MIP and NLP Convexity Convexification Primal Heuristics 2/42 Introduction Mixed-Integer Nonlinear Programs (MINLPs) min cTx s.t. gk (x) ≤ 0 8k 2 [m] xi 2 Z 8i 2 I ⊆ [n] xi 2 [`i ; ui ] 8i 2 [n] 1 The functions gk 2 C ([`; u]; R) can be 0 100 200 10 200 300 0 200 5 or 0 −200 −1 1 −1 1 convex nonconvex 3/42 General MINLP = Convex MINLP plus Global Optimization: • Main difficulty: Nonconvex nonlinearities • Main challenges: • Convexification of nonconvex nonlinearities • Reduction of convexification gap (spatial branch-and-bound) • Numerical robustness • Diversity of problem class: MINLP is \The mother of all determinstic optimization problems" (Jon Lee, 2008) Solving MINLPs Convex MINLP: • Main difficulty: Integrality restrictions on variables • Main challenge: Integrating techniques for MIP (branch-and-bound) and NLP (SQP, interior point, Kelley' cutting plane, . ) 4/42 Solving MINLPs Convex MINLP: • Main difficulty: Integrality restrictions on variables • Main challenge: Integrating techniques for MIP (branch-and-bound) and NLP (SQP, interior point, Kelley' cutting plane, . ) General MINLP = Convex MINLP plus Global Optimization: • Main difficulty: Nonconvex nonlinearities • Main challenges: • Convexification of nonconvex nonlinearities • Reduction of convexification gap (spatial branch-and-bound) • Numerical robustness • Diversity of problem class: MINLP is \The mother of all determinstic optimization problems" (Jon Lee, 2008) 4/42 Solvers for Convex MINLP solver citation OA NLP-BB LP/NLP AlphaECP Westerlund and Lundquist [2005], Las- ECP tusilta [2011] AOA Roelofs and Bisschop [2017] (AIMMS) X Bonmin Bonami, Biegler, Conn, Cornu´ejols, XXX Grossmann, Laird, Lee, Lodi, Margot, Sawaya, and W¨achter[2008] DICOPT Kocis and Grossmann [1989] X FilMINT Abhishek, Leyffer, and Linderoth [2010] X Knitro Byrd, Nocedal, and Waltz [2006] X MINLPBB Leyffer [1998] X MINOTAUR Mahajan, Leyffer, and Munson [2009] (X) SBB Bussieck and Drud [2001] X XPRESS-SLP FICO [2008] ECP X . • can often work as heuristic for nonconvex MINLP 5/42 Couenne 2008 Belotti, Lee, Liberti, Margot, and W¨achter[2009] LindoAPI 2009 Lin and Schrage [2009] SCIP 2012 Achterberg [2009], Vigerske and Gleixner [2017], Maher, Fischer, Gally, Gamrath, Gleixner, Gottwald, Hendel, Koch, L¨ubbecke, Miltenberger, M¨uller,Pfetsch, Puchert, Rehfeldt, Schenker, Schwarz, Serrano, Shi- nano, Weninger, Witt, and Witzig [2017] ANTIGONE 2013 Misener and Floudas [2014] Main restriction: algebraic structure of problem must be available (see later) Interval-Arithmetic based: avoid round-off errors, typically NLP only, e.g., COCONUT [Neumaier, 2001], Ibex, . Stochastic search: LocalSolver, OQNLP [Ugray, Lasdon, Plummer, Glover, Kelly, and Mart´ı,2007],... Solvers for General MINLP Deterministic: solver 1st ver. citation αBB 1995 Adjiman, Androulakis, and Floudas [1998a] BARON 1996 Sahinidis [1996], Tawarmalani and Sahinidis [2005] in gPROMS 1996 Smith and Pantelides [1997] 6/42 Interval-Arithmetic based: avoid round-off errors, typically