<<

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

A completely resolved phylogenetic tree of British

Rainer Breitling

Faculty of Science and Engineering, University of Manchester, M1 7DN Manchester, UK; [email protected]

Abstract 1

The recent accumulation of increasingly densely sampled phylogenetic analyses of spiders 2 has greatly advanced our understanding of evolutionary relationships within this group. Here, 3 this diverse literature is reviewed and combined with earlier morphological analyses in an 4 attempt to reconstruct the first fully resolved phylogeny for the fauna of the British 5 Isles. The resulting tree highlights parts of the group where data are still too limited for 6 a confident assessment of relationships, proposes a number of deviations from previously 7 suggested phylogenetic hypotheses, and can serve as a framework for evolutionary and ecological 8 interpretations of the biology of British spiders, as well as a starting point for future studies on a 9 larger geographical scale. 10

Introduction 11

In recent years, the number of large-scale phylogenetic analyses of spiders has been rapidly 12 increasing. Molecular studies, as well as classical morphological work and integrative “whole- 13 evidence” analyses, are covering large parts of spider diversity with increasing density. The 14 last years have seen the publication of several comprehensive phylogenetic studies of the entire 15 order, based on continuously increasing coverage and ever-larger amounts of (mostly 16 molecular) data (e.g., Agnarsson et al. 2013; Bond et al. 2014; Dimitrov et al. 2017; Fernandez 17 et al. 2014, 2018; Garrison et al. 2016; Hedin et al. 2019; Kulkarni et al. 2020; Opatova et 18 al. 2020; Ramírez 2014; Ramírez et al. 2019, 2021; Shao & Li 2018; Wheeler et al. 2017). 19 Subsets of the order, from superfamilies to individual groups of genera, have also been the target 20 of various analyses (e.g., Crews et al. 2020; Godwin et al. 2018; Hedin et al. 2018; Kallal et 21 al. 2020; and numerous publications cited below for individual families). In addition, “DNA 22 barcode” projects have provided a plethora of molecular genetic data for a wide range of spider 23 species (e.g., Astrin et al. 2016; Blagoev et al. 2016), which can serve to complement earlier 24 morphological analyses in an attempt to resolve phylogenetic relationships, especially within 25 spider genera (Breitling 2019b,d). 26

It would be interesting to see how all these studies in combination can inform our understand- 27 ing of the evolutionary relationships within a local spider fauna. Most ecological and faunistic 28 work on spiders is done at a local level and would benefit from a clear and explicit evolutionary 29 framework, i.e., a phylogenetic tree of the local spider fauna. While such a tree would be pioneer- 30 ing for arachnology, megatrees for local floras and faunas have been successfully constructed for 31 many other groups, from European tetrapods (Roquet et al. 2014) and butterflies (Wiemers et 32 al. 2020), to the vascular plants of the British Isles, , the Netherlands, and 33

1/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

(Durka & Michalski 2012), as well as for British birds (Thomas 2008). They are considered 34 an essential ingredient for evolutionarily informed studies in ecology and conservation science 35 (Roquet et al. 2013), e.g., providing the necessary phylogenetic framework for understanding 36 the evolution of egg shell pigmentation in British birds (Brulez et al. 2016), or for identifying 37 the effect of species’ traits on their population changes (Sullivan et al. 2015). 38

The general benefits of a phylogenetic framework are obvious: just imagine what ecological 39 or faunistic studies would look like if all phylogenetic information were discarded: families 40 and genera could not longer be used to structure the information. The ubiquitous pie charts 41 that present survey results according to spider family would disappear. It would no longer be 42 possible to state that the relative abundance and diversity of linyphiids increases towards higher 43 latitudes, or that lycosids dominate in a pitfall sample. The resulting challenges would clearly be 44 wide-ranging. 45

A fully resolved phylogenetic tree provides the same kind of information as the family and 46 assignments, but with much finer granularity and without being restricted to arbitrary 47 taxonomic categories. Ecological and faunistic studies can ask the same kind of questions about 48 each of the clades in the tree that they would routinely ask about families or genera. This is a 49 rich opportunity – and, importantly, the usefulness of a tree for this kind of analysis would not 50 increase if it included a global set of species, but it would decrease if any local representatives 51 were missing or if it were less than fully resolved. 52

Moreover, applying the phylogenetic results at a local level should help identifying gaps in 53 our current understanding of the spider Tree of Life: is it even possible to plausibly reconstruct 54 all the evolutionary relationships within a local spider fauna given the currently available data? 55 Here, I attempt to answer this question for one particularly well-studied spider fauna, that of the 56 British Isles. Great Britain and Ireland have a long and distinguished history of arachnological 57 research. The fact that much of their fauna and flora was acquired after the glaciations of the 58 ice ages has resulted in a relatively impoverished, but still interestingly diverse, spider fauna, 59 which largely consists of species that are common and widespread across the Palaearctic. As a 60 result, the vast majority of British spiders has been studied, illustrated and described repeatedly 61 in great detail, providing an excellent starting point for determining their relationships. Many of 62 the British species or their close relatives have been included in published phylogenetic studies, 63 and a considerable fraction has been the target of comprehensive DNA barcoding projects. The 64 systematics of the British spiders is reasonably stable, and their nomenclature and classification 65 provide another, implicit source of information about the phylogenetic relationships within the 66 group. 67

But isn’t it somewhat pointless to reconstruct a phylogenetic tree for such a small, stochastic 68 subset of global ? Certainly not. For a start, all published phylogenetic hypotheses 69 refer to limited subsets of global spider richness; a complete fully resolved tree of all 40,000+ 70 spider species is a distant dream – and if it were constructed today, it would still lack all the 71 undiscovered and most of the extinct species that are equally valid members of the great Tree of 72 Life. Compared to the typical trees shown in the arachnological literature, the tree presented 73 here is exceptionally large and densely sampled. But, more importantly, for the reasons listed 74 above, the British spider fauna is far from a random subset of spider diversity: as a result of 75 ecological history, it is strongly enriched in abundant, generalist and widespread species (and 76 this still holds true for its recent arrivals). And, as a result of arachnological history, it is also 77 strongly enriched in well-studied, carefully described and comprehensively analysed species, all 78 of them repeatedly revised and illustrated and many of them barcode-sequenced; it is furthermore 79 strongly enriched in type species of globally distributed genera, and type genera of many globally 80 important families. Consequently, the resulting phylogenetic tree contains just the kind of species 81 that will make it useful as a point of reference for expanding the tree, first to the Palaearctic fauna, 82 and in the future to phylogenies on a global scale (even if these will more likely be generated 83 from scratch – the synthesis of the literature provided here should give a first idea of the work 84

2/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

still required to achieve this ultimate ambition). 85

Yet, a concern could remain that the geographically defined scope of the tree is inappropriate: 86 after all, phylogeny does not respect geography, spiders do not know national borders, and 87 the British spider fauna has certainly not evolved in situ, but is merely a part of global spider 88 biodiversity, closely related to that of the nearby continent. However, this is also true for the 89 many other taxa where local phylogenetic trees have proven to be of tremendous value. I would, 90 moreover, argue that nobody doubts the value of checklists of the local spider fauna; for British 91 spiders, such checklists are published regularly, with geographic scales ranging from individual 92 nature reserves, to single counties and the entire country. Knowing which species are present 93 in a local area provides the necessary context for any observations on individual groups on the 94 list. It would be considered bizarre if such a list were sorted alphabetically by species epithet: at 95 the bare minimum, the species will be grouped according to genus and family. In the case of 96 British spiders, there has in fact been a longstanding tradition to arrange checklists even further 97 by phylogenetic affinities, reflecting presumed evolutionary relationships in the order of species 98 within genera, genera within families, and families within Araneae in general. A fully resolved 99 phylogenetic tree takes this idea only a small and natural step further, making the proposed 100 relationships explicit, unambiguous and testable. 101

As a purely intellectual exercise a tree like this meets an elementary scientific desire for 102 taxonomic order based on evolutionary relationships and with the maximum possible resolution. 103 But it also fulfils an important role as a didactic and mnemonic aid: it is much easier to learn and 104 remember the characters and features of the members of a local spider fauna, if one is aware of 105 their precise evolutionary relationships. In contrast to a determination key or other pragmatic 106 arrangements of the species, a phylogenetically-informed “mind map” (i.e., a phylogenetic tree) 107 is ready to grow by adding new species whenever needed, for instance because the taxonomic or 108 geographic scope is expanded. 109

Of course, not every arachnologist will be interested in the detailed evolutionary relationships 110 of their study ; some may be satisfied with the coarse-grained picture provided by the 111 Linnaean taxonomic hierarchy. But, the majority of curious naturalists will want to know how 112 the species in their local patch are related to one another; initially, this interest will be quite 113 independent of any relationships to species in other parts of the world. The tree identifies 114 specifically the local sister group of each species or group of species, without being restricted 115 by the arbitrary levels of the Linnaean hierarchy. It allows examining whether ecological, 116 morphological or behavioural traits studied in a British spider community correlate with their 117 patterns of evolutionary relatedness. But its usefulness doesn’t end there; even if this local tree 118 only represents a subset of the global spider biodiversity, it would be applicable to studies across 119 much of Northwest , with little or no modification, and could easily be expanded to the 120 spider fauna of large parts of Central Europe. 121

The central data source of this paper is a comprehensive synthesis of the published literature. 122 As a result, the amount of original data will be limited, and a conscious effort was made 123 to minimise the reliance on novel unpublished pieces of evidence. This turned out to be 124 far from trivial: the emerging phylogenetic literature is surprisingly challenging to apply on 125 a local level. Even the largest studies will include only a tiny fraction of the entire spider 126 diversity; individual studies only partly overlap in the species included; and while there is a 127 trend towards consolidation in some areas of the phylogenetic trees, there remain numerous parts 128 where different studies arrive at widely different and inconsistent results, which are difficult to 129 reconcile. Below, these challenges are discussed for selected individual examples, emphasising 130 the necessarily subjective nature of some of the decisions made, in view of the still incomplete 131 evidence available. 132

3/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Material and Methods 133

The phylogenetic reconstruction presented here is based on a synthesis of a wide range of 134 published phylogenetic analyses, supplemented by the data in the taxonomic literature on British 135 spiders, as well as additional barcode data from public databases. Given the heterogeneity of 136 the available information, no rigid, formal approach could be expected to resolve the remaining 137 conflicts and uncertainties convincingly. The construction of the preferred tree consistent with 138 the cited data was done manually, and, in general, the results of studies including a denser sample 139 of species in the relevant part of the tree were preferred over those with a sparser coverage; multi- 140 gene molecular studies were preferred over purely morphological analyses; integrated studies, 141 combining molecular and morphological data, over those using only one data type; studies with a 142 larger number and diversity of molecular markers were preferred over those studying fewer genes; 143 and barcode data from the literature and the BOLD database (Ratnasingam & Hebert 2007) were 144 only used when they were not directly contradicted by the morphological evidence. In addition to 145 recently published phylogenetic analyses, the full range of phylogenetic hypotheses implicitly or 146 explicitly proposed in the traditional taxonomic literature was considered, as were all published 147 morphological data, although no formal cladistic analysis of such data was attempted. 148

Morphological data for linyphiid spiders were obtained from Anna Stäubli’s identification 149 key at the Spiders of Europe website (Stäubli 2020; https://araneae.nmbe.ch/matrixlinkey). 150 The character states for Nothophantes horridus were added on the basis of Merrett & Stevens 151 (1995, 1999), and those for the male of Pseudomaro aenigmaticus on the basis of unpublished 152 observations by A. Grabolle. Data on the distribution of British spiders at the hectad level 153 were downloaded from the website of the Spider and Harvestman Recording Scheme website 154 (http://srs.britishspiders.org.uk/portal.php) and mapped onto the phylogenetic tree. Subsequently, 155 for each of the subtrees, a Wilcoxon rank sum test was applied to test for significant differences 156 in the value of ecological variables of interest for the species within the subtree (clade), compared 157 to the rest of the species. Uncorrected p-values are reported, but these are all significant at the 158 0.05 level after Bonferroni correction for multiple testing based on the number of subtrees. Trees 159 were visualised using the iTOL web tool (https://itol.embl.de/ ; Letunic & Bork 2019). Data 160 were processed using custom-made R scripts, which are available from the author upon request. 161

In this article, the focus is on proposing a single fully resolved tree, expressing a single testable 162 phylogenetic hypothesis for each triplet of species in the tree. Obviously, as will be mentioned 163 repeatedly in the following discussion, not all of these hypotheses will be proposed with equal 164 confidence. In many cases, alternative proposals would seem equally plausible. By unequivocally 165 identifying one preferred hypothesis in each case, the proposed tree might be considered overly 166 audacious. The advantage of this approach is that it facilitates future discussion and provides an 167 unambiguous point of reference for necessary improvements and corrections. 168

Nomenclature 169

The list of British spiders was obtained from the Spiders of Europe website (araneae.nmbe.ch; 170 Nentwig et al. 2020) in May 2020. The list uses the World Spider Catalogue (WSC) nomenclature, 171 which should be referred to for the currently accepted names of the species involved, as well as 172 the authorities and additional taxonomic references for each of them. However, in the tree itself, 173 the nomenclature has been adjusted to ensure that all genera are monophyletic, according to the 174 proposed phylogenetic hypotheses. This renaming, which applies to a small minority of cases, 175 largely follows the results of Breitling (2019a,b,c,d,e), with a few additional new combinations 176 based on more recent published analyses. 177

Subgenera. — In a few cases, subgenera are explicitly proposed for traditional monophyletic 178

4/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

groups within larger genera. Subgenera are currently rarely used in arachnology. This was 179 not always the case and seems to be largely a historical consequence of the way the most 180 widely used spider catalogues are organised; e.g., the WSC almost always ignores subgenus 181 divisions, leading to justified concerns that re-classification proposals below the genus level 182 might easily be overlooked. However, the use of subgenera increases the information content 183 of a classification considerably (Wallach et al. 2009), and it avoids the instability caused by 184 subdividing homogeneous and obviously monophyletic groups into smaller and smaller genera. 185 Many of the most acrimonious taxonomic debates of recent years could probably have been 186 avoided if subgenera had been more widely adopted as a useful category in spider systematics. 187

Semispecies. –– Barcoding data have regularly revealed that closely related spider species 188 share mitochondrial DNA haplotypes (Astrin et al. 2016; Blagoev et al. 2016; Domènech et 189 al. 2020; Ivanov et al. 2018; Lasut et al. 2015; Nadolny et al. 2016; Oxford & Bolzern 2018). 190 This has often been dismissed as the result of a “barcode failure”, potentially due to incomplete 191 lineage sorting of recently diverged species. However, this explanation is clearly untenable for 192 the majority of cases in spiders: almost always, the sibling species involved are highly mobile 193 and very common ecological generalists that are sympatric and regularly syntopic over huge 194 areas, often entire continents. Assuming a traditional allopatric model of speciation (Kraus 195 2000), this argues strongly against a recent divergence between the species. 196

Alternatively, it has been suggested that the lack of an interspecific barcode gap is the result of 197 mitochondrial introgression, potentially facilitated by Wolbachia-mediated gene drives. This may 198 well be the case; however, for such a scenario to be as common as it appears in spiders requires 199 regular fertile hybridization between the species involved, with minimal negative fitness costs 200 for the hybrid individuals. It has been suggested that such introgression would have negligible 201 effects on the stability of the species boundaries, as the nuclear genetic contribution of one of the 202 parents would be rapidly lost, only the maternally inherited mitochondrial genome remaining as a 203 trace of the hybridisation event (Oxford 2019). This is, however, not correct: in fact, assuming a 204 stable population size, it is the mitochondrial contribution that will be rapidly lost stochastically, 205 but due to recombination events, at least some of the alleles from both parents will remain present 206 in the nuclear genome of backcrossing generations for a long time. Some studies that have 207 examined examples of a missing barcode gap in more detail have indeed found that at least some 208 nuclear markers equally fail to differentiate the species involved (Lasut et al. 2015; Spasojevic et 209 al. 2016). The exchange of nuclear alleles is not necessarily obvious in the form of a gradient of 210 phenotypically intermediate individuals, if backcrossed hybrids rapidly approach the phenotype 211 of one of the parents (Oxford 2019). 212

The relevance of this phenomenon for the present analysis is that species that exchange 213 mitochondrial DNA barcodes are likely to also exchange favourable (or neutral) nuclear alleles 214 regularly (examples are known from crop pests exchanging pesticide resistance genes, but also 215 from mimicry complexes in butterflies; e.g., Valencia-Montoya et al. 2020 and Zhang et al. 216 2016). Such groups do not form independent evolutionary individuals yet – and they are not 217 mutually monophyletic –, and consequently it would be meaningless to propose a fully resolved 218 phylogenetic tree for them. This is only of minor import for species pairs, but in several of these 219 cases, especially among wolf spiders, groups of three or more species are involved globally. 220

In the tree presented here, I propose to apply the semispecies concept to such cases. Semis- 221 pecies are groups of organisms in the “grey zone” of speciation, which have completed some of 222 the necessary steps towards full species separation, but not all of them. Semispecies have often 223 been used to classify island populations (as a synonym of allospecies), and the rare examples in 224 arachnology also applied the concept strictly to allopatric populations (Kraus 2000); however, 225 such a narrow interpretation is not necessary, and in groups with a more mature 226 (especially birds and butterflies) locally sympatric (as well as parapatric) groups of semispecies 227 are identified with some regularity (e.g., Helbig et al. 2002; Smith et al. 2010), albeit not without 228 lively debate regarding individual cases (e.g., Pfander 2011; Vane-Wright 2020). 229

5/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Importantly, semispecies are not by definition species in statu nascendi; their evolutionary 230 future cannot be predicted with certainty. In some cases, it might be that disruptive selection, 231 reinforcement and related mechanisms will allow them to progress to full speciation in sympatry. 232 But it is equally possible that they will continue to maintain gene flow indefinitely or even merge 233 into a single homogeneous freely panmictic population. Interestingly, among members of the 234 Eratigena atrica species group, individuals in the overlapping part of the range show a tendency 235 towards intermediate phenotypes (Oxford 2019), in contrast to the expectation of “character 236 displacement”, which would predict that sympatric populations would become more clearly 237 distinct phenotypically, e.g., to minimise harmful hybridisation or ecological niche overlap. 238

In the phylogenetic tree, semispecies are explicitly identified by including a “superspecies” 239 name, i.e., the name of the first member of the group to be described, in brackets before the 240 species epithet. This highlights areas of the tree where speciation may not yet be complete, and 241 where the question “one species or two (or three)?” is ill posed. Studies such as the work of 242 Ivanov et al. (2018), Domènech et al. (2020), and Oxford (2019) show that each of these cases 243 will be a rich ground for future evolutionary insights. 244

Results 245

The deep phylogenetic relationships of spider families have recently been addressed by a series 246 of molecular genetic studies (Agnarsson et al. 2013; Bond et al. 2014; Dimitrov et al. 2017; 247 Fernandez et al. 2014, 2018; Garrison et al. 2016; Opatova et al. 2020; Ramírez 2014; Ramírez 248 et al. 2019, 2021; Shao & Li 2018; Wheeler et al. 2017). These show considerable agreement 249 with previous morphological analyses (e.g., the trees shown in Coddington 2005 or Jocqué 250 & Dippenaar-Schoeman 2006), and where they disagree (e.g., regarding the non-monophyly 251 of orb-web weavers or the placement of Mimetidae among Araneoidea), the strong statistical 252 support for the alternative hypotheses and the agreement of independent molecular analyses 253 indicate that the latter recover the true evolutionary relationships. Overall, the last few years 254 have seen rapid convergence towards a stable consensus, although a few details, such as the sister 255 group of Salticidae, remain somewhat contentious. In addition to the British species, the tree in 256 Figure 1 includes all families known to be present in Europe, to provide a broader context for 257 the phylogenetic position of the British fauna. 258

While establishing the family-level framework is by now relatively easy, reconstructing the 259 phylogenetic relationships within each family required the reconciliation of a diverse range of 260 published proposals and personal judgement calls, on a case-by-case basis. Once a monophyletic 261 group of N species has been established, N − 2 decisions (justifying N − 2 branch points) are 262 required to reconstruct a fully resolved phylogenetic tree. For the more than 600 British species in 263 the present tree, obviously, not all of these decisions can be elaborated in detail here. Importantly, 264 the evidence supporting each decision (including published cladograms, character matrices, 265 illustrations of the genitalia, and a variety of DNA sequences) could not be presented in the text; 266 doing so would require reproducing a large fraction of the taxonomic literature on British and 267 European spiders. Instead, the reader is referred to the data in the cited literature. However, 268 selected examples from each family with more than 2 members are discussed in alphabetical 269 order below. 270

Agelenidae 271

The tree for this family is based on the detailed study by Bolzern et al. (2013), combining 272 morphological and molecular data for a dense sample of species. The deep relationships of 273 the genera show major differences compared to the analysis of Wheeler et al. (2017), which 274

6/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

included individual representatives of the same genera. Crews et al. (2020) include a larger 275 number of species, and recover a tree that is similar to that reported by Wheeler et al. (2017), but 276 seems overall poorly resolved. These disagreements illustrate how fragile some of the results of 277 even the most recent molecular analyses still can be. The arrangement proposed by Bolzern et 278 al. (2013) is preferred, as the molecular results in this case agree quite closely with those of a 279 morphological analysis, while in the trees presented by Wheeler et al. (2017) and Crews et al. 280 (2020) in particular the placement of Coelotes deeply within the remaining s. str. is 281 unexpected (the genus is typically placed in the subfamily Coelotinae, which is sometimes even 282 considered a separate family Coelotidae). Agelena longipes is a phantom species as defined by 283 Breitling et al. (2015, 2016), i.e., it was not rediscovered since its original description in 1900. It 284 is thus considered a nomen dubium and is not included in the tree. 285

