Environmental Impact Statement

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Impact Statement Final Environmental Impact Statement Elwha River Ecosystem Restoration Purpose and Need: The Elwha River ecosystem and native anadromous fisheries are severely degraded as a result of two hydroelectric dams (projects) and their reservoirs built in the early 1900s. Congress has mandated the full restoration of this ecosystem and its native anadromous fisheries through the Elwha River Ecosystem and Fisheries Restoration Act (Public Law 102-495). The Department of the Interior therefore finds there is a need to return this river and the ecosystem to its natural, self-regulating state, and proposes removing both dams to accomplish this purpose and fulfill the congressional mandate. Proposed Action: The U.S. Department of the Interior proposes to fully restore the Elwha River ecosystem and native anadromous fisheries through the decommissioning of Elwha Dam and Glines Canyon Dam and removal of all structures necessary, including all or part of both dams, powerhouses, reservoirs, and associated facilities to achieve this purpose. The proposed action is located in Clallam County, on the Olympic Peninsula, in Washington State. Lead agency: National Park Service Cooperating agencies: U.S. Fish and Wildlife Service, U.S. Bureau of Reclamation, U.S. Bureau of Indian Affairs, U.S. Army Corps of Engineers, and the Lower Elwha S’Klallam Tribe Type of statement: This is a final environmental impact statement. In preparing this, the Department of the Interior has adopted the majority of a draft environmental impact statement titled “Proposed Elwha (FERC No.2683) and Glines Canyon (FERC No.588) Hydroelectric Projects, Washington” as updated and renamed Draft Staff Report in March 1993 prepared by the Federal Energy Regulatory Commission. Also incorporated into the record of this environmental impact statement is the Elwha Report and its appendixes, prepared by the U.S. departments of the Interior and Commerce and the Lower Elwha S’Klallam Tribe (Jan. 1994). This environmental impact statement supersedes both the Federal Energy Regulatory Commission environmental impact statement and the Elwha Report. Abstract: In addition to the proposed action, four other alternatives are examined. They are: Dam Retention with mitigation measures installed for fish passage, Removing Glines Canyon Dam only and installing fish passage measures at Elwha Dam, Removing Elwha Dam only and installing fish passage measures at Glines Canyon Dam, and No Action (dams are retained without fish passage measures). The proposed action is also the Department of the Interior’s “preferred alternative.” Short term negative impacts from removing both dams could occur from sediment built up behind them. If sediment is allowed to erode naturally, the finer grained particles, such as silt and clay, could temporarily but significantly impact fish or other aquatic organisms. Impacts on water quality, river morphology, native anadromous and resident (i.e., trout and char) fisheries, living marine resources, wildlife, threatened and endangered species, vegetation, cultural resources, land use, recreation, esthetics, socioeconomics and river ecology are also examined in this environmental impact statement. Alternatives other than the proposed action may also have significant impacts on each of these resources. Difference between the Final and Draft Environmental Impact Statement: Comments were taken both orally and in writing for a period of 60 days on the draft environmental impact statement released in October 1994. The comment period ended December 23, 1994. Substantive comments were responded to both in a question and answer format and/or by making changes, additions or corrections in the text of the draft environmental impact statement. The changed draft is this document, Interior’s final environmental impact statement. Pg. 2 = pg. 0&i Summary In the early 1900s, the free-flowing Elwha River on the Olympic Peninsula in Washington State was blocked with two hydroelectric dams (See Figure 1). The Elwha Dam was built 4.9 miles from the mouth of the Elwha River beginning in September 1910. It impounded the reservoir known as Lake Aldwell. Construction on Glines Canyon Dam, 8.5 miles farther upstream, began in 1926, creating the reservoir known as Lake Mills. Although the dams helped in the early development of the peninsula, the presence and operation of the hydropower projects cause severe problems for anadromous fish, the ecosystem, and the Lower Elwha S’Klallam Tribe. The dams block the migration path for several species of salmon and trout, which, after maturing in the ocean, return to the Elwha to lay their eggs (spawn). Migrating fish such as these are anadromous. The dams also prevent or limit the downstream flow of nutrients, sediment, and woody debris the fish need to successfully spawn and rear juveniles, inundate fish habitat and result in elevated temperatures downstream. The Elwha River was used by 10 runs of salmon and trout before the dams were built. The fish fed more than 22 species of wildlife and were the basis of much