NLP only, e.g., COCONUT [Neumaier, 2001], Ibex, . Stochastic search: LocalSolver, OQNLP [Ugray, Lasdon, Plummer, Glover, Kelly, and Mart´ı,2007],... Solvers for General MINLP Deterministic: solver 1st ver. citation αBB 1995 Adjiman, Androulakis, and Floudas [1998a] BARON 1996 Sahinidis [1996], Tawarmalani and Sahinidis [2005] in gPROMS 1996 Smith and Pantelides [1997] Couenne 2008 Belotti, Lee, Liberti, Margot, and W¨achter[2009] LindoAPI 2009 Lin and Schrage [2009] SCIP 2012 Achterberg [2009], Vigerske and Gleixner [2017], Maher, Fischer, Gally, Gamrath, Gleixner, Gottwald, Hendel, Koch, L¨ubbecke, Miltenberger, M¨uller,Pfetsch, Puchert, Rehfeldt, Schenker, Schwarz, Serrano, Shi- nano, Weninger, Witt, and Witzig [2017] ANTIGONE 2013 Misener and Floudas [2014] Main restriction: algebraic structure of problem must be available (see later) 6/42 Solvers for General MINLP Deterministic: solver 1st ver. citation αBB 1995 Adjiman, Androulakis, and Floudas [1998a] BARON 1996 Sahinidis [1996], Tawarmalani and Sahinidis [2005] in gPROMS 1996 Smith and Pantelides [1997] Couenne 2008 Belotti, Lee, Liberti, Margot, and W¨achter[2009] LindoAPI 2009 Lin and Schrage [2009] SCIP 2012 Achterberg [2009], Vigerske and Gleixner [2017], Maher, Fischer, Gally, Gamrath, Gleixner, Gottwald, Hendel, Koch, L¨ubbecke, Miltenberger, M¨uller,Pfetsch, Puchert, Rehfeldt, Schenker, Schwarz, Serrano, Shi- nano, Weninger, Witt, and Witzig [2017] ANTIGONE 2013 Misener and Floudas [2014] Main restriction: algebraic structure of problem must be available (see later) Interval-Arithmetic based: avoid round-off errors, typically NLP only, e.g., COCONUT [Neumaier, 2001], Ibex, . Stochastic search: LocalSolver, OQNLP [Ugray, Lasdon, Plummer, Glover, Kelly, and Mart´ı,2007],... 6/42 Global MINLP Solver Progress: # Solved Instances and Solving Time 100 virt.best ANTIGONE BARON COUENNE LINDO API SCIP 80 60 40 % solved instances 20 0 800 600 Overall speedup (virtual best solver): 15.12 400 200 0 mean solving time 2011 2012 2013 2014 2015 2016 2017 date ANTIGONE BARON COUENNE LINDO API SCIP • 71 \non-trivial solvable" instances from MINLPLib 08/2011 { 9.3.1 0.3 6.1.1.588 { 11/2012 { 11.5.2 0.4 7.0.1.497 2.1.2 • time limit: 1800 seconds, gap limit: 1e-6 07/2013 1.1 12.3.3 0.4 8.0.1283.385 3.0 09/2014 1.1 14.0.3 0.4 8.0.1694.550 3.1 11/2015 1.1 15.9.22 0.5 9.0.2120.225 3.2 09/2016 1.1 16.8.24 0.5 9.0.2217.293 3.2 08/2017 1.1 17.8.7 0.5 11.0.3742.269 4.0 7/42 Fundamental Methods Fundamental Methods Recap: Mixed-Integer Linear Programming MIP Branch & Cut For mixed-integer linear programs (MIP), that is, min cTx; s.t. Ax ≤ b; xi 2 Z; i 2 I; the dominant method of Branch & Cut combines 3 2 1 & 1 2 3 4 cutting planes branch-and-bound [Gomory, 1958] [Land and Doig, 1960] 8/42 Fundamental Methods Convex MINLP • However: Robustness and Warmstarting-capability of NLP solvers not as good as for LP solvers (simplex alg.) NLP-based Branch & Bound (NLP-BB) ) MIP branch-and-bound MINLP branch-and-bound [Land and Doig, 1960] [Leyffer, 1993] Bounding: Solve convex NLP relaxation obtained by dropping integrality requirements. Branching: Subdivide problem along variables xi , i 2 I, that take fractional value in NLP solution. 