Amaurobiidae 286

The topology of the tree within this small group is determined by the morphological affinities, 287 and confirmed by available barcode data for all three species. 288

Anyphaenidae 289

The relations in this case are inferred on the basis of the similarities in and epigynum of 290 accentuata and A. sabina, as well as the rather close similarity the barcodes for these 291 two species, which indicate that they are probably are pair of sister species, while A. numida is 292 more distantly related. 293

Araneidae (and Zygiellidae sensu Wunderlich 2004 = Phonognathidae sensu 294

Kuntner et al. 2019) 295

The relationships of species in this group are based on the analyses of Kallal & Hormiga (2019), 296 Kallal et al. (2020), and Scharff et al. (2020). The genus-level backbone closely follows the 297 results of Scharff et al. (2020), as this study has the densest coverage of relevant species. Kallal 298 et al. (2020) differ only in details. The internal topology within follows Spasojevic et 299 al. (2016); for other genera the relationships are informed by barcode data, which are available 300 for all species. The placement of Zilla is only very weakly supported; it is based on Tanikawa’s 301 assessment that this genus is closely related to Plebs/Eriophora (Tanikawa 2000), which in the 302 tree of Scharff et al. are closely related to Singa. 303

The genus in the traditional sense is clearly polyphyletic. The placement of Araneus 304 (s.str.) angulatus is based on barcode similarity to A. bicentenarius, which is placed apart from A. 305 diadematus and its relatives in Scharff et al. 2020. The close relationship between A. angulatus 306 and A. bicentenarius is confirmed by their morphological similarity, which led earlier authors to 307 consider A. bicentenarius a variant of A. angulatus (Levi 1971). The available genus name for 308 the A. diadematus group would be Epeira, and this is used in the tree. 309

The placement of the Atea species is unclear. Their barcode sequences indicate that they are 310 not closely related to A. angulatus or the A. diadematus group of the highly polyphyletic Araneus 311 s. lat.; as the genus Atea has historically often been placed close to , the two British 312 species are placed there, but with some reluctance, as there seems to be no convincing evidence 313 for a close relationship between the two genera. 314

7/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Cheiracanthiidae 315

Relationships within this small group remain obscure. Wolf (1991) discusses 316 pennyi and C. erraticum as being more similar to each other than C. erraticum and C. virescens, 317 contra Helsdingen (1979). Barcodes for C. pennyi are not available, so the molecular data cannot 318 help resolving the case. The pedipalp without ridge and the epigynum with short insemination 319 ducts set C. pennyi apart, but these could be autapomorphic. The striking red dorsal line of the 320 is shared by C. pennyi and C. erraticum, but here the loss in C. virescens could be 321 autapomorphic. The preferred topology represented in the tree gives precedence to the genital 322 similarities, but without a sound cladistic basis for this decision. 323

Clubionidae 324

The backbone of the topology within this family largely follows Breitling (2019c). Microclu- 325 biona sensu Wunderlich (2011), i.e., the trivialis group sensu Mikhailov (1995) is considered 326 monophyletic (as in some of the barcode analysis results). Euryclubiona sensu Wunderlich 327 (2011) is also considered monophyletic, and is recovered as such in most of the barcode results; 328 the internal topology within this group is based on morphological affinities. For the reasons 329 discussed in Breitling (2019d), none of these subgenera is formally recognised here, but a future 330 subdivision of into well-defined subgenera would certainly be highly preferable over a 331 splitting of this homogeneous and obviously monophyletic group into separate genera. 332

The position of C. rosserae as sister of C. stagnatilis is based on the original description 333 and Wiehle (1965), while the position of C. subtilis and C. juvenis is based on morphological 334 similarities to their proposed sister species. C. corticalis is placed basally within the genus, in 335 agreement with its unique morphology and most barcode analyses. 336

C. facilis, which is also listed as a member of the British spider fauna is possibly a synonym of 337 C. phragmitis, based on a malformed specimen, analogous to the case of Philodromus depriesteri 338 discussed in Breitling et al. (2015). The close morphological similarity to C. phragmitis 339 discussed in the original description (sub C. holosericea), as well as the “atrophic” appearance 340 of the epigynum in the accompanying illustration, would seem to support this interpretation. 341 Examination of the type material in the Pickard-Cambridge collection in the Oxford University 342 Museum of Natural History (Bottle 2312.1) could provide further insights, but for now the name 343 is considered a nomen dubium and is not included in the tree. 344

Dictynidae 345

Dictynidae and Hahniidae are closely related, and the position of some genera in either of them 346 remains unclear. According to Crews et al. (2020), both and Lathys “remain unplaced”. 347 For now, and for the purposes of the preferred tree, placement of Lathys as basal to the remaining 348 Dictynidae and Cicurina basal to Hahniidae seems most justified, as this is roughly compatible 349 with the results presented by Wheeler et al. (2017) and consistent with at least one of the analyses 350 shown in Crews et al. (2020). In the analysis by Crews et al. (2020), Dictyna was recovered as 351 polyphyletic, but here it is assumed that the British representatives form a monophyletic group, 352 as do the other genera in these two families. 353

The placement of is questionable. Wunderlich (1995a, 2004a) considers the genus a 354 junior synonym of Argenna, indicating at least a close relationship between the two genera. But 355 in the same works he also considers (and Emblyna) as synonyms of Dictyna; for this to 356 be correct, it would be necessary to considerably expand the scope of Dictyna, to also include 357 the quite distinct genus Nigma. 358

8/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Given the close morphological similarities (and barcode similarities) between Argenna, Altella 359 and Dictyna s.lat., Argyroneta is placed basal to a clade uniting these two groups, despite results 360 by Crews et al. (2020) that argue for joining Argenna and Argyroneta instead. 361

The internal topology within Nigma is supported by morphological affinity that indicates 362 a sister group relationship between N. puella and N. flavescens. The same argument applies, 363 with less conviction, in the case of Lathys. The topology within Dictyna s. str. is based on a 364 combination of morphological similarities and barcode data for a subset of the species. 365

Dysderidae 366

Platania et al. (2020) show that Harpactea in its present form is a polyphyletic assembly 367 of unrelated groups, the two British species being placed in deeply separated clades. Non- 368 monophyly is also found for several other genera of Harpacteinae (Folkia, Dasumia), as well as 369 for some of the previously proposed species groups within Harpactea. This indicates that the 370 morphological recognition of monophyletic units within this family is unusually challenging. 371 Consequently, instead of separating the two British species into different genera, it appears 372 more pragmatic to extend the Harpactea genus concept and treat them as members of a single 373 Harpactea s. lat. 374

Gnaphosidae (and Micariidae sensu Mikhailov & Fet 1986) 375

The results of Wheeler et al. (2017) show that morphological data have so far failed to converge 376 on a stable and reliable phylogenetic reconstruction for Gnaphosoidea. Recent morphological 377 analyses by Rodrigues & Rheims (2020) and Azevedo et al. (2018) show fundamental differences 378 compared to the molecular analysis presented by Wheeler et al. (2017). For example, they place 379 Prodidomidae deep within Gnaphosidae; a placement that molecular analyses contradict with 380 strong support. On the other hand, in the molecular analysis, traditional Gnaphosidae are highly 381 polyphyletic. 382

At this point, a conservative tree will largely follow the morphological results and traditional 383 arrangements. The morphological analyses do not fully resolve the relationship between the 384 subfamilies Gnaphosinae, Zelotinae, and Drassodinae. The preferred arrangement at this level is 385 based on the molecular data. 386

The placement of Urozelotes in the tree is tentative; it could with similar justification be 387 placed as sister to Drassyllus+Trachyzelotes, rather than Zelotes. The internal structure of 388 Drassodes, Drassyllus, Haplodrassus and Zelotes is based on a combination of morphological 389 similarities and barcode data. In the case of Haplodrassus, the placement of H. minor and the 390 deeper branches are ambiguous. The relationships within Gnaphosa are based on morphological 391 similarities only. 392

Micariidae are here treated as a separate family (stat. rev.), sister to , based 393 on the results in Azevedo et al. (2018) and Rodrigues & Rheims (2020). This separation 394 seems justified given the long-standing debate about the placement of Micaria, which often was 395 included in Clubionidae instead of Gnaphosidae. Given the chaotic results for Gnaphosidae in 396 Wheeler et al., this preference is obviously only weakly supported. The internal structure of the 397 tree for the genus Micaria follows Breitling (2017). The placement of M. albovittata is based on 398 Wunderlich’s inclusion of the species (sub M. romana) in the pulicaria group (Wunderlich 1980). 399 The placement of M. silesiaca is based on its inclusion in the silesiaca group (Wunderlich 1980). 400

9/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Hahniidae 401

The inclusion of Cicurina in this family is discussed above under Dictynidae. The inclusion 402 of Mastigusa is particularly weakly supported. The British species has formerly been placed 403 in Tetrilus, Tuberta, and Cryphoeca. Its placement in Hahniidae is based on its presumed 404 relationship to Cicurina (e.g., Murphy & Roberts 2015); Wunderlich (2004a) places it in 405 Cryphoecinae instead. The two forms of British Mastigusa are here conservatively considered 406 semispecies, rather than morphs of a single species, given their apparent ecological separation. 407 However, if this interpretation is correct, the name of the macrophthalmus form would probably 408 need to be changed, as the British specimens don’t seem to belong to the species originally 409 described under this name from Eastern Europe (Wunderlich 1995b). The relationships between 410 the genera are based on analysis of the barcode data available for the family, as is the internal 411 topology of Hahnia. The internal topology of Iberina is based on morphological affinities, but 412 as the male of I. microphthalma is unknown, this remains tentative. 413

Linyphiidae 414

This family is particularly difficult to analyse, not just because it is the largest of the British 415 spider families, but also because a large part of recent taxonomic work has been dedicated 416 to splitting genera into poorly supported smaller units on the basis of typological arguments, 417 instead of identifying convincing relationships between genera; together with the traditionally 418 poor genus concepts in this group, this has created such a degree of confusion that even a 419 considerable amount of detailed phylogenetic analyses (both molecular and morphological) have 420 not been able to completely clarify the situation, and the phylogenetic relationships of many 421 genera remain unresolved at all levels. Additionally, while the molecular and morphological 422 analyses show some convergence in a few important areas of the tree, a large fraction of the 423 published trees is still highly unstable, and the addition of new characters or species can lead 424 to major rearrangements (see, e.g., the discussions in Miller & Hormiga 2004 and Paquin et al. 425 2008). The proposal advanced here can only be a very first attempt at providing a comprehensive 426 phylogenetic hypothesis for this group (within strict geographical limits). 427

The framework for the proposed linyphiid phylogeny is provided by the molecular analyses 428 of Wang et al. (2015) and Dimitrov et al. (2017). This is complemented by the increasingly 429 comprehensive morphological analyses of the entire family or large subgroups in Duperré & 430 Paquin (2007), Gavish et al. (2013), Hormiga (1993, 1994, 2000), Hormiga & Scharff (2005), 431 Miller & Hormiga (2004), Paquin et al. (2008), and Sun et al. (2012). Most importantly, the 432 relative placement of genera required a much larger degree of personal interpretation of the 433 traditional taxonomic and morphological literature. The British were comprehen- 434 sively analysed in terms of pedipalp morphology by Merrett (1963) and Millidge (1977), and less 435 comprehensively in terms of their female genitalia by Millidge (1984, 1993). This information 436 was complemented by the phylogenetic assessments implicitly (and rarely explicitly) contained 437 in the works of Wiehle (1956, 1960) and Roberts (1987), as well as a thorough assessment of the 438 morphological data encoded in the interactive key of linyphiid species by Anna Stäubli (Stäubli 439 2020, http://www.araneae.nmbe.ch). The barcode analyses presented in Breitling (2019b) pro- 440 vided additional information, but were mostly used for determining the relationships within 441 genera. 442

The internal topology of is based on a careful interpretation of barcode data, in 443 conjunction with a morphological analysis. Agyneta is a good example of a genus where species 444 identification is challenging and the resulting mis-identifications cause difficulties in interpreting 445 barcode database information. In the British fauna, Meioneta and Agyneta seem to be mutually 446 monophyletic and could be maintained as subgenera, but in the global context, they should 447 remain unified (together with a number of smaller genera) in Agyneta s. lat. 448

10/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Following Breitling (2019b), Saaristoa is considered a junior synonym of , and 449 Centromerita a junior synonym of . In both cases, the proposed phylogenetic 450 hypotheses support this synonymy, as it is necessary to maintain the monophyly of all named 451 genera. 452

Collinsia is treated as a junior synonym of Halorates, following Buckle et al. (2001), Millidge 453 (1977), Roberts (1987), and Tanasevitch (2009). As the proposed tree shows, it would be 454 impossible to maintain C. inerrans in the same genus as C. holmgreni / C. distinctus, if H. 455 reprobus is excluded. Joining the two genera in Halorates s. lat. seems more conservative in the 456 short run, than a splitting off of C. inerrans (in Milleriana), in the absence of a comprehensive 457 revision of this and several related genera. The barcode data indicate a general confusion in this 458 group, where most genera are not recovered as monophyletic. This is not fully reflected in the 459 proposed tree, which gives priority to the morphological similarities; e.g., in its COI barcode, 460 Mecynargus paetulus seems to be closer to H. inerrans than to the type of its genus, and H. 461 inerrans closer to M. paetulus than to H. holmgreni; complementary information from a larger 462 range of molecular markers would be required to justify such a major rearrangement. 463

Dicymbium is treated as a subgenus in a considerably expanded genus Savignia, resulting in 464 a number of new combinations, as shown in the tree. This change in rank is consistent with 465 earlier proposals by Millidge (1977) concerning the expansion of Savignia to include most 466 of the members of his “Savignya genus group”. It is also supported by both molecular and 467 morphological evidence as discussed in Frick et al. (2010) and Breitling (2019d). Savignia 468 (Dicymbium) brevisetosa is certainly not a subspecies of S. (D.) nigra in the current sense, as the 469 two occur sympatrically. The genitalia are indistinguishable and the two forms are not clearly 470 ecologically distinct, although syntopic occurrence apparently is rare; it is therefore quite likely 471 that they are synonymous, brevisetosa merely being a geographically restricted variant of the 472 male prosomal morphology, as suggested by Roberts (1987). However, the genetic barcode data 473 show two clusters (BINs) among the Dicymbium specimens, which could indicate the presence 474 of two closely related species, one of which might correspond to the brevisetosa form, occasional 475 intermediate specimens being the result of sporadic hybridisation. The two forms are therefore 476 here considered conservatively as semispecies. 477

Erigone maritima is considered a separate species, distinct from E. arctica s. str., based on the 478 considerable barcode gap between Nearctic and Palaearctic specimens identified as “Erigone 479 arctica” s. lat. Whether the palaearctic species can be meaningfully subdivided into subspecies is 480 currently an open question; given the high mobility and vast range of Erigone species, which are 481 among the most frequent aeronauts, a relevant subspecific differentiation seems rather unlikely. 482 Many of the morphologically well-defined Erigone species show a surprisingly narrow barcode 483 gap, indicating relatively recent differentiation and arguing further against the probability of the 484 existence of morphologically all but cryptic subspecies. 485

Mermessus (sub Eperigone) was considered as probably closely related and possibly the sister 486 group of Erigone s. lat. by Millidge (1987), and the barcode data support this placement. 487

Erigone longipalpis meridionalis is a phantom species as defined by Breitling et al. (2015, 488 2016) and probably only represents intraspecific variation of E. longipalpis. It is thus considered 489 a nomen dubium and not included in the tree. 490

Frontinellina is considered a junior synonym of Frontinella, because of the close genetic 491 affinities between representatives of the two genera. 492

Hilaira is considered a senior synonym of Oreoneta. When separating Oreoneta from Hilaira, 493 Saaristo & Marusik (2004) point out that H. nubigena and H. pervicax are also not conspecific 494 with the type species of Hilaira, H. excisa. Instead of creating three poorly delimited genera, it 495 is far more informative to consider the three groups as subgenera within a monophyletic genus 496 Hilaira s. lat., sister to Sciastes. For the subgenus including H. nubigena and H. pervicax, the 497

11/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

name Utopiellum (type species: H. herniosa) might be available, and it is here used in the tree. 498

Maso and Pocadicnemis are strongly united in the barcode data; their position relative to other 499 higher erigonines is less clear. They are placed in the same group by Merrett (1963; Group E) and 500 Locket & Millidge (1953; all tibiae with 1 dorsal spine; with Tm IV), but these are rather large 501 groups, and the morphology of the two genera does not indicate a particularly close relationship 502 to each other or other genera. 503

Oryphantes is considered a senior synonym of Anguliphantes, Improphantes, Mansuphantes 504 and Piniphantes, following Breitling (2019b), and Palliduphantes antroniensis is also transferred 505 to Oryphantes s. lat., where it belongs on the basis of its genital morphology (Bosmans in Heimer 506 & Nentwig 1991), as confirmed by barcode information. As explained in Breitling (2019d), 507 the synonymy is also supported by the observation of Wang et al. (2015) that a combination 508 of a large number of genetic markers, including mitochondrial (COI and 16S) as well nuclear 509 sequences (18S, 28S, H3), recovers Anguliphantes and Oryphantes as mutually polyphyletic 510 with strong bootstrap support. 511

Millidge (1977) and Merrett (1963) point out similarities between Ostearius and Dona- 512 cochara/Tmeticus, and Wiehle (1960) places Ostearius in his Donacochareae. However, this 513 traditional placement of Ostearius in a clade with Tmeticus and Donacochara has long been 514 dubious, and it is not supported by any of the recent analyses. Even the sister group relationship 515 between the latter two is not strongly supported by any of the newer data. Hormiga (2000) and 516 subsequent morphological assessments place Tmeticus far from Ostearius. The barcode data also 517 do not indicate a close relationship: there, Ostearius is sister to Eulaira, matching Millidge’s 518 earlier morphology-based proposal (Millidge 1984). 519

Pelecopsis susannae is transferred to Parapelecopsis, based on similarity of genitalia and 520 absence of dorsal spines on its tibiae. As this indicates that the boundary between the two genera 521 is not quite clear, they are here treated as subgenera of Pelecopsis s.lat., and in the global context 522 Parapelecopsis should possibly be discarded altogether. 523

Poeciloneta is treated as a senior synonym of Agnyphantes and Obscuriphantes. While the 524 necessity of this merger is not obvious in the context of the British fauna, where each of these 525 genera is represented by a single species, the global analysis shows that this move is required to 526 obtain a monophyletic genus Poeciloneta. 527

In the case of morphologically homogeneous genera, where even the species boundaries have 528 long been ambiguous and species groups have been fluid at best, in the absence of genetic data 529 the proposed phylogenetic relationships can be little more than a poorly educated guess. The 530 genus Porrhomma is a good example of this situation. The preferred tree presented here is based 531 on a rather subjective assessment of the morphological affinities of the included species. 532

The placement of Pseudomaro as sister of Mioxena is based on unpublished data on the mor- 533 phology of the males (A. Grabolle https://wiki.arages.de/index.php?title=Pseudomaro_aenigmaticus).534 These indicate that the two genera may even be synonymous, but a formal synonymisation should 535 await a formal publication of the description of male Pseudomaro specimens. 536

Savignia is here considered in the broadest sense, as discussed in Breitling (2019d). It includes 537 the former genera Dicymbium, Minyriolus, Glyphesis, Araeoncus, and Erigonella. 538 Various earlier authors, including Bosmans (1996), Frick et al. (2010), Holm (in lit. in Millidge 539 1977), and Millidge (1977) had already found that this group is so homogeneous and the genera 540 so poorly defined that they should probably be merged in a single genus. The barcode results 541 confirm this assessment. The subgenus assignments try to identify monophyletic groups, at least 542 within the context of the British fauna, but they are tentative only, given that no comprehensive 543 global analysis of the genus group has been performed, and their practical value could be 544 debated. Savignia connata jacksoni is considered an infrasubspecific variant of Savignia connata, 545 following Roberts (1987), and is therefore not included separately in the tree. 546

12/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 2 shows a mapping of selected morphological characters used for traditional “prag- 547 matic” classifications of British linyphiids onto the proposed phylogenetic tree of this family. 548

Liocranidae 549

The status and phylogeny of this family are controversial; morphological analyses by Bosselaers 550 & Jocqué (2002) and Ramírez (2014) do recover the family as presently defined as strongly 551 polyphyletic. The molecular results of Wheeler et al. (2017) agree. Only the morphological 552 study of Bosselaers & Jocqué (2013), which analyses the densest sample of species, including 553 all genera found in the British Isles, presents a monophyletic s.lat. The preferred 554 tree presented here shows a compromise between the different analyses: while it proposes that 555 the British representatives of Liocranidae are united in a monophyletic group, it modifies the 556 arrangement of genera suggested by Bosselaers & Jocqué (2013) to match the observation by 557 Ramírez (2014) that Liocranum and Apostenus are more closely related to each other than to 558 (which Ramírez wants to remove to Clubionidae). Scotina was not included in the study 559 by Ramírez (2014), but is morphologically closer to Agroeca, although historically, the species 560 of this genus have been placed in Agroeca, Liocranum, and Apostenus (S. palliardii in all three). 561