of the culture and economy of the Lower Elwha S’Klallam Tribe. Because of the dams, the flow regime of the river changed from active meandering in many places to less active and more channelized. Reduced sediment supply from the river has caused the eastern edge of the pre-dam Elwha delta to erode, and the barrier beach at Freshwater Bay to recede and steepen. It has also contributed to the erosion of Ediz Hook, the sand spit that protects Port Angeles Harbor. In recognition of these problems, the Department of the Interior finds, consistent with congressional intent expressed in the Elwha River Ecosystem and Fisheries Restoration Act (P.L. 102-495; see Appendix), a need to fully restore the native anadromous fisheries and Elwha River ecosystem. For the purposes of Elwha River restoration, “full restoration” is interpreted by the Department of the Interior to mean reestablishment of natural physical and biological ecosystem processes, including recovery of the terrestrial and riverine habitat currently inundated by the reservoirs. Since the wildlife habitat and river upstream of the dams are in nearly pristine condition, removing the dams and fully restoring the 10 runs of salmon and trout would fully restore the Elwha River ecosystem. It would also return the cultural and economic focus of the Lower Elwha S’Klallam Tribe, uphold the federal trust responsibility to affected Indian tribes, and provide substantial long term benefits to sport fishing, tourism, and the local economies associated with these activities. The National Park Service has the lead in preparing this final environmental impact statement, which is a programmatic or policy environmental impact statement. The majority of the March 1993 Federal Energy Regulatory Commission Draft Staff Report was adopted as part of this document. The Elwha Report and its appendixes, prepared by the U.S. departments of the Interior and Commerce and the Lower Elwha S’Klallam Tribe (Jan. 1994), were also incorporated. Material in this document supersedes both that in the Draft Staff Report and in the Elwha Report. Pg. 3 = pg.ii&iv If the decision maker, the secretary of the interior; chooses the Proposed Action of removing both dams, the National Park Service will prepare a second environmental impact statement, the “Implementation EIS,” that would examine options for implementing the decision. Several alternatives for restoring fish habitat are examined in this programmatic impact statement. Only one alternative has the potential to fully restore Elwha native anadromous fisheries—the Proposed Action of removing both the Elwha and Glines Canyon dams. Chances for restoring nine of the ten runs of fish are rated as either “good” or “excellent” if both dams are removed (sockeye salmon suffer from potential stock limitation and habitat problems outside the confines of the Elwha River project and, therefore, have only “poor” to “fair” chances of returning in pre-dam numbers). Removing both dams would also restore natural flow conditions in the Elwha River. Figure 1. Location Map (Scan) Because federal agencies examine a full range of reasonable alternatives in an environmental impact statement, the National Park Service also analyzed leaving the dams in place and installing fish passage facilities, as well as removing each dam separately. These alternatives are Dam Retention (with passage facilities installed at both dams), Removal of Elwha Dam, and Removal of Glines Canyon Dam. No Action, or leaving the dams in place without mitigation measures (as they are now), was also analyzed to provide a basis for comparing all action alternatives. The chances of restoring native anadromous fish drop substantially under each of these alternatives. None of the ten runs has a good or excellent chance of full restoration if fish passage measures are installed (i.e., the Dam Retention alternative) or if Elwha Dam alone is removed. Although there is a good chance that both winter and summer runs of steelhead could be restored if Glines Canyon Dam were removed, the remaining eight runs do not fare as well. For all alternatives except Proposed Action, mortality associated with fish passage and poor habitat is likely to drive the Elwha pink salmon stock to extinction (if it is not already) and chum salmon stock to extremely low levels or extinction. Anadromous fish populations would return to normal if the dams were removed, and other features of the ecosystem would benefit as well. Natural sediment transport conditions would be reestablished if the dams were removed. This would restore needed spawning gravel and woody debris for fish, and also replace sand missing from the river’s estuary, nearby beaches, and the nearshore environment as far east as Ediz Hook. The estuary would grow to its pre-dam size and once again serve as an important transitional habitat between fresh and salt water for many species of fish and other aquatic organisms. Instead of a stable channel, the Elwha River would return to its active meandering morphology, creating the riffles, pools, and slower moving side channels that many anadromous fish prefer for spawning and rearing.