9/42 NLP-based Branch & Bound (NLP-BB) ) MIP branch-and-bound MINLP branch-and-bound [Land and Doig, 1960] [Leyffer, 1993] Bounding: Solve convex NLP relaxation obtained by dropping integrality requirements. Branching: Subdivide problem along variables xi , i 2 I, that take fractional value in NLP solution. • However: Robustness and Warmstarting-capability of NLP solvers not as good as for LP solvers (simplex alg.) 9/42 Reduce Convex MINLP to MIP Assume all functions gk (·) of MINLP are convex on [`; u]. Duran and Grossmann [1986]: MINLP and Example: the following MIP have the same optimal min x + y solutions s.t. (x; y) 2 ellipsoid min cTx; x 2 f0; 1; 2; 3g T y 2 [0; 3] s.t. gk (^x) + rgk (^x) (x − x^) ≤ 0; k 2 [m]; x^ 2 R; xi 2 Z; i 2 I; x 2 [`; u]; wherex ^ 2 R are the solutions of the NLP subproblems obtained from MINLP by applying any possible fixing for xI , i.e., T min c x s.t. g(x) ≤ 0; x 2 [`; u]; xI fixed: 10/42 Reduce Convex MINLP to MIP Assume all functions gk (·) of MINLP are convex on [`; u]. Duran and Grossmann [1986]: MINLP and Example: the following MIP have the same optimal min x + y solutions s.t. (x; y) 2 ellipsoid min cTx; x 2 f0; 1; 2; 3g T y 2 [0; 3] s.t. gk (^x) + rgk (^x) (x − x^) ≤ 0; k 2 [m]; x^ 2 R; xi 2 Z; i 2 I; x 2 [`; u]; wherex ^ 2 R are the solutions of the NLP subproblems obtained from MINLP by applying any possible fixing for xI , i.e., T min c x s.t. g(x) ≤ 0; x 2 [`; u]; xI fixed: 10/42 Reduce Convex MINLP to MIP Assume all functions gk (·) of MINLP are convex on [`; u]. Duran and Grossmann [1986]: MINLP and Example: the following MIP have the same optimal min x + y solutions s.t. (x; y) 2 ellipsoid min cTx; x 2 f0; 1; 2; 3g T y 2 [0; 3] s.t. gk (^x) + rgk (^x) (x − x^) ≤ 0; k 2 [m]; x^ 2 R; xi 2 Z; i 2 I; x 2 [`; u]; wherex ^ 2 R are the solutions of the NLP subproblems obtained from MINLP by applying any possible fixing for xI , i.e., T min c x s.t. g(x) ≤ 0; x 2 [`; u]; xI fixed: 10/42 Reduce Convex MINLP to MIP Assume all functions gk (·) of MINLP are convex on [`; u]. Duran and Grossmann [1986]: MINLP and Example: the following MIP have the same optimal min x + y solutions s.t. (x; y) 2 ellipsoid min cTx; x 2 f0; 1; 2; 3g T y 2 [0; 3] s.t. gk (^x) + rgk (^x) (x − x^) ≤ 0; k 2 [m]; x^ 2 R; xi 2 Z; i 2 I; x 2 [`; u]; wherex ^ 2 R are the solutions of the NLP subproblems obtained from MINLP by applying any possible fixing for xI , i.e., T min c x s.t. g(x) ≤ 0; x 2 [`; u]; xI fixed: 10/42 NLP MIP NLP MIP MIP Outer Approximation Method (OA), ECP, EHP Convex MINLP MIP min cTx ≡ min cTx; T s.t. gk (x) ≤ 0 8k 2 [m] s.t. gk (^x) + rgk (^x) (x − x^) ≤ 0; xi 2 Z 8i 2 I ⊆ [n] 8k 2 [m]; x^ 2 R; xi 2 [`i ; ui ] 8i 2 [n] xi 2 Z; 8i 2 I; xi 2 [`i ; ui ]; 8i 2 [n] Outer Approximation (OA) algorithm [Duran and Grossmann, 1986]: • Start with R := ;.