Relationships within Scotina are based on the phylogeny proposed by Bosselaers & Jocqué 562 (2013). The arrangement within Agroeca follows Braun’s (1967) division of the genus into 563 two species groups, (A. lusatica, A. brunnea, A. dentigera) vs. (A. cuprea, A. proxima). This 564 contradicts the results of Bosselaers & Jocqué (2013), but is supported by barcode data. The 565 placement of A. lusatica (sister to A. dentigera) and of A. inopina (sister to A. cuprea) is based 566 on the stated morphological similarities in Grimm (1986). 567

Lycosidae 568

The arrangement of genera in this family follows Piacentini & Ramírez (2019). To infer the 569 relationships within Trochosa, the morphological results of Hepner & Milasowszky (2006) are 570 complemented with barcode data for several of the species. Following Breitling (2019b), Piratula 571 is considered a junior synonym of Pirata, although the genera traditionally included in this 572 genus form a monophyletic group within the context of the British Isles, as supported by barcode 573 data. The placement of P. tenuitarsis is based on its morphological similarity to P. piraticus 574 (Kronestedt 1980). 575

The relationships within are based on morphological similarities and barcode 576 results. The use of A. barbipes, instead of A. accentuata, for the British species is based on the 577 argument presented by Breitling et al. (2016b), which was curiously misunderstood by Canard & 578 Cruveillier (2019). 579

Arrangements within follow the results of Knülle (1959), complemented by barcode 580 data. 581

In Pardosa, the deep branches of the tree are inferred on the basis of morphological affinities, 582 while barcode data resolve the internal relationships within species groups, including a number 583 of semispecies complexes, which are particularly common in this genus. 584

Mimetidae 585

The tree is based on the morphological assessments presented by Thaler et al. (2004), which 586 are fully consistent with the barcode data. The placement of Ero tuberculata, which remains 587 ambiguous in Thaler et al. (2004), is based on somatic and genital morphology, which suggests a 588

13/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

closer relationship between E. cambridgei and E. furcata, than between either of them and E. 589 tuberculata. 590

Miturgidae 591

The backbone of the arrangement in this family is based on the barcode data available for three 592 of the species, as the genus present in Britain is morphologically rather homogeneous. The 593 placement of Zora armillata is based on its morphological similarity to Z. spinimana, implied in 594 the determination keys presented by Urones (2005) and by Wunderlich in Heimer & Nentwig 595 (1991). Of course, this is a rather weak argument, as these keys are intended as pragmatic aids to 596 identification, not as statements of phylogenetic hypotheses. 597

Nesticidae 598

Pavlek & Ribera (2017) illustrate the close relationship of Nesticus and Kryptonesticus, based on 599 morphological and molecular data. Nesticella is morphologically quite distinct, and barcode data 600 support the proposed arrangement. 601

Oonopidae 602

Despite recent concerted efforts to expand our knowledge of oonopid biodiversity, most notably 603 the Goblin Spider Planetary Biodiversity Inventory (http://research.amnh.org/oonopidae/), our 604 understanding of the phylogenetic relationships within the group remains pitifully poor. Buss- 605 chere et al. (2014) include the British genera in their analysis, but the resolution of their tree 606 is low and the phylogeny preferred here has only low support. Orchestina dubia could be a 607 considered a phantom species following the definition by Breitling et al. (2015, 2016). In 608 contrast to other phantom species mentioned here, there remains a distinct possibility it will turn 609 out to be a valid species, and it is therefore included in the tree for completeness. 610

Philodromidae 611

The basic relationships between genera are based on Wheeler et al. (2017), while internal 612 relationships are based on the data presented in Breitling (2019b). 613

The placement of Philodromus buchari is tentative, based on the morphological affinities 614 indicated by Muster & Thaler (2004). 615

Pholcidae 616

Compared to the similarly diverse Oonopidae, and despite a much smaller number of specialists 617 working on the group, pholcid phylogeny has been studied extensively using molecular and 618 morphological approaches and has reached reasonable stability. The relationships preferred here 619 are based on Huber et al. (2018), but the placement of Holocnemus pluchei remains ambiguous. 620

Salticidae 621

Salticidae are another family with a well-resolved phylogenetic backbone, based on morphologi- 622 cal and molecular analyses (Maddison 2015; Maddison et al. 2014, 2017; Zhang & Maddison 623

14/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

2015). The deep relationships preferred here are mostly based on the results presented in 624 Maddison (2015) and Maddison et al. (2017). 625

Relationships within Euophrys and closely related species are based on the results in Breitling 626 (2019e). For Sitticus s.lat. the presented tree follows Maddison et al. (2020). The relationships 627 within Neon are inferred on the basis of the morphological data in Lohmander (1945). The close 628 relationship of Synageles and Marpissa is (very) weakly supported by their barcode sequences, as 629 are the internal relationships within Heliophanus. The relationships of species within Marpissa 630 and Salticus, in contrast, are robustly supported by the barcode data. 631

Segestriidae 632

Morphologically (in terms of palp, endogyne, colour pattern, and leg spines), Segestria bavarica 633 and S. florentina seem to be closer to each other than to S. senoculata, but barcode data for 634 S. florentina are not yet publicly available, and barcode distances indicate no especially close 635 relationship between it and S. bavarica. The similarities between the two species could all be 636 symplesiomorphic, but uniting them in the tree still seems the most plausible scenario. 637

Tetragnathidae 638

The deep phylogeny of this family is based on the results of Kallal & Hormiga (2018). The 639 relationships within Metellina and Pachygnatha are based on morphology and are strongly 640 supported by analysis of the barcode sequences for all representatives. The same is the case 641 for Tetragnatha, where the basal placement of T. striata is based on its previous position in a 642 separate genus (Arundognatha) and its presumed relationship to T. nitens or T. vermiformis (Levi 643 1981). Barcodes for both of these have been sequenced and show a similar basal position relative 644 to the remaining British congeneric species. 645

Theridiidae 646

The phylogenetic framework for this family is based on the results of Liu et al. (2016), combining 647 morphological and molecular evidence, with additional genera and species added according to 648 the morphological analyses of Agnarsson (2004). 649

The genus Steatoda in the usual sense is clearly highly polyphyletic in the analyses by Liu et 650 al. (2016); creating a monophyletic Steatoda s. lat. would require merging the genus with both 651 Crustulina and Latrodectus (and possibly other Asagenini); certainly not a desirable solution. 652 Instead, Steatoda is here tentatively divided into a number of smaller genera, all of which had 653 been postulated previously, as classic authors have long recognised the heterogeneity of the 654 genus. It is, however, important to realise that the molecular subdivisions are not closely aligned 655 to previous morphology-based ideas (e.g., Wiehle 1937; Wunderlich 2008), and the two sets of 656 results are difficult to reconcile. 657

Relationships within Enoplognatha are based on barcode data, E. oelandica being placed 658 based on morphology (but with low confidence). The semispecies relationship between E. 659 ovata and E. latimana is based on Lasut et al. (2015) who show convincing evidence based on 660 mitochondrial and nuclear markers indicating that the two forms are not yet fully reproductively 661 isolated, despite their obvious genitalic differences. Levi (1973) cites a personal communication 662 from V. Seligy stating that both forms of the genitalia can be found among siblings from the 663 same egg sac. 664

The internal topology of Robertus is also based on barcodes, but with weak support, the 665

15/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

placement of R. insignis being based on its similarity to the barcode-sequenced R. lyrifer 666 (Almquist 1978). 667

Phycosoma inornatum is here considered a member of Lasaeola, following Wunderlich (2020). 668 This placement is problematic, given that both of the genera, as well as Dipoena seem to be poorly 669 delimited. The transfer to Lasaeola is justified by the observation that European “Phycosoma” is 670 unlikely to be congeneric with the type species from New Zealand: it lacks an epigynal scapus 671 [present in true Phycosoma] and has a relatively large embolus and conductor [small in true 672 Phycosoma]; the male prosoma is also very different and matches that of other Lasaeola species. 673 The species thus lacks the most important genus diagnostic characters of Phycosoma. Otherwise, 674 the arrangement of the species is maximally conservative and maintains Dipoena and Lasaeola 675 as separate genera, despite concerns about their possible para- or polyphyly. Arrangements 676 within each genus are based on morphological similarities (e.g., Miller 1967). 677

Dipoena (Lasaeola) lugens is a phantom species in the sense of Breitling et al. (2015, 2016), 678 probably not native and not reported again since the original description. It is thus considered a 679 nomen dubium and not included in the tree. 680

The relationships between the three Episinus species are inferred from their barcode sequences. 681

The placement of Coleosoma floridanum is uncertain, as it is not necessarily congeneric with 682 the species analysed by Liu et al. (2016). The placement of Simitidion as sister of Phylloneta 683 is based on Wunderlich (2008; general morphological affinity) and Knoflach (1996; mating 684 behaviour). The placement of Theonoe is based on Agnarsson et al. (2007). 685

Cryptachaea riparia is considered a member of Parasteatoda, based on the arguments detailed 686 in Breitling (2019d). The internal relationships between the Parasteatoda species are based on 687 barcode data and morphology. 688

The relationships between the Rugathodes species are based on morphological similarities. 689

The genus Theridion is clearly polyphyletic on a global scale, and its phylogeny inferred on 690 the basis of morphology and barcode data is not always consistent with more comprehensive 691 molecular phylogenies. To retain monophyletic genera in the tree, T. pinastri is placed in 692 Allotheridion, following Archer (1950): barcode data place the species very close to the type 693 species, and the general genus concept proposed by Archer seems validated by the molecular 694 data, including the closeness to Phylloneta. The transfer of T. hannoniae to the same genus is 695 based on its membership in the petraeum-group (Bosmans et al. 1994). Platnickina tincta is 696 returned to Theridion s. str., to be conservative and avoid changing the name of common species 697 that have always been placed in Theridion. 698

Thomisidae 699

Phylogenetic studies of the crab spiders, e.g., by Benjamin (2011), Benjamin et al. (2008), 700 Ileperuma Arachchi & Benjamin (2019), and Ono (1988), focus on the higher-level phylogeny 701 of the family and include relatively few species that have close relatives in the British fauna. 702 Barcode data can help to guide tree reconstructions in areas left unresolved by these global 703 analyses. Misumena is placed as sister to Pistius, based on the barcode data, with strong support. 704 Diaea is considered sister of the two, based on morphological similarity, with Thomisus sister of 705 all three. Arrangements within Coriarachnini are based on Breitling (2019a), placing Bassaniodes 706 as sister of Psammitis + Xysticus, in a conservative arrangement relative to Ozyptila + Cozyptila. 707 Ozyptila sanctuaria and O. pullata are considered sisters of O. claveata, based on their similarity 708 to the barcode-sequenced O. arctica. Resolving the trichotomy at the basis of Xysticus s. str. in 709 Breitling (2019a) is difficult with the available data, and X. bifasciatus is placed basal to the 710 other British members of Xysticus s.str. without strong arguments in favour of this placement. 711

16/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Ozyptila maculosa is a phantom species as defined by Breitling et al. (2015, 2016), possibly 712 referring to a malformed specimen of O. atomaria. It is thus considered a nomen dubium and not 713 included in the tree. 714

Zodariidae 715

The proposed topology is based on the informal, non-cladistic species groups proposed by 716 Bosmans (1997), which seem not entirely inconsistent with the limited barcode data available 717 for the family. 718

Discussion 719

The phylogenetic tree proposed here can be used for a large variety of applications, for instance 720 in evolutionary and conservation biology. A few illustrative examples are shown in Figures 2 721 and 3. Figure 2 illustrates the phylogenetic distribution of a number of classical morphological 722 traits traditionally used in the identification of linyphiid spiders. The phylogenetic tree allows 723 organising a large and unwieldy data matrix to facilitate the identification of patterns. While 724 there is a high degree of homoplasy for all characters, many show clear trends in agreement with 725 traditional (typological) classifications of Linyphiidae, such as the loss of tibial spines (Wiehle 726 formula) and the distal movement of the trichobothrium on metatarsus 4 in “higher” linyphiids. 727 In many cases, these trends extend beyond genus boundaries, and their identification requires the 728 more detailed framework provided by the phylogenetic tree, e.g., regarding the the large body 729 size in the “basal” Linyphiinae (Linyphia, Frontinella and their relatives). Another obvious use 730 of this character map is its application as a starting point for correcting the tree and proposing 731 better alternative hypotheses. 732

Figure 3 uses the tree to search for potential correlations between phylogeny and ecological 733 traits. Data on the distribution of spiders in Great Britain (at the hectad level) were obtained 734 from the Spider Recording Scheme database and a number of ecological indicator values were 735 calculated for each species (excluding accidental introductions for which ecological analyses 736 would be inappropriate): (1) an estimate of the abundance of the species, based on the number of 737 occupied hectads; the weight of each hectad was decreased by 1% for each year since the latest 738 record from this hectad; (2) an indication of the recency of observations, based on the median 739 year of the latest record per hectad; (3) a characterisation of the North-South distribution based 740 on the median distance of the occupied hectads from the southern edge of the British Ordnance 741 Survey national grid; (4) a “Vulnerability Index”, 1 minus the quantile of the average of the 742 recency quantile and the abundance quantile for each species, where high values (close to 1) 743 indicate species that are reported from only a small number of hectads and have few or no recent 744 records, while low values (close to 0) indicate species that are widespread and have often been 745 recorded recently; (5) a “Contraction Index”, i.e., the quantile of the difference between the 746 abundance and recency quantiles, where high values (close to 1) indicate widespread species, 747 however with relatively few recent records, while low values (close to 0) indicate highly localised 748 species that have nevertheless a large fraction of recent records (e.g., new arrivals and expanding 749 species). 750

For each of the more than 680 subtrees a Wilcoxon rank sum test was applied to identify 751 clades that are significantly enriched in members with particularly high or low values for each 752 of these ecological indicators. In many cases, the results confirm previously reported informal 753 observations. For instance, the clade most significantly enriched in species with a northerly 754 distribution includes all the Linyphiidae compared to the rest of the species (Wilcoxon p-value 755 −26 < 5 × 10 ). However, the phylogenetic tree also allows an analysis at a much finer resolution. 756

17/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

In Figure 3 a few selected examples are highlighted. Some of the results follow traditional 757 family or genus boundaries and could be obtained without the help of a fully resolved tree. 758 For example, the are significantly enriched in species with a southern distribution 759 −5 (Wilcoxon p-value < 5 × 10 ). 760

More interesting, however, are those trends that are only possible to identify within the frame- 761 work of a fully resolved tree: for instance, the clade combining Mimetidae and Tetragnathidae is 762 significantly enriched in species with a particularly low Vulnerability Index (Wilcoxon p-value < 763 −5 5 × 10 ), i.e., these species are on average more widely distributed and more recently recorded 764 than the members of other clades. The fully resolved tree also allows more detailed examination 765 of trends within families, beyond genus boundaries. For example, species in the two clades 766 from Floronia bucculenta to Poeciloneta variegata and from Wabasso replicatus to Erigone 767 atra in Figure 3 are highly enriched in species with a northern distribution (Wilcoxon p-values 768 −5 −7 < 3 × 10 and < 3 × 10 , respectively). This is one more example showing that ecological 769 traits are correlated with phylogeny, beyond the coarse-grained categories of traditional Linnaean 770 classification, as has been shown for other taxa before (e.g., Thomas 2008 for birds). 771

This is particularly interesting for those cases, where the ecological variables indicate potential 772 conservation concerns. For instance, in Figure 3, the clade from Evansia merens to 773 mitrata is strongly enriched in species with a high Contraction Index (Wilcoxon p-value < 774 −5 5×10 ), i.e., these species show a surprising lack of recent records for such widespread species. 775 There are numerous potential explanations for this phenomenon, not all of which indicate an 776 immediate conservation concern, but this example nevertheless illustrates the potential of future 777 applications of the fully resolved tree for spider conservation research. 778

In conclusion, it is perhaps useful to reflect on the degree of confidence in the presented 779 tree. As stated repeatedly, there remain multiple areas where the available evidence does not 780 yet allow a highly confident decision between alternative phylogenetic hypotheses. A fully 781 resolved phylogenetic tree for the 680 British spider species could contain at most on the order 782 of 650 “mistakes” relative to the true phylogenetic history of the group (the maximum number 783 of branch moves required to transfer the tree into the correct one; Atkins & McDiarmid 2019). 784 The expected number of mistakes in a random tree would be on the order of 600. 785

Of course, one would hope that the tree proposed here is far from random and provides 786 a good initial approximation of the true phylogeny. Nevertheless, the number of mistakes is 787 probably still considerable, given the remaining instability and incompleteness of the underlying 788 datasets. This is a problem shared with almost all published phylogenies: for instance, Miller 789 & Hormiga (2004) report that their analysis of erigonine phylogeny has only 5–6 nodes (about 790 20%) in common with the topology proposed for the same genera just 4 years earlier by Hormiga 791 (2000), despite using very similar methodology. They suggest that 50–53 branch moves would 792 be required to convert the trees into one another. Even if this appears to be an overestimate, 793 considering the results of Atkins & McDiarmid (2019), it indicates that at least one of the trees 794 was still very far from reconstructing the true evolutionary history of this small sample of the 795 subfamily. 796

If the tree proposed here, for a much larger number of taxa, contains a similar number of 797 mistakes, this could be considered a major success. The number of errors in the presented tree 798 is difficult to estimate objectively, but the above calculations can provide a valuable point of 799 reference: each reader is likely to find some parts of the tree where their personal interpretation 800 of the data would lead them to prefer a different arrangement of the species. Each of them will 801 be able to count how many corrections (“branch moves”) would be required to transform the 802 presented tree into their preferred one. They can then compare the number of corrections to the 803 number of errors expected in a random tree; the ratio between the two numbers provides a metric 804 of the (subjective) correctness of the proposed phylogeny. 805

Of course, phylogenetic relationships for British spiders have been proposed before, not only 806

18/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

for individual small groups, but implicitly also for the entire order, for instance in the arrangement 807 of species in the works of, e.g., Locket & Millidge (1951, 1953) or Roberts (1985, 1987). But 808 even when the proposals were made explicit in the form of tree diagrams, they sometimes failed 809 to achieve the level of precision and specificity that would make the suggestions testable in 810 an objective way. A good example is the tree proposed by Millidge at the conclusion of his 811 analysis of the (mostly British) Linyphiidae (Millidge 1977:fig. 200): here, the tree not only 812 consistently shows extant genus groups as “evolutionary precursors” of other groups and includes 813 a number of tentative alternative branches, but most importantly it leaves a large number of 814 unresolved polytomies. All this makes the proposals not only difficult to confirm or falsify, but 815 challenges even the simple, direct comparison of individual proposals. This changes only when 816 dichotomous trees are fully specified; this enabled, for instance, the detailed and quantitative 817 comparison of alternative trees in Miller & Hormiga (2004). But even recent studies, which 818 present fully resolved trees, often present multiple alternative topologies instead of identifying a 819 single preferred tree, thus again reducing the resolution of the results by implying polytomies 820 and diminishing the predictive content and testability of the hypotheses. 821

The explicit statement of all phylogenetic hypotheses in the form of a single completely 822 resolved tree, i.e., a tree that only includes bifurcations and avoids polytomies, down to the 823 level of individual species, makes the proposals of the present synthesis eminently testable. It is 824 hoped that future analyses will identify errors and omissions in the presented tree and suggest 825 alternative, better-supported hypotheses. At the same time, the tree might serve as a basis for 826 extended analyses, perhaps initially extending the geographic scope to neighbouring countries, 827 but ultimately resulting in a completely resolved tree of the global spider fauna. 828