Recommended publications
  • US 101 Elwha River Bridge Environmental Assessment With
    US 101 Elwha River Bridge Replacement Environmental Assessment Washington State Department of Transportation Federal Highway Administration – Washington Division June 30, 2021 Title VI Notice to Public It is the Washington State Department of Transportation’s (WSDOT) policy to assure that no person shall, on the grounds of race, color, national origin or sex, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its programs and activities. Any person who believes his/her Title VI protection has been violated, may file a complaint with WSDOT’s Office of Equal Opportunity (OEO). For additional information regarding Title VI complaint procedures and/or information regarding our non-discrimination obligations, please contact OEO’s Title VI Coordinator at (360) 705-7090. Americans with Disabilities Act (ADA) Information This material can be made available in an alternate format by emailing the Office of Equal Opportunity at [email protected] or by calling toll free, 855-362-4ADA (4232). Persons who are deaf or hard of hearing may make a request by calling the Washington State Relay at 711. US 101 Elwha River Bridge Replacement –Environmental Assessment ii US 101 Elwha River Bridge Replacement –Environmental Assessment iii Table of Contents Chapter 1: Background and Purpose and Need ............................................................................................ 1 1.1 Background ........................................................................................................................................
    [Show full text]
  • 8.6 Bull Trout 8.6.1 Status of the Species
    8.6 BULL TROUT 8.6.1 STATUS OF THE SPECIES (Note that terminology related to bull trout population groupings are further defined in Appendix E) 8.6.1.1 Listing Status The coterminous United States population of the bull trout (Salvelinus confluentus) was listed as threatened on November 1, 1999 (64 FR 58910). The threatened bull trout occurs in the Klamath River Basin of south-central Oregon and in the Jarbidge River in Nevada, in the Willamette River Basin in Oregon, in the Pacific Coast drainages of Washington, including the Puget Sound; throughout major rivers in Idaho, Oregon, Washington, and Montana within the Columbia River Basin, and in the St. Mary- Belly River, east of the Continental Divide in northwestern Montana (Cavender 1978; Bond 1992; Brewin and Brewin 1997; Leary and Allendorf 1997). Throughout its range, the bull trout is threatened by the combined effects of habitat degradation, fragmentation and alterations associated with: dewatering, road construction and maintenance, mining, and grazing; the blockage of migratory corridors by dams or other diversion structures; poor water quality; entrainment (a process by which aquatic organisms are pulled through a diversion or other device) into diversion channels; and introduced non-native species (64 FR 58910). Poaching and incidental mortality of bull trout during other targeted fisheries are additional threats. The bull trout was initially listed as three separate Distinct Population Units (DPSs) (63 FR 31647, 64 FR 17110). The preamble to the final listing rule for the United
    [Show full text]
  • Daytime Summer Microclimate Influence of Large Woody Debris on Dewatered Sediments in Lake Mills, WA Following Dam Removal
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Summer 2018 Daytime Summer Microclimate Influence of Large Woody Debris on Dewatered Sediments in Lake Mills, WA Following Dam Removal Mariah J. Colton Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Environmental Sciences Commons Recommended Citation Colton, Mariah J., "Daytime Summer Microclimate Influence of Large Woody Debris on Dewatered Sediments in Lake Mills, WA Following Dam Removal" (2018). WWU Graduate School Collection. 712. https://cedar.wwu.edu/wwuet/712 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Daytime Summer Microclimate Influence of Large Woody Debris on Dewatered Sediments in Lake Mills, WA Following Dam Removal By Mariah J. Colton Accepted in Partial Completion of the Requirements for the Degree Master of Science ADVISORY COMMITTEE Chair, Dr. Peter S. Homann Dr. Andy Bach Dr. James Helfield GRADUATE SCHOOL Gautam Pillay, Dean Master's Thesis In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I grant to Western Washington Univer- sity the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others.