Recommended publications
  • An Algorithm Based on Semidefinite Programming for Finding Minimax
    Takustr. 7 Zuse Institute Berlin 14195 Berlin Germany BELMIRO P.M. DUARTE,GUILLAUME SAGNOL,WENG KEE WONG An algorithm based on Semidefinite Programming for finding minimax optimal designs ZIB Report 18-01 (December 2017) Zuse Institute Berlin Takustr. 7 14195 Berlin Germany Telephone: +49 30-84185-0 Telefax: +49 30-84185-125 E-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 An algorithm based on Semidefinite Programming for finding minimax optimal designs Belmiro P.M. Duarte a,b, Guillaume Sagnolc, Weng Kee Wongd aPolytechnic Institute of Coimbra, ISEC, Department of Chemical and Biological Engineering, Portugal. bCIEPQPF, Department of Chemical Engineering, University of Coimbra, Portugal. cTechnische Universität Berlin, Institut für Mathematik, Germany. dDepartment of Biostatistics, Fielding School of Public Health, UCLA, U.S.A. Abstract An algorithm based on a delayed constraint generation method for solving semi- infinite programs for constructing minimax optimal designs for nonlinear models is proposed. The outer optimization level of the minimax optimization problem is solved using a semidefinite programming based approach that requires the de- sign space be discretized. A nonlinear programming solver is then used to solve the inner program to determine the combination of the parameters that yields the worst-case value of the design criterion. The proposed algorithm is applied to find minimax optimal designs for the logistic model, the flexible 4-parameter Hill homoscedastic model and the general nth order consecutive reaction model, and shows that it (i) produces designs that compare well with minimax D−optimal de- signs obtained from semi-infinite programming method in the literature; (ii) can be applied to semidefinite representable optimality criteria, that include the com- mon A−; E−; G−; I− and D-optimality criteria; (iii) can tackle design problems with arbitrary linear constraints on the weights; and (iv) is fast and relatively easy to use.
    [Show full text]
  • Xpress Nonlinear Manual This Material Is the Confidential, Proprietary, and Unpublished Property of Fair Isaac Corporation
    R FICO Xpress Optimization Last update 01 May, 2018 version 33.01 FICO R Xpress Nonlinear Manual This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation. Receipt or possession of this material does not convey rights to divulge, reproduce, use, or allow others to use it without the specific written authorization of Fair Isaac Corporation and use must conform strictly to the license agreement. The information in this document is subject to change without notice. If you find any problems in this documentation, please report them to us in writing. Neither Fair Isaac Corporation nor its affiliates warrant that this documentation is error-free, nor are there any other warranties with respect to the documentation except as may be provided in the license agreement. ©1983–2018 Fair Isaac Corporation. All rights reserved. Permission to use this software and its documentation is governed by the software license agreement between the licensee and Fair Isaac Corporation (or its affiliate). Portions of the program may contain copyright of various authors and may be licensed under certain third-party licenses identified in the software, documentation, or both. In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect, special, incidental, or consequential damages, including lost profits, arising out of the use of this software and its documentation, even if Fair Isaac Corporation or its affiliates have been advised of the possibility of such damage. The rights and allocation of risk between the licensee and Fair Isaac Corporation (or its affiliates) are governed by the respective identified licenses in the software, documentation, or both.