19/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

References

Agnarsson, I. (2004). Morphological phy- molecular phylogeny of crab spiders (Araneae: logeny of cobweb spiders and their rel- Thomisidae). Cladistics 24(5): 708–722. atives (Araneae, Araneoidea, ). doi:10.1111/j.1096-0031.2008.00202.x Zoological Journal of the Linnean Soci- Blagoev, G.A., DeWaard, J.R., Ratnasing- ety 141 (4): 447–626. doi:10.1111/j.1096- ham, S., DeWaard, S.L., Lu, L.Q., Robertson, 3642.2004.00120.x J., Telfer, A.C. & Hebert, P.D.N. (2016). Untan- Agnarsson, I., Coddington, J. A. & Knoflach, gling taxonomy: a DNA barcode reference B. (2007). Morphology and evolution of cob- library for Canadian spiders. Molecular Ecol- web spider male genitalia (Araneae, Theridi- ogy Resources 16: 325–341. Journal of Arachnology 35 idae). : 334–395. Bolzern, A., Burckhardt, D. & Hänggi, A. Agnarsson, I., Coddington, J.A. & Kuntner, (2013). Phylogeny and taxonomy of Euro- M. (2013). Systematics: Progress in the study pean funnel-web spiders of the Tegenaria– of spider diversity and evolution. 58–111. In: Malthonica complex (Araneae: Agelenidae) Penney D, ed. Spider research in the 21st cen- based upon morphological and molecular data. tury: trends & perspectives. Siri Scientific Zoological Journal of the Linnean Society 168: Press: Manchester. 723–848. doi:10.1111/zoj.12040 Almquist, S. (1978). Robertus insignis O. Bond, J.E., Garrison, N.L., Hamilton, P.-Cambr. described on material from Sweden C.A., Godwin, R.L., Hedin, M. & Agnars- (Araneae: Theridiidae). Entomologica Scandi- son, I. (2014). Phylogenomics resolves navica 9: 124–128. a spider backbone phylogeny and rejects Archer, A.F. (1950). A study of theridiid a prevailing paradigm for orb web evolu- Current Biology 24 and mimetid spiders with descriptions of new tion. : 1765–1771. genera and species. Museum Paper, Alabama doi:10.1016/j.cub.2014.06.034. Museum of Natural History 30: 1–40. Bosmans, R. (1996). The genera Araeoncus Delorripis Diplocephalus Astrin, J.J., Höfer, H., Spelda, J., Holstein, J., Simon, Simon and Bayer, S., Hendrich, L., Huber, B.A., Kielhorn, Bertkau in northern Africa (Araneae: Linyphi- K.H., Krammer, H.J., Lemke, M., Monje, J.C., idae: ): Studies on North African Belgian Journal of Zoology Morinière, J., Rulik, B., Petersen, M., Janssen, Linyphiidae VII. 126 H. & Muster, C. (2016). Towards a DNA bar- : 123–151. code reference database for spiders and harvest- Bosmans, R. (1997). Revision of the genus men of Germany. PLoS ONE 11 (e0162624): Zodarion Walckenaer, 1833, part II. Western 1–24. and Central Europe, including (Araneae: Bulletin of the British Arachno- Atkins, R., McDiarmid, C. (2019). Extremal Zodariidae). logical Society 10 distances for subtree transfer operations in (8): 265–294. binary trees. Annals of Combinatorics 23: Bosmans, R., Vanuytven, H. & Van Keer, 1–26. doi.org/10.1007/s00026-018-0410-4 J. (1994). On two poorly known Theridion Azevedo, G.H.F, Griswold, C.E. & San- species, recently collected in Belgium for the Bulletin of tos, A.J. (2018). Systematics and evolution first time (Araneae: Theridiidae). the British Arachnological Society 9 of ground spiders revisited (Araneae, Diony- : 236–240. cha, Gnaphosidae). Cladistics 34(6): 579–626. Bosselaers, J. & Jocqué, R. (2002). doi:10.1111/cla.12226 Studies in : cladistic analy- Benjamin, S.P. (2011). Phylogenetics sis of 38 corinnid and liocranid genera, Zoologica and comparative morphology of crab spiders and transfer of Phrurolithinae. Scripta 31 (Araneae: , Thomisidae). Zootaxa (3): 241–270. doi:10.1046/j.1463- 3080: 1–108. doi:10.11646/zootaxa.3080.1.1 6409.2002.00080.x Benjamin, S.P., Dimitrov, D., Gillespie, Bosselaers, J. & Jocqué, R. (2013). Stud- R.G. & Hormiga, G. (2008). Family ties: ies in Liocranidae (Araneae): a new afrotopi-

20/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

cal genus featuring a synapomorphy for the Russell, D., Reynolds, S.J. & Cassey, P. (2016). Cybaeodinae. European Journal of Taxonomy Eggshell pigment composition covaries with 40: 1–49. doi:10.5852/ejt.2013.40 phylogeny but not with life history or with nest- Ecol- Braun, R. (1967). Agroeca dentigera Kul- ing ecology traits of British passerines. ogy and Evolution 6 czynski 1913, eine für Deutschland neue Clu- : 1637–1645. bionide (Arach., Araneae). Senckenbergiana Buckle, D.J., Carroll, D., Crawford, R.L. & Biologica 48: 179–181. Roth, V.D. (2001). Linyphiidae and Breitling, R., Lemke, M., Bauer, T., Hohner, of America north of Mexico: checklist, syn- Fabreries Supplement M., Grabolle, A. & Blick, T. (2015). Phan- onymy, and literature. , 10 tom spiders: notes on dubious spider species : 89–191. from Europe. Arachnologische Mitteilungen Busschere, C. de, Fannes, W., Henrard, 50: 65–80. doi:10.5431/aramit5010 A., Gaublomme, E., Jocqué, R. & Baert, L. Breitling, R., Bauer, T., Schäfer, M., Morano, (2014). Unravelling the goblin spiders puz- E., Barrientos, J.A. & Blick, T. (2016). Phan- zle: rDNA phylogeny of the family Oonopi- Systematics & Phy- tom spiders 2: More notes on dubious spider dae (Araneae). logeny 72 species from Europe. Arachnologische Mit- (2): 177–192. teilungen 52: 50–77. doi:10.5431/aramit5209 Canard, A. & Cruveillier, M. (2019). Révi- Alopecosa Breitling, R. (2017). Public DNA barcod- sion des de du groupe accentuata/barbipes/farinosa ing data resolve the status of the genus Arbori- « » (Lycosidae, Bulletin caria (Araneae: Gnaphosidae). Arachnologis- Araneae), données et distribution. de l’Association Française d’Arachnologie 2 che Mitteilungen 54: 24–27 & Supplements : 1-4. doi:10.5431/aramit5405 2–19. Breitling, R. (2019a). A barcode-based Coddington, J.A. (2005). Phylogeny and phylogenetic scaffold for Xysticus and its classification of spiders. 18–24. In: Ubick, relatives (Araneae: Thomisidae: Coriarach- D., P. Paquin, P.E. Cushing, and V. Roth (eds). Spiders of North America: an identifica- nini). Ecologica Montenegrina 20: 198–206. 2005. tion manual doi:10.37828/em.2019.20.16 . American Arachnological Soci- ety. Breitling, R. (2019b). Barcode taxonomy at the genus level. Ecologica Montenegrina 21: Crews, S.C., Garcia, E.L., Spagna, J.C., Van 17–37. doi:10.37828/em.2019.21.2 Dam, M.H. & Esposito, L.A. (2020). The life aquatic with spiders (Araneae): repeated Breitling, R. (2019c). How not to con- evolution of aquatic habitat association in Dic- duct a scientific debate: a counterpoint to the tynidae and allied taxa. Zoological Journal of recent critique of the “pragmatic classification” the Linnean Society 189(3): 862–920 & Suppl. of jumping spiders (Arthropoda: Arachnida: doi:10.1093/zoolinnean/zlz139 Araneae: Salticidae). Ecologica Montenegrina 21: 62–69. doi:10.37828/em.2019.21.7 Dimitrov, D., Benavides, L.R., Arnedo, M.A., Giribet, G., Griswold, C.E., Scharff, N. Breitling, R. (2019d). A little learn- & Hormiga, G. (2017). Rounding up the usual ing is a dangerous thing – on the useful- suspects: a standard target-gene approach for ness of barcode data for genus-level taxon- resolving the interfamilial phylogenetic rela- omy. Ecologica Montenegrina 22: 40–49. tionships of ecribellate orb-weaving spiders doi:10.37828/em.2019.22.4 with a new family-rank classification (Araneae, Breitling, R. (2019e). Euophrys petren- Araneoidea). Cladistics 33(3): 221–250 & sis C. L. Koch, 1837, is a genuine mem- Suppl. doi:10.1111/cla.12165 ber of the genus Talavera (Araneae: Saltici- Domènech, M., Crespo, L.C., Enguídanos, dae). Bonn zoological Bulletin 68(2): 183–187. A. & Arnedo, M.A. (2020). Mitochondrial doi:10.20363/BZB-2019.68.2.183 discordance in closely related Theridion spi- Brulez, K., Mikšík, I., Cooney, C.R., Hauber, ders (Araneae, Theridiidae), with description M.E., Lovell, P.G., Maurer, G., , S.J., of a new species of the T. melanurum group.

21/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Zoosystematics and Evolution 96(1): 159–173. Mitteleuropas: Corinninae und Liocraninae doi:10.3897/zse.96.49946 (Arachnida, Araneae). Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg Dupérré, N. & Paquin, P. (2007). Revision (NF) 27 of the North American genus Scirites (Araneae, : 1–91. Linyphiidae). Zootaxa 1460: 47–58. Hedin, M., Derkarabetian, S., Ramírez, M.J., Durka, W. & Michalski, S.G. (2012). Vink, C. & Bond, J.E. (2018). Phylogenomic Daphne: a dated phylogeny of a large European reclassification of the world’s most venomous flora for phylogenetically informed ecological spiders (, Atracinae), with Scientific analyses. Ecology 93: 2297–2297. implications for venom evolution. Reports 8(1636): 1–7. doi:10.1038/s41598- Fernández, R., Hormiga, G. & Giri- 018-19946-2 bet, G. (2014). Phylogenomic analysis of spiders reveals nonmonophyly of orb Hedin, M., Derkarabetian, S., Alfaro, A., weavers. Current Biology 24: 1772–1777. Ramírez, M.J. & Bond, J.E. (2019). Phyloge- doi:10.1016/j.cub.2014.06.035. nomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Myga- Fernández, R., Kallal, R., Dimitrov, D., lomorphae), with notes on ultracon- Ballesteros, J.A., Arnedo, M.A., Giribet, G. served element loci. Peer J 7(e6864): 1–24. & Hormiga, G. (2018). Phylogenomics, doi:10.7717/peerj.6864 diversification dynamics, and comparative Spinnen transcriptomics across the spider tree of Heimer, S. & Nentwig, W. (1991). Mitteleuropas: Ein Bestimmungsbuch. life. Current Biology 28: 1489–1497. Paul doi:10.1016/j.cub.2018.03.064. Parey, , 543 pp. Frick, H., Nentwig, W., Kropf, C. (2010). Helbig, A.J., Knox, A.G., Parkin, D.T., Sang- Progress in erigonine spider phylogeny—the ster, G. & Collinson, M. (2002). Guidelines for Ibis 144 Savignia-group is not monophyletic (Araneae: assigning species rank. : 518–525. Linyphiidae). Organisms Diversity & Evolu- Helsdingen, P.J. van (1979) Remarks con- tion 10: 297–310. cerning Clubionidae. Bulletin of the British Arachnological Society 4 Garrison, N.L., Rodriguez, J., Agnarsson, I., (7): 298–302. Coddington, J.A., Griswold, C.E., Hamilton, Hepner, M. & Milasowszky, N. (2006). C.A., Hedin, M., Kocot, K.M., Ledford, J.M. Morphological separation of the central Euro- & Bond, J.E. (2016). Spider phylogenomics: pean Trochosa females (Araneae, Lycosi- untangling the spider tree of life. Peer J 4: dae). Arachnologische Mitteilungen 31: 1–7. e1719. doi:10.7717/peerj.1719. doi:10.5431/aramit3101 Gavish-Regev, E., Hormiga, G. & Scharff, Hormiga, G. (1993). Implications of the N. (2013). Pedipalp sclerite homolo- phylogeny of Pimoidae for the systematics gies and phylogenetic placement of the of linyphiid spiders (Araneae, Araneoidea, spider genus Stemonyphantes (Linyphiidae, Linyphiidae). Memoirs of the Queensland Araneae) and its implications for linyphiid phy- Museum 33: 533–542. Invertebrate Systematics 27 logeny. (1): 38–52. Hormiga, G. (1994). Cladistics and the com- doi:10.1071/IS12014 parative morphology of linyphiid spiders and Godwin, R.L., Opatova, V., Garrison, N.L., their relatives (Araneae, Araneoidea, Linyphi- Hamilton, C.A. & Bond, J.E. (2018). Phy- idae). Zoological Journal of the Linnean Soci- logeny of a cosmopolitan family of morpho- ety 111: 1–71. logically conserved trapdoor spiders (Mygalo- Hormiga, G. (2000). Higher level phyloge- morphae, ) using Anchored Hybrid netics of erigonine spiders (Araneae, Linyphi- Enrichment, with a description of the fam- idae, Erigoninae). Smithsonian Contributions Molecu- ily, Pocock 1901. to Zoology 609: 1–160. lar Phylogenetics and Evolution 126: 303–313. doi:10.1016/j.ympev.2018.04.008 Hormiga, G. & Scharff, N. (2005). Mono- phyly and phylogenetic placement of the spi- Grimm, U. (1986). Die Clubionidae

22/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

der genus Labulla Simon, 1884 (Araneae, tosa-Arten (Araneae: Lycosidae). Archivio Linyphiidae) and description of the new genus Zoologico Italiano 45: 251–270. Pecado Zoological Journal of the Linnean . Kraus, O. (2000). Why no subspecies in spi- Society 143 (3): 359–404. doi:10.1111/j.1096- ders. European Arachnology 2000: 303–314. 3642.2005.00147.x Kronestedt, T. (1980). Comparison between Huber, B.A., Eberle, J. & Dimitrov, D. Pirata tenuitarsis Simon, new to Sweden (2018). The phylogeny of pholcid spiders: a and England, and P. piraticus (Clerck), with critical evaluation of relationships suggested by notes on taxonomic characters in male Pirata ZooKeys molecular data (Araneae, ). (Araneae: Lycosidae). Entomologica Scandi- 789 : 51–101. doi:10.3897/zookeys.789.22781 navica 11: 65–77. Ileperuma Arachchi, I.S. & Benjamin, S.P. Kulkarni, S., Wood, H., Lloyd, M., Hormiga, (2019). Twigs that are not twigs: phylogenetic G. (2020). Spider-specific probe set for ultra- Tmarus placement of crab spiders of the genus conserved elements offers new perspectives of Sri Lanka with comments on the higher-level on the evolutionary history of spiders (Arach- Invertebrate System- phylogeny of Thomisidae. nida, Araneae). Molecular Ecology Resources atics 33 (3): 575–595. doi:10.1071/IS18074 20:185–203. doi:10.1111/1755-0998.13099 Ivanov, V., Lee, K.M. & Mutanen, M. Kuntner, M., Hamilton, C. A., Cheng, R.- (2018). Mitonuclear discordance in wolf spi- C., Gregoric,ˇ M., Lupse, N., Lokovsek, T., ders: Genomic evidence for species integrity Lemmon, E. M., Lemmon, A. R., Agnars- Molecular Ecology 27 and introgression. : son, I., Coddington, J. A. & Bond, J. E. 1681–1695. (2019). Golden orbweavers ignore biological Jocqué, R. & Dippenaar-Schoeman, A.S. rules: phylogenomic and comparative anal- (2006). Spider families of the world. Musée yses unravel a complex evolution of sexual Royal de l’Afrique Central Tervuren, 336 pp. size dimorphism. Systematic Biology 68(4): Kallal, R.J. & Hormiga, G. (2018). An 555–572. doi:10.1093/sysbio/syy082 expanded molecular phylogeny of metaine spi- Lasut, L., Nentwig, W., Kropf, C. (2015). ders (Araneae, Tetragnathidae) with descrip- Two species or just one? DNA barcoding fails tion of new taxa from Taiwan and the in Enoplognatha spp. 29th European Congress Philippines. Invertebrate Systematics 32(2): of Arachnology Programme and Abstracts: 400–422. doi:10.1071/IS17058 106. Kallal, R.J. & Hormiga, G. (2019). Evolu- Letunic, I. & Bork, P. (2019) Interactive tion of the male palp morphology of the orb- Tree Of Life (iTOL) v4: recent updates and weaver hunting spider Chorizopes (Araneae: new developments. Nucleic Acids Research 47: Araneidae) revisited on a new phylogeny of W256–W259. doi:10.1093/nar/gkz239 Araneidae, and description of a third species Levi, H. W. (1971). The diadematus group Invertebrate Systematics from Madagascar. of the orb-weaver genus Araneus north of 33 (3): 473–487. doi:10.1071/IS18061 Mexico (Araneae: Araneidae). Bulletin of Kallal, R.J., Dimitrov, D., Arnedo, M.A., the Museum of Comparative Zoology 141: Giribet, G. & Hormiga, G. (2020). Mono- 131–179. phyly, taxon sampling, and the nature of ranks Levi, H. W. (1973). Small orb-weavers of in the classification of orb-weaving spiders the genus Araneus north of Mexico (Araneae: Systematic Biology (Araneae: Araneoidea). Araneidae). Bulletin of the Museum of Com- 69 (2): 401–411. doi:10.1093/sysbio/syz043 parative Zoology 145: 473–552. Knoflach, B. (1996). Das Männchen von Levi, H.W. (1981). The American orb- Simitidion agaricographum (Levy & Amitai) weaver genera Dolichognatha and Tetragnatha Berichte (Arachnida: Araneae, Theridiidae). north of Mexico (Araneae: Araneidae, Tetrag- des Naturwissenschaftlich-Medizinischen Vere- nathinae). Bulletin of the Museum of Compara- ins in Innsbruck 83 : 149–156. tive Zoology 149: 271–318. Knülle, W. (1959). Über italienische Arc-

23/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Liu, J., May-Collado, L.J., Pekár, S. & 10: 118–120. Agnarsson, I. (2016) A revised and dated Merrett, P. & Stevens, R. A. (1999). The phylogeny of cobweb spiders (Araneae, Ara- male of Nothophantes horridus Merrett & neoidea, Theridiidae): A predatory Creta- Stevens (Araneae: Linyphiidae). Bulletin of the ceous lineage diversifying in the era of the British Arachnological Society 11: 129–130. ants (Hymenoptera, Formicidae). Molecu- lar Phylogenetics and Evolution 94: 658–675 Mikhailov, K.G. (1995). Erection of infra- doi:10.1016/j.ympev.2015.09.023 generic groupings within the spider genus Clu- biona Latreille, 1804 (Aranei Clubionidae): a Locket, G.H. & Millidge, A.F. (1951). typological approach. Arthropoda Selecta 4(2): British spiders. Vol. I. Ray Society London, 33–48. 310 pp. Mikhailov, K. G. & Fet, V. Y. (1986). Locket, G.H. & Millidge, A.F. (1953). Materialy po faune paukov (Aranei) Turk- British spiders. Vol. II. Ray Society London, menij. I. Semejstva , Sparassi- 449 pp. dae, Zoridae, Clubionidae, Micariidae, Oxyop- Lohmander, H. (1945). Arachnologische idae. Sbornik Trudov Zoologicheskogo Muzeya Fragmente 3. Die Salticiden-Gattung Neon MGU, Moscow State University 24: 168–186. Göteborgs Kungliga Simon in Südschweden. Miller, F. (1967). Studien über die Kop- Vetenskaps och Vitterhets Samhälles Handlin- ulationsorgane der Spinnengattung Zelotes, gar 3B (6) (9): 31–75. Micaria, Robertus und Dipoena nebst Beschrei- Maddison, W.P. (2015). A phylogenetic clas- bung einiger neuen oder unvollkommen bekan- sification of jumping spiders (Araneae: Saltici- nten Spinnenarten. Pˇrírodovˇednépráce ústav˚u dae). Journal of Arachnology 43(3): 231–292. Ceskoslovenskéˇ Akademie Vˇedv Brnˇe(N.S.) 1: doi:10.1636/arac-43-03-231-292 251–298. Maddison, W.P., Li, D.Q., Bodner, M., Miller, J.A. & Hormiga, G. (2004). Clade Zhang, J.X., Xu, X., Liu, Q.Q. & Liu, F.X. stability and the addition of data: A case study (2014). The deep phylogeny of jumping spiders from erigonine spiders (Araneae: Linyphiidae, (Araneae, Salticidae). ZooKeys 440: 57–87. Erigoninae). Cladistics 20: 385–442. doi:10.3897/zookeys.440.7891 Millidge, A.F. (1977). The conformation of Maddison, W.P., Evans, S.C., Hamilton, the male palpal organs of linyphiid spiders, and C.A., Bond, J.E., Lemmon, A.R. & Lemmon, its application to the taxonomic and phyloge- E.M. (2017). A genome-wide phylogeny of netic analysis of the family (Araneae: Linyphi- jumping spiders (Araneae, Salticidae), using idae). Bulletin of the British Arachnological anchored hybrid enrichment. ZooKeys 695: Society 4: 1–60. 89–101. doi:10.3897/zookeys.695.13852 Millidge, A.F. (1984). The taxonomy of Maddison, W.P., Maddison, D.R., Derkara- the Linyphiidae, based chiefly on the epigynal betian, S. & Hedin, M. (2020). Sit- and tracheal characters (Araneae: Linyphiidae). ticine jumping spiders: phylogeny, classi- Bulletin of the British Arachnological Society fication, and chromosomes (Araneae, Salti- 6: 229–267. ZooKeys 925 cidae, Sitticini). : 1–54. Millidge, A.F. (1987). The erigonine spiders doi:10.3897/zookeys.925.39691 of North America. Part 8. The genus Eperigone Merrett, P. (1963). The palpus of male Crosby and Bishop (Araneae, Linyphiidae). spiders of the family Linyphiidae. Pro- American Museum Novitates 2885: 1–75. ceedings of the Zoological Society of Lon- Millidge, A.F. (1993). Further remarks on don 140 (3): 347–467. doi:10.1111/j.1469- the taxonomy and relationships of the Linyphi- 7998.1963.tb01867.x idae, based on the epigynal duct confirmations Merrett, P. & Stevens, R. A. (1995). A new and other characters (Araneae). Bulletin of the genus and species of linyphiid spider from British Arachnological Society 9: 145–156. south-west England (Araneae: Linyphiidae). Murphy, J.A. & Roberts, M.J. (2015). Spi- Bulletin of the British Arachnological Society