    [Show full text]
  • Elwha River Revegetation 2013: a Plant Performance Study
    ELWHA RIVER REVEGETATION 2013: A PLANT PERFORMANCE STUDY by Crescent Calimpong A thesis submitted in partial fulfillment of the requirements for the degree of Master of Environmental Horticulture University of Washington 2014 Program Authorized to Offer Degree: School of Environmental and Forest Sciences Table of Contents List of Figures .................................................................................................................................................. iii List of Tables ................................................................................................................................................... iii Appendix ........................................................................................................................................................... iv ACKNOWLEDGEMENTS .................................................................................................................................. v ABSTRACT ......................................................................................................................................................... 1 KEYWORDS ....................................................................................................................................................... 1 INTRODUCTION ............................................................................................................................................... 1 BACKGROUND .................................................................................................................................................
    [Show full text]
  • Pygmy Whitefish Fact Sheet
    Sensitive Species ____________________________________________________________________________________________ Pygmy Whitefish (Prosopium coulteri) State Status: Sensitive, 1998 Federal Status: Species of concern Recovery Plans: None State Management Plan: None The pygmy whitefish, a small (usually < 20 cm) Figure 1. Pygmy whitefish (photo from Wydoski and member of the family Salmonidae, is distributed Whitney 2003). across the northern tier of the United States, throughout western Canada and north into southeast Alaska, and in one lake in Russia (Hallock and Mongillo 1998). Their widely scattered distribution, primarily in deep lakes, suggests they are relics of a wider distribution prior to the last ice age (Wydoski and Whitney 2003). Washington is at the extreme southern edge of their native range in North America. Pygmy whitefish are most commonly found in cool oligotrophic lakes and streams of mountainous regions. However, they have been collected from smaller, shallow, more productive lakes in British Columbia and Washington. Pygmy whitefish eat crustaceans, aquatic insect larvae and pupae, fish eggs, and small mollusks. Pygmy whitefish are important forage fish for larger predatory species including bull trout (Salvelinus confluentus). Historically, pygmy whitefish resided in at least 16 lakes in Washington (Figure 2; Hallock and Mongillo 1998). Currently they inhabit only nine. Their demise in six lakes is attributed to piscicides, introduction of exotic fish species and/or declining water *# quality. Because of the very limited range of the *# pygmy whitefish in Washington, they are *# vulnerable to additional extirpations without *# *#*# *# *# *# *# cooperative management. *# Pygmy whitefish surveys require specialized *# *# *#*#*# techniques because of the fish's small size and tendency to inhabit the deeper portions of lakes; their presence in lakes heavily sampled for other species sometimes goes undetected.