    [Show full text]
  • Solving Mixed Integer Linear and Nonlinear Problems Using the SCIP Optimization Suite
    Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany TIMO BERTHOLD GERALD GAMRATH AMBROS M. GLEIXNER STEFAN HEINZ THORSTEN KOCH YUJI SHINANO Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin. ZIB-Report 12-27 (July 2012) Herausgegeben vom Konrad-Zuse-Zentrum f¨urInformationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Telefon: 030-84185-0 Telefax: 030-84185-125 e-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite∗ Timo Berthold Gerald Gamrath Ambros M. Gleixner Stefan Heinz Thorsten Koch Yuji Shinano Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, fberthold,gamrath,gleixner,heinz,koch,[email protected] July 31, 2012 Abstract This paper introduces the SCIP Optimization Suite and discusses the ca- pabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming frame- work SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, give an overview of available interfaces, and outline plans for future development. ∗A Japanese translation of this paper will be published in the Proceedings of the 24th RAMP Symposium held at Tohoku University, Miyagi, Japan, 27{28 September 2012, see http://orsj.or.
    [Show full text]
  • Numericaloptimization
    Numerical Optimization Alberto Bemporad http://cse.lab.imtlucca.it/~bemporad/teaching/numopt Academic year 2020-2021 Course objectives Solve complex decision problems by using numerical optimization Application domains: • Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...) • Engineering (engineering design, process optimization, embedded control, ...) • Artificial intelligence (machine learning, data science, autonomous driving, ...) • Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...) ©2021 A. Bemporad - Numerical Optimization 2/102 Course objectives What this course is about: • How to formulate a decision problem as a numerical optimization problem? (modeling) • Which numerical algorithm is most appropriate to solve the problem? (algorithms) • What’s the theory behind the algorithm? (theory) ©2021 A. Bemporad - Numerical Optimization 3/102 Course contents • Optimization modeling – Linear models – Convex models • Optimization theory – Optimality conditions, sensitivity analysis – Duality • Optimization algorithms – Basics of numerical linear algebra – Convex programming – Nonlinear programming ©2021 A. Bemporad - Numerical Optimization 4/102 References i ©2021 A. Bemporad - Numerical Optimization 5/102 Other references • Stephen Boyd’s “Convex Optimization” courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu • Lieven Vandenberghe’s courses at UCLA: http://www.seas.ucla.edu/~vandenbe/ • For more tutorials/books see http://plato.asu.edu/sub/tutorials.html ©2021 A. Bemporad - Numerical Optimization 6/102 Optimization modeling What is optimization? • Optimization = assign values to a set of decision variables so to optimize a certain objective function • Example: Which is the best velocity to minimize fuel consumption ? fuel [ℓ/km] velocity [km/h] 0 30 60 90 120 160 ©2021 A.
    [Show full text]
  • A Framework for Solving Mixed-Integer Semidefinite Programs
    A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS TRISTAN GALLY, MARC E. PFETSCH, AND STEFAN ULBRICH ABSTRACT. Mixed-integer semidefinite programs arise in many applications and several problem-specific solution approaches have been studied recently. In this paper, we investigate a generic branch-and-bound framework for solving such problems. We first show that strict duality of the semidefinite relaxations is inherited to the subproblems. Then solver components like dual fixing, branch- ing rules, and primal heuristics are presented. We show the applicability of an implementation of the proposed methods on three kinds of problems. The re- sults show the positive computational impact of the different solver components, depending on the semidefinite programming solver used. This demonstrates that practically relevant mixed-integer semidefinite programs can successfully be solved using a general purpose solver. 1. INTRODUCTION The solution of mixed-integer semidefinite programs (MISDPs), i.e., semidefinite programs (SDPs) with integrality constraints on some of the variables, received increasing attention in recent years. There are two main application areas of such problems: In the first area, they arise because they capture an essential structure of the problem. For instance, SDPs are important for expressing ellipsoidal uncer- tainty sets in robust optimization, see, e.g., Ben-Tal et al. [10]. In particular, SDPs appear in the context of optimizing robust truss structures, see, e.g., Ben-Tal and Nemirovski [11] as well as Bendsøe and Sigmund [12]. Allowing to change the topological structure then yields MISDPs; Section 9.1 will provide more details. Another application arises in the design of downlink beamforming, see, e.g., [56].