24/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

der families of the world and their spinnerets. 262: 1–27. doi:10.5852/ejt.2017.262 British Arachnological Society, York, volume Piacentini, L.N. & Ramírez, M.J. (2019). 1 & 2, pp. i-xii, 1–189; xiii-xvi, 191-553. Hunting the wolf: a molecular phylogeny of Muster, C. & Thaler, K. (2004). New species the wolf spiders (Araneae, Lycosidae). Molecu- and records of Mediterranean lar Phylogenetics and Evolution 136: 227–240. (Arachnida, Araneae): I. Philodromus aureolus doi:10.1016/j.ympev.2019.04.004 Diversität und Biolo- group. In: Thaler, K. (ed.) Pfander, P.V. (2011). Semispecies and gie von Webspinnen, Skorpionen und anderen unidentified hidden hybrids (for example of Spinnentieren. Denisia 12 : 305–326. birds of prey). Raptors Conservation 23: Nadolny, A.A., Omelko, M.M., Marusik, 74–105. Y.M. & Blagoev, G. (2016). A new Platania, L., Pavlek, M. & Arnedo, M.A. Pardosa species of spider belonging to the (2020). Testing the monophyly of the lugubris -group (Araneae: Lycosidae) from ground-dweller spider genus Harpactea Bris- Zootaxa 4072 Far East Asia. (2): 263–281. towe, 1939 (Araneae, ) with the doi:10.11646/zootaxa.4072.2.8 description of three new species. Sys- Nentwig, W., Blick, T., Bosmans, R., Gloor, tematics and Biodiversity 18(7): 688–707. D., Hänggi, A. & Kropf, C. (2020) Spi- doi:10.1080/14772000.2020.1776786 ders of Europe. Version 5.2020. Online Ramírez, M.J. (2014). The morphology at https://www.araneae.nmbe.ch, 1 May 2020. and phylogeny of dionychan spiders (Araneae: doi:10.24436/1 ). Bulletin of the American Ono, H. (1988). A revisional study of the spi- Museum of Natural History 390: 1–374. der family Thomisidae (Arachnida, Araneae) of doi:10.1206/821.1 Japan. National Science Museum Tokyo, 252 Ramírez, M.J., Grismado, C.J., Ubick, D., pp. Ovtcharenko, V.I., Cushing, P.E., Platnick, N.I., Opatova, V., Hamilton, C.A., Hedin, M., Wheeler, W.C., Prendini, L., Crowley, L.M. Montes de Oca, L., Král, J. & Bond, J.E. & Horner, N.V. (2019). Myrmecicultoridae, (2020). Phylogenetic systematics and evolu- a new family of myrmecophilic spiders from tion of the spider infraorder Mygalomorphae the Chihuahuan Desert (Araneae, Entelegy- using genomic scale data. Systematic Biology nae). American Museum Novitates 3930: 1–24. 69(4): 671–707. doi:10.1093/sysbio/syz064 doi:10.1206/3930.1 Oxford, G. (2019). Non-additive effects Ramírez, M.J., Magalhaes, I.L.F., Derkara- on the morphology of hybrids between betian, S., Ledford, J., Griswold, C.E., Wood, two species of large house spiders, Erati- H.M. & Hedin, M. (2021). Sequence cap- gena saeva and E. duellica (Araneae: Age- ture phylogenomics of true spiders reveals lenidae). Arachnology 18(3): 223–236. convergent evolution of respiratory sys- doi:10.13156/arac.2019.18.3.223 tems. Systematic Biology 70: 14–20. Oxford, G. & Bolzern, A. (2018). Molecules doi:10.1093/sysbio/syaa043 v. morphology – is Eratigena atrica Ratnasingam, S. & Hebert, P.D.N. (2007). (Araneae: Agelenidae) one species or BOLD: The Barcode of Life Data System three? Arachnology 17(7): 337–357. (www.barcodinglife.org). Molecular Ecol- doi:10.13156/arac.2017.17.7.337 ogy Notes 7:355–364. doi: 10.1111/j.1471- Paquin, P., Dupérré, N., Buckle, D.J. & 8286.2006.01678.x Crawford, R.L. (2008). A new spider genus Roberts, M.J. (1985). The spiders of Great from North America: Frederickus (Araneae: Britain and Ireland, Volume 1: Atypidae to Linyphiidae). Biology 58: 91–112. Theridiosomatidae. Harley Books Colchester, Pavlek, M. & Ribera, C. (2017). Krypton- England, 229 pp. esticus deelemanae gen. et sp. nov. (Araneae, Roberts, M.J. (1987). The spiders of Great Nesticidae), with notes on the Mediterranean Britain and Ireland, Volume 2: Linyphiidae and cave species. European Journal of Taxonomy check list. Harley Books Colchester, England,

25/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

204 pp. twig, W. et al. Spiders of Europe, Rodrigues, B.V.B. & Rheims, C.A. http://www.araneae.nmbe.ch. Version May (2020). Phylogenetic analysis of the sub- 2020. family Prodidominae (Arachnida: Araneae: Sullivan, M.J.P., Newson, S.E. & Pearce- Gnaphosidae). Zoological Journal of Higgins, J.W. (2015). Using habitat-specific the Linnean Society 190(2): 654–708. population trends to evaluate the consistency doi:10.1093/zoolinnean/zlaa013 of the effect of species traits on bird popu- Biological Conservation 192 Roquet, C., Thuiller, W. & Lavergne, lation change. : S. (2013). Building megaphylogenies for 343–352. macroecology: taking up the challenge. Sun, N., Li, B. & Tu, L.H. (2012). Ternatus, Ecography 36(1):13–26. doi:10.1111/j.1600- a new spider genus from with a cladis- 0587.2012.07773.x. tic analysis and comments on its phylogenetic Zootaxa Roquet, C., Lavergne, S. & Thuiller, placement (Araneae: Linyphiidae). 3358 W. (2014). One tree to link them : 28–54. all: a phylogenetic dataset for the Euro- Tanasevitch, A.V. (2009). The linyphiid pean tetrapoda. PLoS Currents 6: ecur- spiders of (Arachnida, Araneae, Linyphi- rents.tol.5102670fff8aa5c918e78f5592790e48. idae). Revue Suisse de Zoologie 116: 379-420. Saaristo, M.I. & Marusik, Y.M. (2004). doi:10.5962/bhl.part.81325 Revision of the Holarctic spider genus Ore- Tanikawa, A. (2000). Japanese spiders of the oneta Kulczynski,´ 1894 (Arachnida: Aranei: genus Eriophora (Araneae: Araneidae). Acta Linyphiidae). Arthropoda Selecta 12(3-4, Arachnologica 49: 17–28. 2003): 207–249. Thaler, K., Harten, A. van & Knoflach, Scharff, N., Coddington, J.A., Blackledge, B. (2004). Pirate spiders of the genus Ero T.A., Agnarsson, I., Framenau, V.W., Sz˝uts, C.L. Koch from southern Europe, Yemen, and T., Hayashi, C.Y. & Dimitrov, D. (2020). Ivory Coast, with two new species (Arachnida, Phylogeny of the orb-weaving spider family Araneae, Mimetidae). Denisia 13: 359–368. Cladistics Araneidae (Araneae: Araneoidea). Thomas, G.H. (2008). Phylogenetic distribu- 36 (1): 1–21. doi:10.1111/cla.12382 tions of British birds of conservation concern. Shao, L.L. & Li, S.Q. (2018). Early Creta- Proceedings of the Royal Society B: Biological ceous greenhouse pumped higher taxa diver- Sciences 275(1647): 2077–83. Molecular Phyloge- sification in spiders. Tuneva, T.K. (2007). Review of the fam- netics and Evolution 127 : 146–155. doi: ily Gnaphosidae in the Ural fauna (Aranei). 5. /10.1016/j.ympev.2018.05.026. Genera Micaria Westring, 1851 and Arbori- Smith, D.A.S., Gordon, I.J. & Allen, J.A. caria Bosmans, 2000. Arthropoda Selecta (2010). Reinforcement in hybrids among once 15(3): 229–250. Danaus chrysippus isolated semispecies of Urones, C. (2005). El género Zora C.L. (L.) and evidence for sex chromosome evo- Koch, 1847 (Arachnida, Araneae, Zoridae) en Ecological Entomology 35 lution. (Special la Península Ibérica. Revista Ibérica de Arac- Issue: Insect evolution below the species level): nología 11: 7–22. 77–89. Valencia-Montoya, W.A., Elfekih, S., North, Spasojevic, T., Kropf, C., Nentwig, W. H.L., Meier, J.I., Warren, I.A., Tay, W.T., & Lasut, L. (2016). Combining morphol- Gordon, K.H.J., Specht, A., Paula-Moraes, ogy, DNA sequences, and morphometrics: S.V., Rane, R., Walsh, T.K. & Jiggins, C.D. revising closely related species in the orb- (2020) Adaptive introgression across semiper- Araniella weaving spider genus (Araneae, meable species boundaries between local Heli- Zootaxa 4111 Araneidae). (4): 448–470. coverpa zea and invasive Helicoverpa armigera doi:10.11646/zootaxa.4111.4.6 moths. Molecular Biology and Evolution 37: Stäubli, A. (2020) Interactive key 2567–2583. to linyphiid species. Online in Nen-

26/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Vane-Wright, R.I. (2020). Euploea dorippus 471–505. Klug, 1845: species, semispecies, subspecies, Wiemers, M., Chazot, N., Wheat, C.W., Danaus chrysip- junior subjective synonym of Schweiger, O. & Wahlberg, N. (2020). A com- pus chrysippus (Linnaeus), and/or form – what plete time-calibrated multi-gene phylogeny of dorippus does Klug’s represent (Lepidoptera: the European butterflies. ZooKeys 938: 97–124. Nota Lepidoptero- Nymphalidae: Danainae). doi:10.3897/zookeys.938.50878 logica 43: 117–138. Wolf, A. (1991). Taxonomical studies on Wallach, V., Wüster, W. & Broadley, D.G. (Walckenaer, 1802) (2009) In praise of subgenera: taxonomic sta- and Cheiracanthium pennyi O. P.-Cambridge, Naja tus of cobras of the genus Laurenti (Ser- 1873 (Araneae, Clubionidae). Zoologische Zootaxa 2236 pentes: Elapidae). : 26–36. Beiträge 33: 233–245. Wang, F., Ballesteros, J.A., Hormiga, G., Wunderlich, J. (1980). Revision der Chesters, D., Zhang, Y.J., Sun, N., Zhu, C.D., europäischen Arten der Gattung Micaria Chen, W. & Tu, L.H. (2015). Resolving Westring 1851, mit Anmerkungen zu den the phylogeny of a speciose spider group, übrigen paläarktischen Arten (Arachnida: Molecu- the family Linyphiidae (Araneae). Araneida: Gnaphosidae). Zoologische Beiträge lar Phylogenetics and Evolution 91 : 135–149. (N.F.) 25(1979): 233–341. doi:10.1016/j.ympev.2015.05.005 Wunderlich, J. (1995a). Zu Ökologie, Bio- Wheeler, W.C., Coddington, J.A., Crowley, geographie, Evolution und Taxonomie einiger L.M., Dimitrov, D., Goloboff, P.A., Griswold, Spinnen der Makaronesischen Inseln (Arach- C.E., Hormiga, G., Prendini, L., Ramírez, M.J., nida: Araneae). Beiträge zur Araneologie 4: Sierwald, P., Almeida-Silva, L.M., Álvarez- 385–439. Padilla, F., Arnedo, M.A., Benavides, L.R., Benjamin, S.P., Bond, J.E., Grismado, C.J., Wunderlich, J. (1995b). Über “Ameisenspin- Hasan, E., Hedin, M., Izquierdo, M.A., Labar- nen” in Mitteleuropa (Arachnida: Araneae). que, F.M., Ledford, J., Lopardo, L., Maddison, Beiträge zur Araneologie 4: 447–470. WP., Miller, J.A., Piacentini, L.N., Platnick, Wunderlich, J. (2004a). Fossil spiders N.I., Polotow, D., Silva-Dávila, D., Scharff, N., (Araneae) of the family Dictynidae s. l., includ- Sz˝uts,T., Ubick, D., Vink, C., Wood, H.M. & ing Cryphoecinae and Hahniinae in Baltic and Zhang, J.X. (2017). The spider tree of life: phy- Dominican amber and copal from Madagas- logeny of Araneae based on target-gene analy- car, and on selected extant Holarctic taxa, with ses from an extensive taxon sampling. Cladis- new descriptions and diagnoses. Beiträge zur tics 33(6): 576–616. doi:10.1111/cla.12182 Araneologie 3: 1380–1482. Wiehle, H. (1937). Spinnentiere oder Arach- Wunderlich, J. (2004b). The fossil spiders noidea. 26. Familie. Theridiidae oder Hauben- (Araneae) of the families Tetragnathidae and netzspinnen (Kugelspinnen). Die Tierwelt Zygiellidae n. stat. in Baltic and Dominican Deutschlands 33: 119–222. amber, with notes on higher extant and fossil Wiehle, H. (1956). Spinnentiere oder Arach- taxa. Beiträge zur Araneologie 3: 899–955. noidea (Araneae). 28. Familie Linyphiidae – Wunderlich, J. (2008). On extant and fos- Baldachinspinnen. Die Tierwelt Deutschlands sil (Eocene) European comb-footed spiders 44: 1–337. (Araneae: Theridiidae), with notes on their Wiehle, H. (1960). Spinnentiere oder Arach- subfamilies, and with descriptions of new taxa. noidea (Araneae). XI. Micryphantidae – Beiträge zur Araneologie 5: 140–469, 792–794, Zwergspinnen. Die Tierwelt Deutschlands 47: 796–800, 803, 819–859. 1–620. Wunderlich, J. (2011). Extant and fossil spi- Wiehle, H. (1965). Die Clubiona-Arten ders (Araneae). Beiträge zur Araneologie 6: Deutschlands, ihre natürliche Gruppierung und 1–640. die Einheitlichkeit im Bau ihrer Vulva (Arach., Wunderlich, J. (2020). Description of four Araneae). Senckenbergiana Biologica 46: new and few rare spider species from the West-

27/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

ern Palaearctic (Araneae: Dysderidae, Linyphi- 1–147. doi:10.11646/zootaxa.3938.1.1 Beiträge zur Araneolo- idae and Theridiidae). Zhang, W., Dasmahaptra, K.K., Mallet, J., gie 13 : 4–18. Moreira, G.R.P. & Kronforst, M.R. (2016). Zhang, J.X. & Maddison, W.P. (2015). Gen- Genome-wide introgression among distantly era of euophryine jumping spiders (Araneae: related Heliconius butterfly species. Genome Salticidae), with a combined molecular- Biology 17: 25. morphological phylogeny. Zootaxa 3938(1):

28/29 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure legends 829

Figure 1. Fully resolved phylogenetic tree of the British spider species. All non-British 830 spider families with European representatives are included for reference, and the tree is rooted 831 using as the outgroup. Branch lengths are arbitrary and do not indicate the timing 832 or degree of divergence. For readability, species from the same family are shown in the same 833 colour. 834

Figure 2. Selected morphological character states mapped onto the phylogenetic tree of 835 British linyphiid spiders. The framework provided by the phylogenetic information allows 836 the clear identification of patterns of character evolution, including a considerable degree of 837 homoplasy for all characters. The definition of characters and character states is based on the 838 linyphiid identification key by Anna Stäubli, provided on the Spiders of Europe website. The 839 order of columns (from left to right) follows the order of the legends (from top to bottom). The 840 left block of columns refers to characters applying to the male, the right to characters of the 841 female. The female of Centromerus minutissimus has not yet been described. 842

Figure 3. Selected ecological and conservation biological variables mapped onto the 843 phylogenetic tree of British spiders. The abundance indicates the number of occupied hectads, 844 with a 1% depreciation per year since the latest record. The recency of the observations is 845 indicated as the median year of the latest record per hectad. The northern distribution is indicated 846 by the median distance of the occupied hectads from the southern edge of the British Ordnance 847 Survey national grid. The Vulnerability Index is 1 minus the quantile of the average of the 848 recency quantile and the abundance quantile for each species. Higher values indicate species that 849 are reported from only a small number of hectads and have few or no recent records; low values 850 indicate species that are widespread and have often been recorded recently. The Contraction 851 Index is the quantile of the difference between the abundance and recency quantiles. Higher 852 values indicate widespread species with relatively few recent records; low values indicate highly 853 localised species that have nevertheless a large fraction of recent records (e.g., new arrivals and 854 expanding species). The clades highlighted in colour are discussed in more detail in the text. 855 The order of columns (from left to right) follows the order of the legends (from top to bottom). 856 Based on data provided by the UK Spider Recording Scheme. 857