    [Show full text]
  • Age Structure and Hatchery Fraction of Elwha River Chinook Salmon: 2015 Carcass Survey Report
    STATE OF WASHINGTON June 2016 Age Structure and Hatchery Fraction of Elwha River Chinook Salmon: 2015 Carcass Survey Report by Josh Weinheimer1, Joseph Anderson1, Randy Cooper1, Scott Williams1, Mike McHenry2, Patrick Crain3, Sam Brenkman3 and Heidi Hugunin3 1 Washington Department of Fish and Wildlife 2 Lower Elwha Klallam Tribe 3 Olympic National Park Washington Department of FISH AND WILDLIFE Fish Program Fish Science Division FPA 16-04 Age structure and hatchery fraction of Elwha River Chinook Salmon: 2015 Carcass Survey Report Prepared by: Josh Weinheimer1, Joseph Anderson1, Randy Cooper1, Scott Williams1, Mike McHenry2, Patrick Crain3, Sam Brenkman3 and Heidi Hugunin3 1 Washington Department of Fish and Wildlife 2 Lower Elwha Klallam Tribe 3 Olympic National Park June 2016 Acknowledgements Collecting carcasses from a large system like the Elwha River watershed involves a tremendous amount of work and dedication. We would like to thank the following individuals from various agencies that assisted with the surveys: Matthew Choowong, Henry Kei, Andrew Simmons, Chris O’Connell and Pete Topping from WDFW; Anna Geffre with Olympic National Park; Sonny Sampson, Gabe Youngman, Wilson Wells and Randall McCoy from Lower Elwha Klallam Tribe. We would also like to thank Troy Tisdale, Vern Madison, and Jeff Gufler from WDFW for their assistance with samples collected at the Elwha Rearing Channel and fecundity measurements at the Hurd Creek Hatchery. Thanks to the WDFW Ageing, Thermal Otolith, and CWT laboratories for sample analysis. Funding for this project was provided by the National Park Service under contract P15PX02717. Executive Summary Monitoring the recolonization of Pacific salmon and steelhead following the removal of two dams is a critical component of the Elwha Restoration Project.
    [Show full text]
  • Final Environmental Impact Statement
    Final Environmental Impact Statement Elwha River Ecosystem Restoration Implementation Purpose and Need: The Elwha River ecosystem and native anadromous fisheries are severely degraded as a result of two hydroelectric dams (projects) and their reservoirs built in the early 1900s. Congress has mandated the full restoration of this ecosystem and its native anadromous fisheries through the Elwha River Ecosystem and Fisheries Restoration Act (Public Law 102-495). The Department of the Interior has found there is a need to return this river and the ecosystem to its natural, self-regulating state, and proposes to implement the Congressional mandate by removing both dams in a safe, environmentally sound and cost effective manner and implementing fisheries and ecosystem restoration planning. Only dam removal would fully restore the ecosystem or its native anadromous fisheries. Proposed Action: The U.S. Department of the Interior proposes to fully restore the Elwha River ecosystem and native anadromous fisheries through the removal of Elwha Dam and Glines Canyon Dam and implementing fish restoration and revegetation. Dam removal would occur over a 2-year period. Elwha Dam would be removed by blasting, and Glines Canyon Dam by a combination of blasting and diamond wire saw cutting. Lake Aldwell would be drained by a diversion channel, and Lake Mills by notching down Glines Canyon Dam. Stored sediment would be eroded naturally by the Elwha River. The proposed action is located in Clallam County, on the Olympic Peninsula, in Washington State. Lead/Cooperating agencies: The National Park Service is the lead agency. The U.S. Fish and Wildlife Service, U.S.
    [Show full text]
  • Environmental Benefits of Dam Removal
    A Research Paper by Dam Removal: Case Studies on the Fiscal, Economic, Social, and Environmental Benefits of Dam Removal October 2016 <Year> Dam Removal: Case Studies on the Fiscal, Economic, Social, and Environmental Benefits of Dam Removal October 2016 PUBLISHED ONLINE: http://headwaterseconomics.org/economic-development/local-studies/dam-removal-case-studies ABOUT HEADWATERS ECONOMICS Headwaters Economics is an independent, nonprofit research group whose mission is to improve community development and land management decisions in the West. CONTACT INFORMATION Megan Lawson, Ph.D.| [email protected] | 406-570-7475 P.O. Box 7059 Bozeman, MT 59771 http://headwaterseconomics.org Cover Photo: Whittenton Pond Dam, Mill River, Massachusetts. American Rivers. TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................. 1 MEASURING THE BENEFITS OF DAM REMOVAL ........................................................................................... 2 CONCLUSION ................................................................................................................................................. 5 CASE STUDIES WHITTENTON POND DAM, MILL RIVER, MASSACHUSETTS ........................................................................ 11 ELWHA AND GLINES CANYON DAMS, ELWHA RIVER, WASHINGTON ........................................................ 14 EDWARDS DAM, KENNEBEC RIVER, MAINE ...............................................................................................