    [Show full text]
  • Abstracts Exact Separation of K-Projection Polytope Constraints Miguel F
    13th EUROPT Workshop on Advances in Continuous Optimization 8-10 July [email protected] http://www.maths.ed.ac.uk/hall/EUROPT15 Abstracts Exact Separation of k-Projection Polytope Constraints Miguel F. Anjos Cutting planes are often used as an efficient means to tighten continuous relaxations of mixed-integer optimization problems and are a vital component of branch-and-cut algorithms. A critical step of any cutting plane algorithm is to find valid inequalities, or cuts, that improve the current relaxation of the integer-constrained problem. The maximally violated valid inequality problem aims to find the most violated inequality from a given family of cuts. $k$-projection polytope constraints are a family of cuts that are based on an inner description of the cut polytope of size $k$ and are applied to $k\times k$ principal minors of a semidefinite optimization relaxation. We propose a bilevel second order cone optimization approach to solve the maximally violated $k$ projection polytope constraint problem. We reformulate the bilevel problem as a single-level mixed binary second order cone optimization problem that can be solved using off-the-shelf conic optimization software. Additionally we present two methods for improving the computational performance of our approach, namely lexicographical ordering and a reformulation with fewer binary variables. All of the proposed formulations are exact. Preliminary results show the computational time and number of branch-and-bound nodes required to solve small instances in the context of the max-cut problem. Global convergence of the Douglas{Rachford method for some nonconvex feasibility problems Francisco J.
    [Show full text]
  • Linear Underestimators for Bivariate Functions with a Fixed Convexity Behavior
    Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany MARTIN BALLERSTEINy AND DENNIS MICHAELSz AND STEFAN VIGERSKE Linear Underestimators for bivariate functions with a fixed convexity behavior This work is part of the Collaborative Research Centre “Integrated Chemical Processes in Liquid Multiphase Systems” (CRC/Transregio 63 “InPROMPT”) funded by the German Research Foundation (DFG). Main parts of this work has been finished while the second author was at the Institute for Operations Research at ETH Zurich and financially supported by DFG through CRC/Transregio 63. The first and second author thank the DFG for its financial support. Thethirdauthor was supported by the DFG Research Center MATHEON Mathematics for key technologies and the Research Campus MODAL Mathematical Optimization and Data Analysis Laboratories in Berlin. y Eidgenossische¨ Technische, Hochschule Zurich,¨ Institut fur¨ Operations Research, Ramistrasse¨ 101, 8092 Zurich (Switzerland) z Technische Universitat¨ Dortmund, Fakultat¨ fur¨ Mathematik, M/518, Vogelpothsweg 87, 44227 Dortmund (Germany) ZIB-Report 13-02 (revised) (February 2015) Herausgegeben vom Konrad-Zuse-Zentrum fur¨ Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Telefon: 030-84185-0 Telefax: 030-84185-125 e-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 Technical Report Linear Underestimators for bivariate functions with a fixed convexity behavior∗ A documentation for the SCIP constraint handler cons bivariate Martin Ballersteiny Dennis Michaelsz Stefan Vigerskex February 23, 2015 y Eidgenossische¨ Technische Hochschule Zurich¨ Institut fur¨ Operations Research Ramistrasse¨ 101, 8092 Zurich (Switzerland) z Technische Universitat¨ Dortmund Fakultat¨ fur¨ Mathematik, M/518 Vogelpothsweg 87, 44227 Dortmund (Germany) x Zuse Institute Berlin Takustr.