29/29 Liphistiidae affinis Macrothelidae Halonoproctidae Ctenizidae Theraphosidae Nemesidae Cyrtaucheniidae Filistatidae Scytodes thoracica Psilochorus simoni Tree scale: Holocnemus pluchei Pholcus phalangioides Segestria senoculata Segestria florentina Segestria bavarica Dysdera crocata Dysdera erythrina Harpactea hombergi Harpactea rubicunda Orchestina dubia Triaeris stenaspis Oonops pulcher Oonops domesticus Oecobius navus Hersiliidae Hyptiotes paradoxus Uloborus plumipes Uloborus walckenaerius Phyxelididae Zodarion vicinum Zodarion italicum Zodarion rubidum Zodarion fuscum ferox Coelotes terrestris Coelotes atropos Agelena labyrinthica Textrix denticulata Tegenaria domestica Tegenaria silvestris Tegenaria parietina Tegenaria ferruginea Eratigena picta Eratigena agrestis Eratigena atrica Eratigena {saeva} saeva Eratigena {saeva} duellica Cryphoeca silvicola Tuberta maerens Mastigusa {arietina} arietina Mastigusa {arietina} macrophthalma Cicurina cicur Hahnia helveola Hahnia nava Hahnia pusilla elegans Iberina microphthalma Iberina montana Iberina candida Lathys stigmatisata Lathys humilis Lathys heterophthalma Argyroneta aquatica Argenna patula Argenna subnigra Dictyna uncinata Dictyna major Dictyna pusilla Dictyna arundinacea Nigma walckenaeri Nigma puella Nigma flavescens Heteropoda venatoria Micrommata virescens Zoropsis spinimana Thomisus onustus Diaea dorsata Pistius truncatus Misumena vatia Cozyptila blackwalli Ozyptila praticola Ozyptila trux Ozyptila simplex Ozyptila scabricula Ozyptila brevipes Ozyptila atomaria Ozyptila claveata Ozyptila pullata Ozyptila sanctuaria Bassaniodes robustus Psammitis sabulosus Xysticus bifasciatus Xysticus acerbus Xysticus luctuosus Xysticus lanio Xysticus ulmi Xysticus luctator Xysticus erraticus Xysticus kochi Xysticus {cristatus} cristatus Xysticus {cristatus} audax Ctenidae Oxyopes heterophthalmus Pisaura mirabilis Dolomedes fimbriatus Dolomedes plantarius Aulonia albimana Pirata piscatorius Pirata tenuitarsis Pirata piraticus Pirata latitans Pirata hygrophilus Pirata uliginosus Xerolycosa nemoralis Xerolycosa miniata Hygrolycosa rubrofasciata Arctosa alpigena Arctosa leopardus Arctosa fulvolineata Arctosa cinerea Arctosa perita Alopecosa barbipes Alopecosa fabrilis Alopecosa {pulverulenta} cuneata Alopecosa {pulverulenta} pulverulenta Trochosa ruricola Trochosa robusta Trochosa terricola Trochosa spinipalpis Pardosa tenuipes Pardosa hortensis Pardosa prativaga Pardosa pullata Pardosa {lugubris} saltans Pardosa {lugubris} lugubris Pardosa trailli Pardosa nigriceps Pardosa paludicola Pardosa amentata Pardosa monticola Pardosa palustris Pardosa {agricola} agricola Pardosa {agricola} agrestis Pardosa {agricola} purbeckensis Corinnidae Zora spinimana Zora armillata Zora nemoralis Zora silvestris Cheiracanthium pennyi Cheiracanthium erraticum Cheiracanthium virescens Thanatus formicinus Thanatus striatus Tibellus {oblongus} oblongus Tibellus {oblongus} maritimus Rhysodromus fallax Rhysodromus histrio Philodromus margaritatus Philodromus emarginatus Philodromus albidus Philodromus rufus Philodromus dispar Philodromus cespitum Philodromus buxi Philodromus collinus Philodromus praedatus Philodromus aureolus Philodromus buchari Attulus pubescens Attulus saltator Attulus distinguendus Attulus inexpectus Attulus floricola Attulus caricis Myrmarachne formicaria Neon valentulus Neon robustus Neon reticulatus chalybeius Dendryphantes rudis Macaroeris nidicolens Synageles venator Marpissa radiata Marpissa muscosa Marpissa nivoyi Hasarius adansoni Menemerus bivittatus Heliophanus auratus Heliophanus flavipes Heliophanus cupreus Heliophanus dampfi Talavera petrensis Talavera thorelli Talavera aequipes Euophrys frontalis Euophrys herbigrada Pseudeuophrys lanigera Pseudeuophrys erratica Pseudeuophrys obsoleta Aelurillus v-insignitus Phlegra fasciata Philaeus chrysops Salticus zebraneus Salticus cingulatus Salticus scenicus Evarcha arcuata Evarcha falcata Pellenes tripunctatus Sibianor aurocinctus Sibianor larae Prodidomidae Apostenus fuscus Liocranum rupicola Liocranoeca striata Scotina palliardii Scotina celans Scotina gracilipes Agroeca brunnea Agroeca dentigera Agroeca lusatica Agroeca proxima Agroeca cuprea Agroeca inopina Anyphaena numida Anyphaena accentuata Anyphaena sabina Clubiona corticalis Clubiona genevensis Clubiona leucaspis Clubiona brevipes Clubiona comta Clubiona trivialis Clubiona juvenis Clubiona diversa Clubiona subtilis Clubiona phragmitis Clubiona caerulescens Clubiona pallidula Clubiona subsultans Clubiona reclusa Clubiona norvegica Clubiona stagnatilis Clubiona rosserae Clubiona lutescens Clubiona terrestris Clubiona frisia Clubiona neglecta Clubiona pseudoneglecta Phrurolithus festivus Phrurolithus minimus Cithaeronidae Micaria albovittata Micaria pulicaria Micaria micans Micaria subopaca Micaria alpina Micaria silesiaca Phaeocedus braccatus Scotophaeus blackwalli Scotophaeus scutulatus Drassodes pubescens Drassodes {lapidosus} lapidosus Drassodes {lapidosus} cupreus Haplodrassus silvestris Haplodrassus minor Haplodrassus signifer Haplodrassus dalmatensis Haplodrassus soerenseni Haplodrassus umbratilis Callilepis nocturna Gnaphosa leporina Gnaphosa nigerrima Gnaphosa lugubris Gnaphosa occidentalis Trachyzelotes pedestris Drassyllus praeficus Drassyllus pusillus Drassyllus lutetianus Urozelotes rusticus Zelotes petrensis Zelotes longipes Zelotes electus Zelotes latreillei Zelotes {subterraneus} subterraneus Zelotes {subterraneus} apricorum Eresus sandaliatus Pseudanapis aloha Lithyphantes albomaculatus Teutana triangulosa phalerata Crustulina sticta Crustulina guttata Steatoda bipunctata Steatoda grossa Enoplognatha oelandica Enoplognatha mordax Enoplognatha caricis Enoplognatha thoracica Enoplognatha {ovata} ovata Enoplognatha {ovata} latimana Theonoe minutissima Pholcomma gibbum Robertus insignis Robertus scoticus Robertus neglectus Robertus arundineti Robertus lividus Episinus maculipes Episinus angulatus Episinus truncatus Lasaeola inornata Lasaeola tristis Lasaeola prona Lasaeola coracina Euryopis flavomaculata Dipoena torva Dipoena melanogaster Dipoena erythropus Anelosimus vittatus Kochiura aulica Paidiscura pallens Rugathodes instabilis Rugathodes bellicosus Rugathodes sexpunctatus Nesticodes rufipes Cryptachaea blattea Cryptachaea veruculata Parasteatoda riparia Parasteatoda lunata Parasteatoda {tepidariorum} tepidariorum Parasteatoda {tepidariorum} simulans Neottiura bimaculata Allotheridion pinastri Allotheridion hannoniae Simitidion similis Phylloneta impressa Phylloneta sisyphium Sardinidion blackwalli Coleosoma floridanum Theridion pictum Theridion varians Theridion hemerobium Theridion tinctum Theridion familiare Theridion melanurum Theridion mystaceum Trogloneta granulum Ero aphana Ero tuberculata Ero cambridgei Ero furcata Meta menardi Meta bourneti Metellina merianae Metellina mengei Metellina segmentata Pachygnatha clercki Pachygnatha degeeri Pachygnatha listeri Tetragnatha striata Tetragnatha nigrita Tetragnatha obtusa Tetragnatha montana Tetragnatha extensa Tetragnatha pinicola Nesticella mogera Nesticus cellulanus Kryptonesticus eremita Theridiosoma gemmosum Leviellus stroemi Zygiella atrica Zygiella x-notata Cyclosa conica Singa hamata Zilla diodia Mangora acalypha Argiope bruennichi Araneus angulatus Araniella {alpica} alpica Araniella {alpica} inconspicua Araniella displicata Hypsosinga pygmaea Hypsosinga sanguinea Hypsosinga albovittata Hypsosinga heri Nuctenea umbratica Larinioides cornutus Larinioides sclopetarius Larinioides patagiatus Neoscona adianta Atea sturmi Atea triguttata Gibbaranea gibbosa prominens Epeira alsine Epeira diademata Epeira quadrata Epeira marmorea Synaphridae Pimoidae Stemonyphantes lineatus Frontinella frutetorum Pityohyphantes phrygianus Linyphia triangularis Linyphia hortensis Microlinyphia pusilla Microlinyphia impigra Neriene peltata Neriene radiata Neriene emphana Neriene furtiva Neriene clathrata Neriene montana Kaestneria dorsalis Kaestneria pullata Bathyphantes setiger Bathyphantes approximatus Bathyphantes nigrinus Bathyphantes parvulus Bathyphantes gracilis Diplostyla concolor Porrhomma microphthalmum Porrhomma rosenhaueri Porrhomma montanum Porrhomma pygmaeum Porrhomma convexum Porrhomma oblitum Porrhomma cambridgei Porrhomma egeria Porrhomma pallidum Porrhomma campbelli Labulla thoracica Sintula corniger Oreonetides vaginatus Aphileta firma Aphileta abnormis Maro minutus Maro lepidus Maro sublestus Syedra gracilis Syedra myrmicarum Centromerus persimilis Centromerus expertus Centromerus {bicolor} bicolor Centromerus {bicolor} concinnus Centromerus capucinus Centromerus incilium Centromerus minutissimus Centromerus cavernarum Centromerus serratus Centromerus albidus Centromerus dilutus Centromerus prudens Centromerus arcanus Centromerus levitarsis Centromerus brevipalpus Centromerus semiater Floronia bucculenta Tapinopa longidens Taranucnus setosus Oryphantes angulatus Oryphantes antroniensis Oryphantes pinicola Oryphantes complicatus Lepthyphantes minutus Lepthyphantes leprosus Tenuiphantes cristatus Tenuiphantes alacris Tenuiphantes tenebricola Tenuiphantes zimmermanni Tenuiphantes flavipes Tenuiphantes tenuis Tenuiphantes mengei Megalepthyphantes nebulosus Megalepthyphantes collinus Midia midas Palliduphantes pallidus Palliduphantes ericaeus Pallidusphantes insignis Mughiphantes whymperi Bolyphantes alticeps Bolyphantes luteolus Drapetisca socialis Nothophantes horridus Poeciloneta obscura Poeciloneta expuncta Poeciloneta variegata Helophora insignis Allomengea scopigera Allomengea vidua Microneta viaria Macrargus carpenteri Macragus rufus Agyneta {Agyneta} conigera Agyneta {Agyneta} decora Agyneta {Agyneta} subtilis Agyneta {Agyneta} ramosa Agyneta {Agyneta} cauta Agyneta {Agyneta} olivacea Agyneta {Meioneta} innotabilis Agyneta {Meioneta} gulosa Agyneta {Meioneta} nigripes Agyneta {Meioneta} fuscipalpa Agyneta {Meioneta} rurestris Agyneta {Meioneta} affinis Agyneta {Meioneta} simplicitarsis Agyneta {Meioneta} mollis Agyneta {Meioneta} {saxatilis} saxatilis Agyneta {Meioneta} {saxatilis} mossica Wiehlea calcarifera Mioxena blanda Pseudomaro aenigmaticus Gongylidiellum latebricola Gongylidiellum vivum Gongylidiellum murcidum Karita paludosa Carorita limnaea Caviphantes saxetorum Asthenargus paganus Jacksonella falconeri Ostearius melanopygius Drepanotylus uncatus Leptothrix hardyi Leptorhoptrum robustum Hilaira {Hilaira} excisa Hilaira {Oreoneta} frigida Hilaira {Utopiellum} nubigena Hilaira {Utopiellum} pervicax Diplocentria bidentata Tmeticus affinis Donacochara speciosa Trematocephalus cristatus Gongylidium rufipes Notioscopus sarcinatus Hylyphantes graminicola Gnathonarium dentatum Oedothorax agrestis Oedothorax fuscus Oedothorax gibbosus Oedothorax apicatus Oedothorax retusus Wabasso replicatus Mecynargus morulus Mecynargus paetulus Halorates inerrans Halorates holmgreni Halorates reprobus Halorates distinctus Semljicola caliginosus Semljicola faustus Mermessus trilobatus Prinerigone vagans Erigone psychrophila Erigone welchi Erigone promiscua Erigone aletris Erigone tirolensis Erigone longipalpis Erigone maritima Erigone dentipalpis Erigone dentigera Erigone atra Typhochrestus digitatus Typhochrestus simoni Scotinotylus evansi Lessertia dentichelis Entelecara flavipes Entelecara congenera Entelecara acuminata Entelecara erythropus Entelecara omissa Entelecara errata Microctenonyx subitaneus Praestigia duffeyi gowerense Baryphyma pratense Baryphyma maritimum Saloca diceros Savignia {Minyriolus} pusilla Savignia {Minyriolus} cottonae Savignia {Minyriolus} servula Savignia {Araeoncus} crassiceps Savignia {Araeoncus} humilis Savignia {Araeoncus} picina Savignia {Dicymbium} protuberans Savignia {Dicymbium} tibialis Savignia {Dicymbium} {nigra} nigra Savignia {Dicymbium} {nigra} brevisetosa Savignia {Savignia} graeca Savignia {Savignia} permixta Savignia {Savignia} frontata Savignia {Savignia} hiemalis Savignia {Savignia} ignobilis Savignia {Savignia} cristata Savignia {Savignia} latifrons Savignia {Savignia} connata Micrargus subaequalis Micrargus laudatus Micrargus herbigradus Micrargus apertus Panamomops sulcifrons Satilatlas britteni Styloctetor compar Styloctetor romanus Ceratinella brevis Ceratinella brevipes Ceratinella scabrosa Evansia merens Moebelia penicillata Walckenaeria dysderoides Walckenaeria stylifrons Walckenaeria {antica} antica Walckenaeria {antica} alticeps Walckenaeria atrotibialis Walckenaeria clavicornis Walckenaeria vigilax Walckenaeria unicornis Walckenaeria kochi Walckenaeria furcillata Walckenaeria cucullata Walckenaeria cuspidata Walckenaeria obtusa Walckenaeria nudipalpis Walckenaeria incisa Walckenaeria corniculans Walckenaeria monoceros Walckenaeria nodosa Walckenaeria acuminata Walckenaeria capito Walckenaeria mitrata Minicia marginella Metopobactrus prominulus Trichoncus affinis Trichoncus hackmani Trichoncus saxicola Lophomma punctatum Hypselistes jacksoni Trichopterna cito Peponocranium ludicrum Maso gallicus Maso sundevalli Pocadicnemis {pumila} pumila Pocadicnemis {pumila} juncea Cnephalocotes obscurus Mecopisthes peusi Silometopus elegans Silometopus reussi Silometopus ambiguus Silometopus incurvatus

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint Trichopternoides thorelli (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. scurrilis Troxochrus scabriculus Monocephalus castaneipes Monocephalus fuscipes Tiso aestivus Tiso vagans Tapinocyboides pygmaeus Thyreosthenius {parasiticus} parasiticus Thyreostenius {parasiticus} biovatus Tapinocyba mitis Tapinocyba praecox Tapinocyba pallens Tapinocyba insecta Hybocoptus corrugis Dismodicus bifrons Dismodicus elevatus Hypomma cornutum Hypomma bituberculatum Hypomma fulvum Gonatium paradoxum Gonatium rubens Gonatium rubellum Pelecopsis {Parapelecopsis} susannae Pelecopsis {Parapelecopsis} nemoralis Pelecopsis {Parapelecopsis} nemoralioides Pelecopsis {Pelecopsis} elongata Pelecopsis {Pelecopsis} mengei Pelecopsis {Pelecopsis} parallela Pelecopsis {Pelecopsis} radicicola Pimoidae Stemonyphantes lineatus Frontinella frutetorum Pityohyphantes phrygianus Linyphia triangularis Linyphia hortensis Microlinyphia pusilla Microlinyphia impigra Neriene peltata Neriene radiata Neriene emphana Neriene furtiva Neriene clathrata Neriene montana Kaestneria dorsalis Kaestneria pullata Bathyphantes setiger Bathyphantes approximatus Bathyphantes nigrinus Bathyphantes parvulus Bathyphantes gracilis Diplostyla concolor Porrhomma microphthalmum Porrhomma rosenhaueri Porrhomma montanum Porrhomma pygmaeum Porrhomma convexum Porrhomma oblitum Porrhomma cambridgei Porrhomma egeria Porrhomma pallidum Porrhomma campbelli Labulla thoracica Sintula corniger Oreonetides vaginatus Aphileta firma Aphileta misera Aphileta abnormis Maro minutus Maro lepidus Maro sublestus Syedra gracilis Syedra myrmicarum Centromerus persimilis Centromerus sylvaticus Centromerus expertus Centromerus {bicolor} bicolor Centromerus {bicolor} concinnus Centromerus capucinus Male prosoma Centromerus incilium 0.4-0.6 Centromerus minutissimus Centromerus cavernarum 0.6-0.8 Centromerus serratus 0.8-1.0 Centromerus albidus Centromerus dilutus 1.0-1.2 Centromerus prudens 1.2-1.4 Centromerus arcanus Centromerus levitarsis 1.4-1.6 Centromerus brevipalpus 1.6-1.8 Centromerus semiater Floronia bucculenta 1.8-2.0 Tapinopa longidens 2.0-2.2 Taranucnus setosus Oryphantes angulatus 2.2-2.4 Oryphantes antroniensis 2.4-2.6 Oryphantes pinicola Oryphantes complicatus 2.8-3.0 Lepthyphantes minutus Lepthyphantes leprosus Wiehle formula male Tenuiphantes cristatus 0000 Tenuiphantes alacris Tenuiphantes tenebricola 0011 Tenuiphantes zimmermanni 1111 Tenuiphantes flavipes Tenuiphantes tenuis 2211 Tenuiphantes mengei 2221 Megalepthyphantes nebulosus Megalepthyphantes collinus 2222 Midia midas Palliduphantes pallidus Palliduphantes ericaeus Palliduphantes insignis Position of TmI male Mughiphantes whymperi 0.10-0.19 Bolyphantes alticeps Bolyphantes luteolus 0.20-0.29 Drapetisca socialis 0.30-0.39 Nothophantes horridus Poeciloneta obscura 0.40-0.49 Poeciloneta expuncta 0.50-0.59 Poeciloneta variegata Helophora insignis 0.60-0.69 Allomengea scopigera 0.70-0.79 Allomengea vidua Microneta viaria 0.80-0.89 Macrargus carpenteri 0.90-0.99 Macrargus rufus Agyneta {Agyneta} conigera Agyneta {Agyneta} decora Male headregion Agyneta {Agyneta} subtilis Agyneta {Agyneta} ramosa complex Agyneta {Agyneta} cauta inconspicuous Agyneta {Agyneta} olivacea Agyneta {Meioneta} innotabilis sulci present Agyneta {Meioneta} gulosa with horns/tufts Agyneta {Meioneta} nigripes with lobe (simple) Agyneta {Meioneta} fuscipalpa Agyneta {Meioneta} rurestris Agyneta {Meioneta} affinis Embolus appearance Agyneta {Meioneta} simplicitarsis Agyneta {Meioneta} mollis conspicuous, circular Agyneta {Meioneta} {saxatilis} saxatilis conspicuous, curled Agyneta {Meioneta} {saxatilis} mossica Wiehlea calcarifera unremarkable Mioxena blanda Pseudomaro aenigmaticus Gongylidiellum latebricola Pedipalp tibia Gongylidiellum vivum unremarkable Gongylidiellum murcidum Karita paludosa with complex apophysis Carorita limnaea with multiple, complex apophyses Caviphantes saxetorum Asthenargus paganus with multiple, simple apophyses Jacksonella falconeri with one or more spines Ostearius melanopygius Drepanotylus uncatus with simple apophysis Leptothrix hardyi with tufts of hair or spines Leptorhoptrum robustum Hilaira {Hilaira} excisa Hilaira {Oreoneta} frigida Paracymbium Hilaira {Utopiellum} nubigena Hilaira {Utopiellum} pervicax complex Diplocentria bidentata simple Tmeticus affinis Donacochara speciosa Trematocephalus cristatus Lamella characteristica Gongylidium rufipes Notioscopus sarcinatus absent Hylyphantes graminicola conspicuous Gnathonarium dentatum Oedothorax agrestis Oedothorax fuscus TmIV male Oedothorax gibbosus Oedothorax apicatus trichobothrium absent Oedothorax retusus trichobothrium present Wabasso replicatus Mecynargus morulus Mecynargus paetulus Posterior eye row female Halorates inerrans Halorates holmgreni procurved Halorates reprobus recurved Halorates distinctus Semljicola caliginosus straight Semljicola faustus Mermessus trilobatus Prinerigone vagans PME separation female Erigone psychrophila distinctly greater than d Erigone welchi Erigone promiscua distinctly less than d Erigone aletris equal to d Erigone tirolensis Erigone longipalpis Erigone maritima AME:ALE size female Erigone dentipalpis Erigone dentigera about the same as ALE Erigone atra distinctly larger than ALE Typhochrestus digitatus Typhochrestus simoni distinctly smaller than ALE Scotinotylus evansi Lessertia dentichelis Entelecara flavipes Prolateral spines tibia I female Entelecara congenera multiple Entelecara acuminata Entelecara erythropus none Entelecara omissa one Entelecara errata Microctenonyx subitaneus Praestigia duffeyi Sternum appearance female Baryphyma gowerense Baryphyma pratense pitted Baryphyma maritimum rugose Baryphyma trifrons Saloca diceros smooth Savignia {Minyriolus} pusilla Savignia {Minyriolus} cottonae Savignia {Minyriolus} servula Sternum width:coxae IV female Savignia {Araeoncus} crassiceps distinctly greater than d Savignia {Araeoncus} humilis Savignia {Araeoncus} picina distinctly less than d Savignia {Dicymbium} protuberans equal to d Savignia {Dicymbium} tibialis Savignia {Dicymbium} {nigra} nigra Savignia {Dicymbium} {nigra} brevisetosa Epigyne appearance Savignia {Savignia} graeca Savignia {Savignia} permixta unremarkable Savignia {Savignia} frontata with atrium/cavity Savignia {Savignia} hiemalis Savignia {Savignia} ignobilis with lateral plates Savignia {Savignia} cristata with parmula (from posterior margin) Savignia {Savignia} latifrons Savignia {Savignia} connata with scape (from anterior margin) Micrargus subaequalis with septum/medial structure Micrargus laudatus Micrargus herbigradus Micrargus apertus Epigyne form Panamomops sulcifrons Satilatlas britteni flat Styloctetor compar protrudes Styloctetor romanus Ceratinella brevis Ceratinella brevipes Epigyne visibility Ceratinella scabrosa Evansia merens underlying structures (e.g., seminal receptacles) not visible Moebelia penicillata underlying structures (e.g., seminal receptacles) visible Walckenaeria dysderoides Walckenaeria stylifrons Walckenaeria {antica} antica Walckenaeria {antica} alticeps Walckenaeria atrotibialis Walckenaeria clavicornis Walckenaeria vigilax Walckenaeria unicornis Walckenaeria kochi Walckenaeria furcillata Walckenaeria cucullata Walckenaeria cuspidata Walckenaeria obtusa Walckenaeria nudipalpis Walckenaeria incisa Walckenaeria corniculans Walckenaeria monoceros