    [Show full text]
  • Shoreline Master Program.Doc
    CLALLAM COUNTY SHORELINE MASTER PROGRAM Prepared by The CLALLAM COUNTY SHORELINE ADVISORY COMMITTEE With Assistance from the CLALLAM COUNTY DEPT. OF COMMUNITY DEVELOPMENT PLANNING DIVISION ADOPTED: By Clallam County Board of Commissioners: June 30, 1976 By Washington State Department of Ecology: August 5, 1976 REVISED: By Washington State Department of Ecology: November 16, 1976 August 10, 1979 January 4, 1983 March 27, 1984 January 27, 1986 June 3, 1986 March 1, 1988 October 31, 1989 June 16, 1992 TABLE OF CONTENTS Chapter Title Page 1 Preamble and Purpose 1 2 Goals and General Policies 2 3 Environments and Use-Element Policies 3 4 Natural Systems Regulations 12 4.01 Marine Beaches 13 4.02 Spits and Bars 15 4.03 Dunes 16 4.04 Islands 17 4.05 Estuaries 18 4.06 Reefs 19 4.07 Bays, Coves, and Headlands 20 4.08 Marshes, Bogs, and Swamps 22 4.09 Lakes 24 4.10 Rivers, Streams, and Creeks 26 4.11 Flood Plains 28 4.12 Subtidal Shorelines 30 4.13 Shoreline Cliffs 31 5 Use Activity Regulations 33 5.01 Agricultural Practices 34 5.02 Aquaculture 35 5.03 Forest Management Practices 39 5.04 Commercial Development 41 5.05 Marinas and Boat Launching Facilities 43 5.06 Mining 45 5.07 Outdoor Advertising (Signs and Billboards) 47 5.08 Residential Development 49 5.09 Utilities 53 5.10 Ports and Water-Related Industries 54 5.11 Bulkheads 56 5.12 Breakwaters 58 5.13 Jetties and Groins 60 5.14 Landfill and Solid Waste Disposal 62 5.15 Dredging 64 5.16 Shoreline Protection 66 5.17 Roads and Railroad Design and Construction 68 5.18 Piers, Docks, Floats, Mooring
    [Show full text]
  • Some Dam – Hydro News
    SSoommee DDaamm –– HHyyddrroo NNeewwss and Other Stuff i 5/01/2009 Quote of Note: Thoughts on the economy: “If you’re in a traffic jam quit whining, it means you have a job” - - Paula Smith “If you have a job it’s a recession, if you’re laid off it’s a depression” - - Common “No nation was ever drunk when wine was cheap.” - - Thomas Jefferson Ron’s wine pick of the week: Maipe Bonarda Mendoza, Argentina 2008 OOtthheerr SSttuuffffff::: (Oops, a funny thing happened on the way to the office, they forgot about or don’t know about pumped storage hydro, the ideal backup solution. They got it right on the other points though.) Getting real on wind and solar By James Schlesinger and Robert L. Hirsch, Washington Post, 04/24/2009 Why are we ignoring things we know? We know that the sun doesn't always shine and that the wind doesn't always blow. That means that solar cells and wind energy systems don't always provide electric power. Nevertheless, solar and wind energy seem to have captured the public's support as potentially being the primary or total answer to our electric power needs. Solar cells and wind turbines are appealing because they are "renewables" with promising implications and because they emit no carbon dioxide during operation, which is certainly a plus. But because both are intermittent electric power generators, they cannot produce electricity "on demand," something that the public requires. We expect the lights to go on when we flip a switch, and we do not expect our computers to shut down as nature dictates.