    [Show full text]
  • Specifying “Logical” Conditions in AMPL Optimization Models
    Specifying “Logical” Conditions in AMPL Optimization Models Robert Fourer AMPL Optimization www.ampl.com — 773-336-AMPL INFORMS Annual Meeting Phoenix, Arizona — 14-17 October 2012 Session SA15, Software Demonstrations Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 1 New and Forthcoming Developments in the AMPL Modeling Language and System Optimization modelers are often stymied by the complications of converting problem logic into algebraic constraints suitable for solvers. The AMPL modeling language thus allows various logical conditions to be described directly. Additionally a new interface to the ILOG CP solver handles logic in a natural way not requiring conventional transformations. Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 2 AMPL News Free AMPL book chapters AMPL for Courses Extended function library Extended support for “logical” conditions AMPL driver for CPLEX Opt Studio “Concert” C++ interface Support for ILOG CP constraint programming solver Support for “logical” constraints in CPLEX INFORMS Impact Prize to . Originators of AIMMS, AMPL, GAMS, LINDO, MPL Awards presented Sunday 8:30-9:45, Conv Ctr West 101 Doors close 8:45! Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 3 AMPL Book Chapters now free for download www.ampl.com/BOOK/download.html Bound copies remain available purchase from usual
    [Show full text]
  • A Survey of Numerical Methods for Nonlinear Semidefinite Programming
    Journal of the Operations Research Society of Japan ⃝c The Operations Research Society of Japan Vol. 58, No. 1, January 2015, pp. 24–60 A SURVEY OF NUMERICAL METHODS FOR NONLINEAR SEMIDEFINITE PROGRAMMING Hiroshi Yamashita Hiroshi Yabe NTT DATA Mathematical Systems Inc. Tokyo University of Science (Received September 16, 2014; Revised December 22, 2014) Abstract Nonlinear semidefinite programming (SDP) problems have received a lot of attentions because of large variety of applications. In this paper, we survey numerical methods for solving nonlinear SDP problems. Three kinds of typical numerical methods are described; augmented Lagrangian methods, sequential SDP methods and primal-dual interior point methods. We describe their typical algorithmic forms and discuss their global and local convergence properties which include rate of convergence. Keywords: Optimization, nonlinear semidefinite programming, augmented Lagrangian method, sequential SDP method, primal-dual interior point method 1. Introduction This paper is concerned with the nonlinear SDP problem: minimize f(x); x 2 Rn; (1.1) subject to g(x) = 0;X(x) º 0 where the functions f : Rn ! R, g : Rn ! Rm and X : Rn ! Sp are sufficiently smooth, p p and S denotes the set of pth-order real symmetric matrices. We also define S+ to denote the set of pth-order symmetric positive semidefinite matrices. By X(x) º 0 and X(x) Â 0, we mean that the matrix X(x) is positive semidefinite and positive definite, respectively. When f is a convex function, X is a concave function and g is affine, this problem is a convex optimization problem. Here the concavity of X(x) means that X(¸u + (1 ¡ ¸)v) ¡ ¸X(u) ¡ (1 ¡ ¸)X(v) º 0 holds for any u; v 2 Rn and any ¸ satisfying 0 · ¸ · 1.
    [Show full text]
  • Nonlinear Programming Techniques for Operative Planning in Large Drinking Water Networks Jens Burgschweiger1, Bernd Gnädig2 and Marc C
    14 The Open Applied Mathematics Journal, 2009, 3, 14-28 Open Access Nonlinear Programming Techniques for Operative Planning in Large Drinking Water Networks Jens Burgschweiger1, Bernd Gnädig2 and Marc C. Steinbach3,* 1Berliner Wasserbetriebe, Abt. NA-G/W, 10864 Berlin, Germany 2Düsseldorf, Germany 3Leibniz Universität Hannover, IfAM, Welfengarten 1, 30167 Hannover, Germany Abstract: Mathematical decision support for operative planning in water supply systems is highly desirable; it leads, however, to very difficult optimization problems. We propose a nonlinear programming approach that yields practically satisfactory operating schedules in acceptable computing time even for large networks. Based on a carefully designed model supporting gradient-based optimization algorithms, this approach employs a special initialization strategy for convergence acceleration, special minimum up and down time constraints together with pump aggregation to handle switching decisions, and several network reduction techniques for further speed-up. Results for selected application scenarios at Berliner Wasserbetriebe demonstrate the success of the approach. Keywords: Water supply, large-scale nonlinear programming, convergence acceleration, discrete decisions, network reduction. INTRODUCTION • experiments with various optimization models and methods [36, 37], Stringent requirements on cost effectiveness and environmental compatibility generate an increased demand • a first nonlinear programming (NLP) model for model-based decision support tools for designing and developed under GAMS [38], operating municipal water supply systems. This paper deals • numerical results for a substantially reduced with the minimum cost operation of drinking water network graph using (under GAMS) the SQP codes networks. Operative planning in water networks is difficult: CONOPT, SNOPT, and the augmented Lagrangian a sound mathematical model leads to nonlinear mixed- code MINOS.