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for thisWalckenaeria preprint nodosa (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.Walckenaeria It is made acuminata available under aCC-BY 4.0 International license. Walckenaeria capito Walckenaeria mitrata Minicia marginella Metopobactrus prominulus Trichoncus affinis Trichoncus hackmani Trichoncus saxicola Lophomma punctatum Hypselistes jacksoni Trichopterna cito Peponocranium ludicrum Maso gallicus Maso sundevalli Pocadicnemis {pumila} pumila Pocadicnemis {pumila} juncea Cnephalocotes obscurus Mecopisthes peusi Silometopus elegans Silometopus reussi Silometopus ambiguus Silometopus incurvatus Trichopternoides thorelli Troxochrus scabriculus Monocephalus castaneipes Monocephalus fuscipes Tiso aestivus Tiso vagans Tapinocyboides pygmaeus Thyreosthenius {parasiticus} parasiticus Thyreosthenius {parasiticus} biovatus Tapinocyba mitis Tapinocyba praecox Tapinocyba pallens Tapinocyba insecta Hybocoptus corrugis Dismodicus bifrons Dismodicus elevatus Hypomma cornutum Hypomma bituberculatum Hypomma fulvum Gonatium paradoxum Gonatium rubens Gonatium rubellum Pelecopsis {Parapelecopsis} susannae Pelecopsis {Parapelecopsis} nemoralis Pelecopsis {Parapelecopsis} nemoralioides Pelecopsis {Pelecopsis} elongata Pelecopsis {Pelecopsis} mengei Pelecopsis {Pelecopsis} parallela Pelecopsis {Pelecopsis} radicicola Liphistiidae Atypus affinis 110 2002 140 0.38 0.26 Macrothelidae Halonoproctidae Ctenizidae Theraphosidae Nemesidae Cyrtaucheniidae Filistatidae Sicariidae Scytodes thoracica 100 2003 190 0.32 0.22 Ochyroceratidae Psilochorus simoni 28 1990 210 0.87 0.59 Holocnemus pluchei 5 2017 250 0.48 0.03 Pholcus phalangioides 790 2013 250 0 0.48 Telemidae Segestria senoculata 738 1999 370 0.14 0.81 Segestria florentina 98 2015 160 0.17 0.14 Segestria bavarica 19 2000 80 0.64 0.17 Dysdera crocata 389 2004 230 0.08 0.36 Dysdera erythrina 178 1998 160 0.44 0.48 Harpactea hombergi 703 2003 240 0.04 0.59 Harpactea rubicunda 2 2012 170 0.58 0.02 Orchestina dubia Triaeris stenaspis Oonops pulcher 375 1998 350 0.31 0.72 Oonops domesticus 110 1993 300 0.71 0.7 Leptonetidae Palpimanidae Oecobius navus 1 2018 100 0.55 0 Hersiliidae Hyptiotes paradoxus 33 2003 160 0.48 0.15 Uloborus plumipes 203 2005 240 0.15 0.26 Uloborus walckenaerius 11 2014 135 0.44 0.06 Titanoecidae Phyxelididae Zodarion vicinum 2 1998 130 0.82 0.15 Zodarion italicum 27 2008 170 0.42 0.11 Zodarion rubidum 2 2008 170 0.63 0.04 Zodarion fuscum 5 2007 160 0.59 0.06 Amaurobius ferox 399 2001 235 0.15 0.52 Abundance (hectads) Amaurobius similis 757 2001 310 0.05 0.74 Highest 5% Amaurobius fenestralis 735 1997 410 0.22 0.93 Highest 10% Desidae Highest 20% Coelotes terrestris 102 2006 150 0.26 0.18 Others Coelotes atropos 399 1997 340 0.34 0.79 Lowest 20% Agelena labyrinthica 525 2009 200 0.02 0.33 Lowest 10% Textrix denticulata 471 2000 480 0.16 0.64 Lowest 5% Tegenaria domestica 321 1994 370 0.54 0.88 Tegenaria silvestris 302 1998 200 0.36 0.67 Recency (median year) Tegenaria parietina 44 1992 205 0.8 0.62 Highest 5% Tegenaria ferruginea 1 2013 440 0.61 0.01 Highest 10% Eratigena picta 3 1996 105 0.85 0.2 Highest 20% Eratigena agrestis 167 1998 260 0.49 0.5 Others Eratigena atrica 43 1978 340 0.87 0.78 Lowest 20% Eratigena {saeva} saeva 356 2000 350 0.22 0.56 Lowest 10% Eratigena {saeva} duellica 573 2002 280 0.08 0.58 Lowest 5% Cryphoeca silvicola 441 1996 660 0.39 0.86 Tuberta maerens 6 1986 170 0.93 0.46 Northern distribution (km) 1 1800 160 0.99 0.45 Northernmost 5% Mastigusa {arietina} arietina Northernmost 10% Mastigusa {arietina} macrophthalma Northernmost 20% Cicurina cicur 108 1992 200 0.74 0.75 Central Hahnia helveola 169 1991 260 0.69 0.88 Southernmost 20% Hahnia nava 361 2000 240 0.19 0.51 Southernmost 10% Hahnia pusilla 58 1988 230 0.83 0.75 Southernmost 5% 670 1999 360 0.15 0.78 Iberina microphthalma 1 1976 170 0.98 0.4