    [Show full text]
  • 2016 State of Our Watersheds Report West WRIA 18 – Morse Creek to Elwha River
    2016 State of Our Watersheds Report West WRIA 18 – Morse Creek to Elwha River am removal seemed like an elusive Dtarget over the years and many citizens were skeptical of the benefits. However in just four years the river has transported over 60% of the stored sediment, resulting in a rebirth of the estuary and the floodplain. Salmon are ascending to historic habitats and the recovery of the ecosystem is about to blossom. -MIkE MCHENrY FIsHErIEs HABItAt MANAGEr Lower Elwha Klallam Tribe The Lower Elwha Klallam Tribe is part of the Klal- lam Band of Indians that have resided throughout the Strait of Juan de Fuca, Hood Canal and Port Gamble Bay for generations. They are party to the Point No Point Treaty of 1855, when tribes ceded most their traditional lands to the U.S. government. The Dunge- ness-Elwha Basin (WRIA 18) has remained largely Seattle rural and forested with a natural resources-based economy focused on shellfish harvesting, commercial forestry, commercial fisheries, tourism, and agricul- ture. Major land-use impacts on salmon habitat have occurred from floodplain and shoreline development, road construction and past logging practices. This report will focus on the northwest portion of WRIA 18 basin and surrounding marine waters, which is only a portion of the area that the Lower Elwha Klallam Tribe co-manages. 58 Lower Elwha Klallam Tribe Elwha Basin The Area of Concern for the Lower Elwha Klallam Tribe (Elwha shoreline habitat conditions. Both internal and outside reviews Tribe) is the western portion of WRIA 18, from the Elwha River have concluded that recovery efforts are behind the expected pace watershed to Morse Creek, east of Port Angeles.
    [Show full text]
  • Steelhead Response to the Removal of the Elwha River Dams
    Steelhead response to the removal of the Elwha River Dams Photo by John McMillan Pacific Coast Steelhead Management Conference March 22 2018 Walla Walla, WA Acknowledgements Lower Elwha Klallam Tribe Mike McHenry, Ray Moses, Larry Ward, Mel Elofson, Sonny Sampson, Wilson Wells, John Mahan, Doug Morill, Robert Dohrn, Randall McCoy, Matt Beirne National Park Service Brian Winter, Anna Geffre, Josh Geffre, Heidi Hugunin, Phil Kennedy, Sam Brenkman, Pat Crain, Kathryn Sutton NOAA Fisheries George Pess, Martin Liermann, Todd Bennett, Steve Corbett, Oleksandr Stefankiv, Amilee Wilson, Zach Hughes, Tim Tynan, Eric Ward USGS Jeff Duda, Andy Ritchie, Chris Curran, Amy East, Jon Warrick Trout Unlimited WDFW US Fish and Wildlife Service John McMillan Joe Anderson, Chris O’Connell, Randy Roger Peters US Bureau of Reclamation Cooper, Mike Gross, Andrew Claiborne & K Denton & Associates Jennifer Bountry, Tim Randle WDFW Fish Ageing Laboratory Keith Denton Elwha River 833 km2 watershed Elwha Dam • built 1913 • 32 m tall • River km 8 Glines Canyon Dam • Built 1927 • 64 m tall • River km 21 Pess et al. 2008 NW Science 115 km of habitat upstream of Elwha Dam site Photo montage compiled by George Pess Photos from NPS time lapse camera Photo montage compiled by George Pess Photos from NPS time lapse camera Sediment release • 21 million m3 of sediment stored in former reservoirs • 16 million m3 in Lake Mills (upstream of Glines) • 5 million m3 in Lake Aldwell (upstream of Elwha) • Approximately two-thirds evacuated from former reservoirs • 90% delivered to
    [Show full text]