    [Show full text]
  • AIMMS 4 Release Notes
    AIMMS 4 Release Notes Visit our web site www.aimms.com for regular updates Contents Contents 2 1 System Requirements 3 1.1 Hardware and operating system requirements ......... 3 1.2 ODBC and OLE DB database connectivity issues ........ 4 1.3 Viewing help files and documentation .............. 5 2 Installation Instructions 7 2.1 Installation instructions ....................... 7 2.2 Solver availability per platform ................... 8 2.3 Aimms licensing ............................ 9 2.3.1 Personal and machine nodelocks ............. 9 2.3.2 Installing an Aimms license ................ 12 2.3.3 Managing Aimms licenses ................. 14 2.3.4 Location of license files ................... 15 2.4 OpenSSL license ............................ 17 3 Project Conversion Instructions 20 3.1 Conversion of projects developed in Aimms 3.13 and before 20 3.2 Conversionof Aimms 3 projects to Aimms 4 ........... 22 3.2.1 Data management changes in Aimms 4.0 ........ 24 4 Getting Support 27 4.1 Reporting a problem ......................... 27 4.2 Known and reported issues ..................... 28 5 Release Notes 29 What’s new in Aimms 4 ........................ 29 Chapter 1 System Requirements This chapter discusses the system requirements necessary to run the various System components of your Win32 Aimms 4 system successfully. When a particular requirements requirement involves the installation of additional system software compo- nents, or an update thereof, the (optional) installation of such components will be part of the Aimms installation procedure. 1.1 Hardware and operating system requirements The following list provides the minimum hardware requirements to run your Hardware Aimms 4 system. requirements 1.6 Ghz or higher x86 or x64 processor XGA display adapter and monitor 1 Gb RAM 1 Gb free disk space Note, however, that performance depends on model size and type and can vary.
    [Show full text]
  • Spatially Explicit Techno-Economic Optimisation Modelling of UK Heating Futures
    Spatially explicit techno-economic optimisation modelling of UK heating futures A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy UCL Energy Institute University College London Date: 3rd April 2013 Candidate: Francis Li Supervisors: Robert Lowe, Mark Barrett I, Francis Li, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Francis Li, 3rd April 2013 2 For Eugenia 3 Abstract This thesis describes the use of a spatially explicit model to investigate the economies of scale associated with district heating technologies and consequently, their future technical potential when compared against individual building heating. Existing energy system models used for informing UK technology policy do not employ high enough spatial resolutions to map district heating potential at the individual settlement level. At the same time, the major precedent studies on UK district heating potential have not explored future scenarios out to 2050 and have a number of relevant low-carbon heat supply technologies absent from their analyses. This has resulted in cognitive dissonance in UK energy policy whereby district heating is often simultaneously acknowledged as both highly desirable in the near term but ultimately lacking any long term future. The Settlement Energy Demand System Optimiser (SEDSO) builds on key techno-economic studies from the last decade to further investigate this policy challenge. SEDSO can be distinguished from other models used for investigating UK heat decarbonisation by employing a unique combination of extensive spatial detail, technical modelling which captures key cost-related nonlinearities, and a least-cost constrained optimisation approach to technology selection.
    [Show full text]