Vulnerability Index Iberina montana 444 1995 330 0.44 0.91 Highest 5% Iberina candida 5 1969 85 0.96 0.53 Highest 10% Lathys stigmatisata 8 2000 110 0.67 0.14 Highest 20% Lathys humilis 404 2004 210 0.07 0.39 Others Lathys heterophthalma 5 1989 145 0.93 0.39 Lowest 20% Argyroneta aquatica 222 2000 310 0.3 0.42 Lowest 10% Altella lucida 1 1926 145 1 0.42 Lowest 5% Argenna patula 34 2003 200 0.47 0.16 Argenna subnigra 114 2008 180 0.2 0.18 Contraction Index Dictyna uncinata 505 2004 250 0.06 0.43 Highest 5% Dictyna major 4 1906 805 0.98 0.51 Highest 10% Dictyna pusilla 36 1994 605 0.77 0.46 Highest 20% Dictyna arundinacea 752 2001 300 0.05 0.74 Others Brigittea latens 287 2006 190 0.11 0.28 Lowest 20% Nigma walckenaeri 152 2013 235 0.13 0.18 Lowest 10% Nigma puella 111 2011 120 0.18 0.16 Lowest 5% Nigma flavescens 2 2012 150 0.59 0.02 Heteropoda venatoria Micrommata virescens 50 1996 160 0.68 0.41 Zoropsis spinimana 21 2020 180 0.31 0.07 Thomisus onustus 21 2011 100 0.4 0.09 Diaea dorsata 332 2009 200 0.06 0.28 Pistius truncatus 1 1948 130 0.99 0.43 Misumena vatia 385 2008 160 0.04 0.3 Cozyptila blackwalli 9 1974 80 0.94 0.59 Ozyptila praticola 301 2002 240 0.18 0.39 Ozyptila trux 581 1996 410 0.33 0.92 Ozyptila simplex 148 2005 170 0.2 0.22 Ozyptila scabricula 19 1979 150 0.91 0.65 Ozyptila brevipes 140 1999 230 0.45 0.38 Ozyptila atomaria 291 1998 245 0.37 0.66 Ozyptila claveata 33 1995 120 0.75 0.39 Ozyptila pullata 1 2002 160 0.73 0.08 Ozyptila sanctuaria 181 2005 170 0.17 0.24 Bassaniodes robustus 6 1968 90 0.95 0.55 Psammitis sabulosus 50 1986 310 0.85 0.77 Xysticus bifasciatus 58 1996 175 0.66 0.4 Xysticus acerbus 35 2007 140 0.35 0.12 Xysticus luctuosus 11 1952 140 0.94 0.65 Xysticus lanio 160 2003 190 0.25 0.26 Xysticus ulmi 278 2003 260 0.16 0.32 Xysticus luctator 3 1986 135 0.95 0.38 Xysticus erraticus 308 1997 250 0.42 0.73 Xysticus kochi 234 2005 150 0.14 0.27 Xysticus {cristatus} cristatus 758 1999 550 0.1 0.84 Xysticus {cristatus} audax 145 1998 190 0.51 0.48 Ctenidae Oxyopes heterophthalmus 7 2013 140 0.49 0.05 Pisaura mirabilis 801 2010 260 0 0.53 Dolomedes fimbriatus 50 2014 130 0.24 0.12 Dolomedes plantarius 6 2018 150 0.45 0.03 Aulonia albimana 2 1972 140 0.98 0.43 Pirata piscatorius 119 1999 300 0.48 0.35 Pirata tenuitarsis 71 2002 275 0.39 0.2 Pirata piraticus 763 2002 490 0.03 0.72 Pirata latitans 304 2000 230 0.25 0.49 Pirata hygrophilus 469 1996 290 0.37 0.88 Pirata uliginosus 199 1998 300 0.45 0.56 Xerolycosa nemoralis 92 2007 150 0.24 0.17 Xerolycosa miniata 73 2002 340 0.43 0.24 Hygrolycosa rubrofasciata 14 1988 270 0.89 0.54 Arctosa alpigena 9 1990 810 0.9 0.42 Arctosa leopardus 225 2001 220 0.26 0.37 Arctosa fulvolineata 16 2004 205 0.54 0.11 Arctosa cinerea 39 1998 530 0.65 0.29 Arctosa perita 329 2000 340 0.23 0.52 Alopecosa barbipes 226 1998 280 0.42 0.6 Alopecosa fabrilis 2 1993 90 0.9 0.26 Alopecosa {pulverulenta} cuneata 122 2000 150 0.41 0.31 Alopecosa {pulverulenta} pulverulenta 731 1996 430 0.28 0.96 Trochosa ruricola 599 1999 260 0.18 0.75 Trochosa robusta 13 1987 170 0.9 0.55 Trochosa terricola 732 1996 460 0.27 0.97 Trochosa spinipalpis 88 1989 280 0.79 0.79 Pardosa tenuipes 132 2001 130 0.34 0.29 Pardosa hortensis 156 2001 160 0.32 0.31 Pardosa prativaga 646 2002 230 0.07 0.62 Pardosa pullata 772 2002 650 0.02 0.73 Pardosa {lugubris} saltans 543 1998 260 0.25 0.78 Pardosa {lugubris} lugubris 13 2011 820 0.45 0.08 Pardosa trailli 10 1954 760 0.95 0.63 Pardosa nigriceps 748 1998 380 0.16 0.9 Pardosa paludicola 5 1966 135 0.96 0.53 Pardosa amentata 761 2000 540 0.06 0.8 Pardosa monticola 331 1998 270 0.33 0.69 Pardosa palustris 721 1998 300 0.19 0.87 Pardosa {agricola} agricola 206 1996 470 0.54 0.7 Pardosa {agricola} agrestis 97 2002 230 0.37 0.24 Pardosa {agricola} purbeckensis 151 2000 350 0.37 0.34 Corinnidae Selenopidae Zora spinimana 661 2000 250 0.12 0.72 Zora armillata 3 1978 180 0.97 0.45 Zora nemoralis 15 1989 725 0.88 0.52 Zora silvestris 5 1997 195 0.81 0.19 Cheiracanthium pennyi 6 1997 100 0.8 0.2 Cheiracanthium erraticum 385 2003 230 0.12 0.4 Cheiracanthium virescens 112 2001 230 0.39 0.27 Thanatus formicinus 2 1969 125 0.98 0.46 Thanatus striatus 121 2000 190 0.42 0.3 Tibellus {oblongus} oblongus 613 2002 260 0.07 0.6 Tibellus {oblongus} maritimus 201 1993 380 0.64 0.82 Rhysodromus fallax 22 1993 320 0.84 0.41 Rhysodromus histrio 56 1990 160 0.81 0.72 Philodromus margaritatus 22 2010 140 0.41 0.1 Philodromus emarginatus 20 1987 440 0.88 0.61 Philodromus albidus 262 2010 180 0.07 0.24 Philodromus rufus 17 2018 170 0.34 0.06 Philodromus dispar 542 2004 220 0.05 0.44 Philodromus cespitum 726 2002 260 0.05 0.65 Philodromus buxi 7 2019 175 0.42 0.04 Philodromus collinus 126 2001 210 0.35 0.29 Philodromus praedatus 195 2004 210 0.18 0.27 Philodromus aureolus 698 2001 280 0.08 0.69 Philodromus buchari 27 2001 170 0.6 0.17 Attulus pubescens 198 1998 265 0.42 0.5 Attulus saltator 12 2002 185 0.63 0.12 Attulus distinguendus 2 2013 170 0.58 0.01 Attulus inexpectus 30 2004 160 0.46 0.14 Attulus floricola 8 2017 355 0.43 0.04 Attulus caricis 30 2003 275 0.49 0.15 Myrmarachne formicaria 28 2005 110 0.46 0.12 Neon valentulus 6 1982 270 0.94 0.48 Neon robustus 33 2006 355 0.39 0.13 Neon reticulatus 506 1999 360 0.2 0.7 Ballus chalybeius 119 2012 160 0.16 0.16 Dendryphantes rudis Macaroeris nidicolens 13 2019 170 0.36 0.05 Synageles venator 31 2010 180 0.34 0.11 Marpissa radiata 16 1992 280 0.86 0.44 Marpissa muscosa 106 2013 160 0.18 0.15 Marpissa nivoyi 32 2014 180 0.3 0.1 Hasarius adansoni 4 2010 430 0.56 0.05 Menemerus bivittatus Heliophanus auratus 6 2004 200 0.61 0.09 Heliophanus flavipes 505 2008 210 0.03 0.34 Heliophanus cupreus 314 2003 180 0.15 0.35 Heliophanus dampfi 9 2016 620 0.43 0.05 Talavera petrensis 24 1979 100 0.9 0.68 Talavera thorelli 1 1988 130 0.97 0.3 Talavera aequipes 195 2001 185 0.28 0.34 Euophrys frontalis 704 2003 240 0.04 0.59 Euophrys herbigrada 9 1979 50 0.93 0.55 Pseudeuophrys lanigera 164 2006 220 0.17 0.22 Pseudeuophrys erratica 63 1988 550 0.82 0.77 Pseudeuophrys obsoleta 13 2002 210 0.62 0.13 Aelurillus v-insignitus 37 2006 130 0.36 0.13 Phlegra fasciata 14 2006 110 0.5 0.1 Philaeus chrysops Salticus zebraneus 39 2012 170 0.3 0.11 Salticus cingulatus 229 1997 310 0.48 0.67 Salticus scenicus 764 2004 280 0.01 0.65 Evarcha arcuata 53 2010 130 0.28 0.13 Evarcha falcata 289 2000 220 0.26 0.48 Pellenes tripunctatus 5 1994 110 0.87 0.27 Sibianor aurocinctus 63 2006 160 0.3 0.16 Sibianor larae 2 2019 475 0.51 0.01 Prodidomidae Apostenus fuscus 1 2000 110 0.78 0.1 Liocranum rupicola 28 1997 160 0.72 0.28 Liocranoeca striata 43 1999 190 0.61 0.25 Scotina palliardii 9 1979 110 0.93 0.56 Scotina celans 88 1997 160 0.63 0.44 Scotina gracilipes 105 1992 330 0.74 0.73 Agroeca brunnea 182 1996 200 0.58 0.68 Agroeca dentigera 1 2002 290 0.73 0.08 Agroeca lusatica 2 1992 150 0.91 0.29 Agroeca proxima 470 1993 340 0.51 0.98 Agroeca cuprea 11 1999 270 0.7 0.18 Agroeca inopina 111 1997 170 0.61 0.48 Anyphaena numida 5 2019 180 0.45 0.02 Anyphaena accentuata 561 2003 210 0.06 0.5 Anyphaena sabina 7 2019 180 0.43 0.03 Clubiona corticalis 311 1998 230 0.35 0.68 Clubiona genevensis 7 1992 75 0.89 0.35 Clubiona leucaspis Clubiona brevipes 406 2000 230 0.19 0.61 Clubiona comta 734 2002 260 0.05 0.66 Clubiona trivialis 358 1995 525 0.47 0.87 Clubiona juvenis 13 2006 220 0.49 0.09 Clubiona diversa 537 1994 390 0.45 0.96 Clubiona subtilis 182 2003 200 0.23 0.28 Clubiona phragmitis 531 2002 290 0.12 0.57 Clubiona caerulescens 11 1964 280 0.94 0.64 Clubiona pallidula 318 1999 250 0.28 0.6 Clubiona subsultans 9 2010 815 0.5 0.07 Clubiona reclusa 751 1999 395 0.12 0.83 Clubiona norvegica 40 1992 360 0.79 0.57 Clubiona stagnatilis 404 1999 320 0.24 0.68 Clubiona rosserae 2 2010 270 0.61 0.03 Clubiona lutescens 657 1998 310 0.21 0.83 Clubiona terrestris 643 2000 240 0.13 0.7 Clubiona frisia 10 1997 310 0.78 0.23 Clubiona neglecta 202 2003 240 0.21 0.29 Clubiona pseudoneglecta 4 2007 130 0.59 0.06 Trachelidae Phrurolithus festivus 368 2003 210 0.12 0.39 Phrurolithus minimus 18 1998 150 0.72 0.23 Cithaeronidae Micaria albovittata 12 1998 70 0.76 0.23 Micaria pulicaria 4 2014 490 0.52 0.03 Micaria micans 25 2010 160 0.4 0.1 Micaria subopaca 29 2013 155 0.33 0.1 Micaria alpina 4 1984 780 0.95 0.44 Micaria silesiaca 27 1997 140 0.73 0.28 Phaeocedus braccatus 21 1995 110 0.79 0.31 Scotophaeus blackwalli 287 2001 290 0.22 0.42 Scotophaeus scutulatus 2 1998 220 0.84 0.16 Drassodes pubescens 113 1997 150 0.6 0.48 Drassodes {lapidosus} lapidosus 354 1993 240 0.56 0.94 Drassodes {lapidosus} cupreus 638 1997 340 0.26 0.89 Haplodrassus silvestris 29 1995 180 0.77 0.35 Haplodrassus minor 14 2000 200 0.65 0.17 Haplodrassus signifer 465 1995 360 0.43 0.92 Haplodrassus dalmatensis 28 2000 120 0.62 0.19 Haplodrassus soerenseni 2 2011 810 0.58 0.04 Haplodrassus umbratilis 3 1977 100 0.97 0.46 Callilepis nocturna 3 2002 80 0.68 0.09 Gnaphosa leporina 48 1985 475 0.86 0.76 Gnaphosa nigerrima 1 2017 350 0.57 0.01 Gnaphosa lugubris 7 1988 80 0.91 0.46 Gnaphosa occidentalis 2 2004 10 0.65 0.07 Trachyzelotes pedestris 135 2003 160 0.27 0.25 Drassyllus praeficus 31 1999 115 0.64 0.23 Drassyllus pusillus 278 2003 220 0.16 0.32 Drassyllus lutetianus 30 1997 155 0.71 0.29 Urozelotes rusticus 4 1954 300 0.97 0.52 Zelotes petrensis 18 1998 160 0.72 0.23 Zelotes longipes 13 1979 100 0.92 0.61 Zelotes electus 75 2003 270 0.35 0.19 Zelotes latreillei 402 1999 240 0.24 0.67 Zelotes {subterraneus} subterraneus 26 1998 270 0.69 0.25 Zelotes {subterraneus} apricorum 177 1999 210 0.4 0.43 Eresus sandaliatus 1 1956 90 0.99 0.43 Pseudanapis aloha Lithyphantes albomaculatus 25 1998 160 0.69 0.24 Teutana triangulosa 5 2015 300 0.5 0.04 208 2000 280 0.31 0.41 Crustulina sticta 38 1996 260 0.72 0.36 Crustulina guttata 159 1999 230 0.42 0.4 Steatoda bipunctata 567 2001 290 0.12 0.63 Steatoda grossa 210 2013 170 0.08 0.21 Steatoda nobilis 352 2017 170 0.02 0.24 Enoplognatha oelandica 3 1900 140 0.99 0.49 Enoplognatha mordax 31 2000 190 0.59 0.19 Enoplognatha caricis 4 2014 250 0.53 0.03 Enoplognatha thoracica 378 2000 220 0.2 0.57 Enoplognatha {ovata} ovata 771 2002 480 0.03 0.73 Enoplognatha {ovata} latimana 267 2009 190 0.08 0.25 Theonoe minutissima 203 1999 480 0.36 0.47 Pholcomma gibbum 568 1996 350 0.33 0.91 Robertus insignis 1 1944 310 0.99 0.43 Robertus scoticus 1 1988 745 0.96 0.33 Robertus neglectus 114 1990 280 0.76 0.82 Robertus arundineti 233 1995 360 0.57 0.76 Robertus lividus 712 1994 560 0.36 0.99 Episinus maculipes 35 2015 90 0.27 0.11 Episinus angulatus 390 2003 215 0.1 0.41 Episinus truncatus 60 2004 110 0.34 0.17 Lasaeola inornata 46 2001 130 0.51 0.21 Lasaeola tristis 22 2011 110 0.39 0.09 Lasaeola prona 15 1972 95 0.92 0.66 Lasaeola coracina 1 1902 90 1 0.4 Euryopis flavomaculata 93 1992 305 0.76 0.74 Dipoena torva 10 2011 800 0.48 0.07 Dipoena melanogaster 4 1976 140 0.97 0.46 Dipoena erythropus 8 2006 140 0.57 0.08 Anelosimus vittatus 657 2006 230 0.02 0.44 Kochiura aulica 46 2008 105 0.31 0.13 Paidiscura pallens 770 2002 320 0.03 0.72 Rugathodes instabilis 102 1997 220 0.63 0.45 Rugathodes bellicosus 30 2002 550 0.54 0.16 Rugathodes sexpunctatus 4 2015 660 0.51 0.03 Nesticodes rufipes Cryptachaea blattea 27 2019 170 0.29 0.08 Cryptachaea veruculata 1 1998 10 0.84 0.14 Parasteatoda riparia 57 2004 195 0.35 0.17 Parasteatoda lunata 288 2002 220 0.19 0.37 Parasteatoda {tepidariorum} tepidariorum 105 2003 270 0.32 0.22 Parasteatoda {tepidariorum} simulans 189 2002 210 0.25 0.31 Neottiura bimaculata 786 2003 270 0.02 0.7 Allotheridion pinastri 25 2012 180 0.37 0.09 Allotheridion hannoniae 1 2009 190 0.63 0.02 Simitidion simile 205 2006 180 0.14 0.25 Phylloneta impressa 459 2004 290 0.07 0.4 Phylloneta sisyphia 743 1999 330 0.14 0.81 Sardinidion blackwalli 106 2001 240 0.41 0.27 Coleosoma floridanum 4 1997 250 0.82 0.18 Theridion pictum 169 2000 270 0.38 0.39 Theridion varians 660 2003 250 0.04 0.56 Theridion hemerobium 70 2004 290 0.33 0.18 Theridion tinctum 466 2004 230 0.07 0.4 Theridion familiare 31 1995 230 0.76 0.37 Theridion melanurum 258 1996 260 0.5 0.75 Theridion mystaceum 526 1999 270 0.2 0.71 Trogloneta granulum 2 2012 265 0.58 0.02 Ero aphana 84 2016 170 0.17 0.13 Ero tuberculata 44 2000 160 0.56 0.23 Ero cambridgei 628 1998 290 0.22 0.82 Ero furcata 446 1996 280 0.38 0.86 Meta menardi 213 2002 370 0.23 0.32 Meta bourneti 44 2006 230 0.34 0.14 Metellina merianae 745 1999 420 0.13 0.82 Metellina mengei 775 2001 490 0.03 0.77 Metellina segmentata 760 1999 500 0.1 0.85 Pachygnatha clercki 765 2001 430 0.04 0.76 Pachygnatha degeeri 758 2000 470 0.07 0.79 Pachygnatha listeri 196 1992 280 0.66 0.87 Tetragnatha striata 144 2005 345 0.21 0.22 Tetragnatha nigrita 173 2003 210 0.24 0.27 Tetragnatha obtusa 291 1999 240 0.3 0.57 Tetragnatha montana 772 2001 330 0.04 0.77 Tetragnatha extensa 776 2003 495 0.02 0.7 Tetragnatha pinicola 179 2002 210 0.26 0.3 Nesticella mogera Nesticus cellulanus 240 2000 370 0.28 0.45 Kryptonesticus eremita 1 2017 160 0.57 0.01 Theridiosoma gemmosum 131 2007 150 0.19 0.19 Leviellus stroemi 16 1994 160 0.82 0.33 Zygiella atrica 601 1998 310 0.23 0.81 Zygiella x-notata 789 2004 330 0.01 0.67 Cyclosa conica 491 2002 240 0.11 0.5 Singa hamata 28 1994 305 0.78 0.37 Zilla diodia 232 2014 150 0.07 0.21 Mangora acalypha 246 2016 140 0.05 0.21 Argiope bruennichi 324 2015 150 0.03 0.24 Araneus angulatus 55 2009 100 0.28 0.14 Araniella {alpica} alpica 8 1994 140 0.86 0.29 Araniella {alpica} inconspicua 43 1996 190 0.71 0.38 Araniella displicata 14 1992 160 0.87 0.41 Araniella cucurbitina 760 2002 270 0.03 0.71 Araniella opisthographa 493 2002 240 0.11 0.51 Hypsosinga pygmaea 348 2004 230 0.09 0.34 Hypsosinga sanguinea 41 2004 150 0.41 0.15 Hypsosinga albovittata 93 2003 170 0.33 0.21 Hypsosinga heri 1 1965 175 0.99 0.42 Nuctenea umbratica 775 2005 310 0.01 0.62 Larinioides cornutus 781 2004 380 0.01 0.66 Larinioides sclopetarius 259 2005 270 0.13 0.28 Larinioides patagiatus 71 1996 260 0.66 0.47 Neoscona adianta 186 2010 150 0.13 0.21 Agalenatea redii 425 2007 190 0.04 0.32 Atea sturmi 185 2001 270 0.3 0.33 Atea triguttata 146 2003 180 0.26 0.25 Gibbaranea gibbosa 330 2004 210 0.11 0.33 120 1997 190 0.6 0.49 Epeira alsine 33 2005 250 0.41 0.14 Epeira diademata 774 2006 540 0 0.58 Epeira quadrata 772 2005 340 0.01 0.62 Epeira marmorea 14 1995 270 0.81 0.3 Synaphridae Pimoidae Stemonyphantes lineatus 596 1995 300 0.37 0.95 Frontinella frutetorum 1 2003 250 0.69 0.06 Pityohyphantes phrygianus 113 1996 630 0.64 0.56 Linyphia triangularis 752 1999 460 0.12 0.83 Linyphia hortensis 679 1998 270 0.2 0.85 Microlinyphia pusilla 756 1999 420 0.11 0.83 Microlinyphia impigra 165 1997 250 0.54 0.59 Neriene peltata 750 1999 390 0.12 0.82 Neriene radiata 10 1986 750 0.91 0.51 Neriene emphana 4 2012 145 0.54 0.04 Neriene furtiva 29 1996 110 0.74 0.31 Neriene clathrata 760 1999 380 0.09 0.86 Neriene montana 681 1996 300 0.28 0.95 Kaestneria dorsalis 317 1994 300 0.54 0.88 Kaestneria pullata 622 1996 320 0.3 0.9 Bathyphantes setiger 110 2006 520 0.24 0.18 Bathyphantes approximatus 664 1999 370 0.15 0.77 Bathyphantes nigrinus 657 1993 340 0.43 1 Bathyphantes parvulus 622 1994 345 0.4 0.98 Bathyphantes gracilis 787 2005 530 0 0.64 Diplostyla concolor 733 1997 320 0.23 0.93 Porrhomma microphthalmum 257 1997 240 0.46 0.69 Porrhomma rosenhaueri 2 1994 195 0.89 0.22 Porrhomma montanum 68 1991 580 0.79 0.72 Porrhomma errans 33 1992 310 0.82 0.55 Porrhomma pygmaeum 745 2000 320 0.09 0.75 Porrhomma convexum 122 1988 310 0.77 0.88 Porrhomma oblitum 44 1991 230 0.81 0.65 Porrhomma cambridgei 2 1945 145 0.99 0.47 Porrhomma egeria 34 1986 380 0.87 0.71 Porrhomma pallidum 168 1990 540 0.72 0.9 Porrhomma campbelli 48 1988 295 0.84 0.73 Labulla thoracica 552 1998 310 0.25 0.79 Sintula corniger 112 1994 340 0.68 0.69 Oreonetides vaginatus 82 1993 770 0.73 0.67 Aphileta firma 121 1991 360 0.74 0.8 Aphileta misera 244 2002 370 0.21 0.35 Aphileta abnormis 638 1993 390 0.44 1 Maro minutus 47 1982 460 0.86 0.78 Maro lepidus 9 1983 460 0.92 0.53 Maro sublestus 10 1989 570 0.9 0.47 Syedra gracilis 29 1998 210 0.68 0.26 Syedra myrmicarum 3 2015 250 0.53 0.02 Centromerus persimilis 1 1938 505 1 0.42 Centromerus sylvaticus 431 1993 340 0.52 0.97 Centromerus expertus 462 1998 350 0.28 0.75 Centromerus {bicolor} bicolor 681 1996 370 0.29 0.95 Centromerus {bicolor} concinnus 638 1995 380 0.35 0.97 Centromerus capucinus 10 1992 200 0.87 0.36 Centromerus incilium 29 1995 210 0.77 0.36 Centromerus minutissimus 1 1992 260 0.94 0.25 Centromerus cavernarum 10 1986 185 0.91 0.51 Centromerus serratus 20 1985 130 0.89 0.64 Centromerus albidus 2 1969 140 0.98 0.43 Centromerus dilutus 551 1995 340 0.39 0.94 Centromerus prudens 234 1989 520 0.68 0.97 Centromerus arcanus 177 1997 680 0.53 0.61 Centromerus levitarsis 6 1981 555 0.94 0.49 Centromerus brevipalpus 4 1965 130 0.97 0.5 Centromerus semiater 4 1989 310 0.93 0.35 Floronia bucculenta 267 1993 250 0.62 0.89 Tapinopa longidens 373 1991 410 0.62 0.99 Taranucnus setosus 151 1996 270 0.6 0.64 Oryphantes angulatus 80 1994 615 0.69 0.58 Oryphantes antroniensis 1 1980 800 0.98 0.37 Oryphantes pinicola 23 1981 510 0.89 0.66 Oryphantes complicatus 14 1993 785 0.85 0.36 Lepthyphantes minutus 669 1998 310 0.2 0.84 Lepthyphantes leprosus 307 1995 300 0.52 0.82 Tenuiphantes cristatus 560 1996 450 0.33 0.91 Tenuiphantes alacris 634 1994 415 0.4 0.98 Tenuiphantes tenebricola 427 1994 470 0.48 0.94 Tenuiphantes zimmermanni 760 1999 650 0.1 0.85 Tenuiphantes flavipes 740 2000 270 0.09 0.75 Tenuiphantes tenuis 784 2005 560 0.01 0.63 Tenuiphantes mengei 764 1999 560 0.09 0.86 Megalepthyphantes nebulosus 79 1980 300 0.84 0.85 Megalepthyphantes collinus 31 2016 170 0.29 0.09 Midia midas 3 1979 190 0.96 0.45 Palliduphantes pallidus 542 1994 300 0.44 0.96 Palliduphantes ericaeus 754 1998 570 0.15 0.91 Palliduphantes insignis 66 1994 260 0.72 0.58 Mughiphantes whymperi 46 1993 770 0.78 0.57 Bolyphantes alticeps 188 1990 620 0.7 0.92 Bolyphantes luteolus 395 1991 560 0.61 0.99 Drapetisca socialis 569 1999 350 0.18 0.74 Nothophantes horridus 2 2018 50 0.52 0.01 Poeciloneta obscura 550 1993 370 0.48 0.99 Poeciloneta expuncta 92 1994 780 0.69 0.63 Poeciloneta variegata 503 1992 440 0.54 0.99 Helophora insignis 492 1993 360 0.5 0.98 Allomengea scopigera 245 1990 580 0.67 0.96 Allomengea vidua 144 1989 320 0.75 0.89 Microneta viaria 757 1999 310 0.11 0.84 Macrargus carpenteri 23 1993 760 0.83 0.42 Macrargus rufus 436 1993 340 0.52 0.97 Agyneta {Agyneta} conigera 354 1991 380 0.62 0.99 Agyneta {Agyneta} decora 314 1993 440 0.59 0.92 Agyneta {Agyneta} subtilis 245 1990 330 0.67 0.96 Agyneta {Agyneta} ramosa 121 1991 310 0.74 0.8 Agyneta {Agyneta} cauta 163 1988 530 0.75 0.93 Agyneta {Agyneta} olivacea 106 1996 740 0.64 0.52 Agyneta {Meioneta} innotabilis 123 1992 250 0.71 0.78 Agyneta {Meioneta} gulosa 72 1990 525 0.8 0.76 Agyneta {Meioneta} nigripes 55 1993 795 0.76 0.6 Agyneta {Meioneta} fuscipalpa 2 2008 280 0.63 0.04 Agyneta {Meioneta} rurestris 710 1998 260 0.19 0.86 Agyneta {Meioneta} affinis 243 1998 320 0.41 0.62 Agyneta {Meioneta} simplicitarsis 49 2001 140 0.5 0.22 Agyneta {Meioneta} mollis 67 1987 140 0.83 0.79 Agyneta {Meioneta} {saxatilis} saxatilis 312 2004 320 0.13 0.32 Agyneta {Meioneta} {saxatilis} mossica 58 2014 730 0.23 0.12 Wiehlea calcarifera 8 1973 110 0.94 0.57 Mioxena blanda 20 1987 240 0.88 0.61 Pseudomaro aenigmaticus 4 1990 120 0.92 0.34 Gongylidiellum latebricola 88 1992 350 0.75 0.71 Gongylidiellum vivum 662 1998 350 0.21 0.84 Gongylidiellum murcidum 30 1992 265 0.84 0.51 Karita paludosa 5 1999 305 0.75 0.15 Carorita limnaea 2 2018 340 0.53 0.01 Caviphantes saxetorum 13 1988 470 0.9 0.53 Asthenargus paganus 55 1993 435 0.76 0.6 Jacksonella falconeri 56 1979 390 0.86 0.81 Ostearius melanopygius 310 1999 260 0.29 0.59 Drepanotylus uncatus 253 1995 480 0.55 0.78 Leptothrix hardyi 79 1972 475 0.85 0.89 Leptorhoptrum robustum 332 1994 400 0.55 0.92 Hilaira {Hilaira} excisa 338 1996 550 0.47 0.83 Hilaira {Oreoneta} frigida 135 1995 790 0.64 0.67 Hilaira {Utopiellum} nubigena 20 1987 600 0.88 0.61 Hilaira {Utopiellum} pervicax 65 2000 810 0.51 0.26 Diplocentria bidentata 76 1988 470 0.81 0.79 Tmeticus affinis 108 1999 350 0.5 0.32 Donacochara speciosa 27 1994 290 0.8 0.39 Trematocephalus cristatus 63 2015 140 0.21 0.12 Gongylidium rufipes 748 1998 310 0.16 0.9 Notioscopus sarcinatus 40 1993 490 0.79 0.53 Hylyphantes graminicola 331 2005 220 0.09 0.31 Gnathonarium dentatum 783 2004 320 0.01 0.66 Oedothorax agrestis 290 1995 360 0.52 0.81 Oedothorax fuscus 763 2000 390 0.06 0.8 Oedothorax gibbosus 759 1999 400 0.1 0.85 Oedothorax apicatus 336 1999 290 0.27 0.63 Oedothorax retusus 743 1998 410 0.17 0.9 Wabasso replicatus 1 2002 800 0.73 0.08 Mecynargus morulus 71 1992 690 0.77 0.69 Mecynargus paetulus 5 2006 785 0.58 0.07 Halorates inerrans 289 1997 230 0.44 0.71 Halorates holmgreni 16 1993 815 0.85 0.38 Halorates reprobus 115 1997 380 0.6 0.49 Halorates distinctus 47 1990 370 0.82 0.7 Semljicola caliginosus 22 1986 525 0.88 0.65 Semljicola faustus 114 2004 620 0.25 0.2 Mermessus trilobatus 28 2017 170 0.31 0.08 Prinerigone vagans 157 2000 300 0.36 0.34 Erigone psychrophila 10 1984 845 0.92 0.54 Erigone welchi 6 1975 380 0.95 0.52 Erigone promiscua 299 1994 480 0.56 0.86 Erigone aletris 30 2000 680 0.62 0.19 Erigone tirolensis 34 1994 800 0.78 0.45 Erigone longipalpis 195 1996 370 0.56 0.69 Erigone maritima 211 1992 580 0.65 0.89 Erigone dentipalpis 749 1998 440 0.14 0.87 Erigone dentigera 21 1990 790 0.87 0.54 Erigone atra 765 2000 500 0.06 0.81 Typhochrestus digitatus 131 1989 360 0.75 0.87 Typhochrestus simoni 5 1990 140 0.92 0.38 Scotinotylus evansi 112 1993 755 0.7 0.71 Lessertia dentichelis 43 1993 310 0.78 0.55 Entelecara flavipes 82 1998 160 0.6 0.36 Entelecara congenera 47 1997 215 0.67 0.34 Entelecara acuminata 238 1998 230 0.37 0.56 Entelecara erythropus 223 1990 340 0.68 0.94 Entelecara omissa 32 1990 280 0.85 0.63 Entelecara errata 54 1994 770 0.74 0.52 Microctenonyx subitaneus 61 1988 300 0.82 0.77 Praestigia duffeyi 9 1988 205 0.91 0.46 Baryphyma gowerense 11 2018 290 0.38 0.05 Baryphyma pratense 143 1994 310 0.66 0.73 Baryphyma maritimum 12 2008 340 0.49 0.08 Baryphyma trifrons 332 2000 580 0.22 0.53 Saloca diceros 34 1992 250 0.81 0.57 Savignia {Minyriolus} pusilla 311 1999 570 0.29 0.59 Savignia {Minyriolus} cottonae 11 2018 100 0.39 0.05 Savignia {Minyriolus} servula 15 1995 230 0.81 0.3 Savignia {Araeoncus} crassiceps 172 1989 490 0.73 0.92 Savignia {Araeoncus} humilis 217 1991 330 0.67 0.93 Savignia {Araeoncus} picina 598 1996 300 0.32 0.93 Savignia {Dicymbium} protuberans 17 1980 435 0.91 0.64 Savignia {Dicymbium} tibialis 392 1995 440 0.46 0.89 Savignia {Dicymbium} {nigra} nigra 642 1996 340 0.31 0.94 Savignia {Dicymbium} {nigra} brevisetosa 36 1996 365 0.7 0.33 Savignia {Savignia} graeca 11 2016 160 0.4 0.06 Savignia {Savignia} permixta 721 1998 400 0.19 0.87 Savignia {Savignia} frontata 731 1996 400 0.27 0.96 Savignia {Savignia} hiemalis 558 1996 380 0.34 0.91 Savignia {Savignia} ignobilis 81 1994 255 0.69 0.58 Savignia {Savignia} cristata 419 1992 350 0.57 0.99 Savignia {Savignia} latifrons 619 1995 360 0.36 0.96 Savignia {Savignia} connata 2 1958 550 0.98 0.46 Micrargus subaequalis 284 1998 250 0.38 0.65 Micrargus laudatus 33 1989 100 0.86 0.66 Micrargus herbigradus 745 1997 325 0.22 0.94 Micrargus apertus 243 1997 680 0.47 0.68 Panamomops sulcifrons 112 1998 190 0.56 0.41 Satilatlas britteni 49 1993 365 0.77 0.58 Styloctetor compar 135 1999 190 0.45 0.38 Styloctetor romanus 33 2003 190 0.47 0.16 Ceratinella brevis 384 1993 380 0.55 0.95 Ceratinella brevipes 755 1998 480 0.15 0.91 Ceratinella scabrosa 161 1998 260 0.49 0.49 Evansia merens 64 1984 540 0.84 0.81 Moebelia penicillata 132 1993 280 0.68 0.75 Walckenaeria dysderoides 123 1990 240 0.75 0.83 Walckenaeria stylifrons 1 1994 280 0.9 0.2 Walckenaeria {antica} antica 641 1996 320 0.31 0.94 Walckenaeria {antica} alticeps 53 1997 330 0.65 0.36 Walckenaeria atrotibialis 284 1995 270 0.53 0.8 Walckenaeria clavicornis 75 1991 770 0.78 0.73 Walckenaeria vigilax 328 1993 370 0.58 0.93 Walckenaeria unicornis 558 1995 290 0.39 0.95 Walckenaeria kochi 133 1992 430 0.7 0.79 Walckenaeria furcillata 70 1994 205 0.7 0.55 Walckenaeria cucullata 169 1991 275 0.7 0.87 Walckenaeria cuspidata 467 1992 460 0.57 1 Walckenaeria obtusa 60 1988 240 0.83 0.76 Walckenaeria nudipalpis 615 1993 370 0.46 1 Walckenaeria incisa 46 1990 320 0.83 0.68 Walckenaeria corniculans 7 1974 140 0.95 0.54 Walckenaeria monoceros 103 1987 290 0.8 0.84 Walckenaeria nodosa 130 1991 460 0.73 0.82 Walckenaeria acuminata 724 1995 460 0.32 0.98 Walckenaeria capito 56 1993 300 0.76 0.61 Walckenaeria mitrata 1 1988 155 0.96 0.33 Minicia marginella 3 2015 330 0.53 0.01 Metopobactrus prominulus 299 1994 340 0.56 0.86 Trichoncus affinis 14 2005 155 0.52 0.11 Trichoncus hackmani 5 1996 225 0.83 0.2 Trichoncus saxicola 26 1983 110 0.88 0.67 Lophomma punctatum 747 2000 380 0.08 0.76 Hypselistes jacksoni 188 1995 395 0.6 0.72 Trichopterna cito 5 1992 120 0.88 0.31 Peponocranium ludicrum 536 1998 380 0.25 0.78 Maso gallicus 18 2007 260 0.46 0.1 Maso sundevalli 749 1998 300 0.16 0.9 Pocadicnemis {pumila} pumila 759 1999 510 0.1 0.85 Pocadicnemis {pumila} juncea 543 2002 240 0.09 0.55 Cnephalocotes obscurus 589 1999 360 0.18 0.74 Mecopisthes peusi 28 1991 160 0.85 0.54 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.434792; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Silometopus elegans 389 1995 510 0.46 0.88 Silometopus reussi 122 1994 240 0.66 0.69 Silometopus ambiguus 128 2000 420 0.4 0.31 Silometopus incurvatus 18 2001 670 0.63 0.15 Trichopternoides thorelli 203 1992 380 0.66 0.88 Acartauchenius scurrilis 8 1997 110 0.79 0.21 Troxochrus scabriculus 216 1998 270 0.43 0.6 Monocephalus castaneipes 140 1996 320 0.61 0.62 Monocephalus fuscipes 734 1996 460 0.27 0.97 Tiso aestivus 35 1993 800 0.79 0.5 Tiso vagans 670 1996 370 0.29 0.95 Tapinocyboides pygmaeus 7 1991 360 0.89 0.37 Thyreosthenius {parasiticus} parasiticus 156 1991 320 0.71 0.84 Thyreosthenius {parasiticus} biovatus 40 1998 280 0.64 0.27 Tapinocyba mitis 11 1970 100 0.93 0.63 Tapinocyba praecox 208 1991 340 0.67 0.92 Tapinocyba pallens 234 1991 560 0.66 0.93 Tapinocyba insecta 66 1990 270 0.8 0.74 Hybocoptus corrugis 39 2009 120 0.32 0.12 Dismodicus bifrons 745 1998 400 0.17 0.9 Dismodicus elevatus 8 1981 810 0.93 0.51 Hypomma cornutum 397 2002 240 0.14 0.47 Hypomma bituberculatum 758 1999 470 0.11 0.84 Hypomma fulvum 46 2002 230 0.47 0.19 Gonatium paradoxum 4 1978 150 0.96 0.47 Gonatium rubens 740 1996 500 0.26 0.97 Gonatium rubellum 375 1992 310 0.59 0.98 Pelecopsis {Parapelecopsis} susannae 1 2019 70 0.55 0 Pelecopsis {Parapelecopsis} nemoralis 164 1998 620 0.49 0.49 Pelecopsis {Parapelecopsis} nemoralioides 71 1994 220 0.72 0.6 Pelecopsis {Pelecopsis} elongata 5 2008 805 0.57 0.06 Pelecopsis {Pelecopsis} mengei 183 1993 520 0.65 0.8 Pelecopsis {Pelecopsis} parallela 336 2000 260 0.22 0.54 Pelecopsis {Pelecopsis} radicicola 3 1979 150 0.96 0.44