Volume 105, Number 6, November–December 2000 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 105, 875-894 (2000)] Accelerating Scientific Discovery Through Computation and Visualization Available online http://www.nist.gov/jres Please note that although all figures in the printed version of this paper are in black and white, Figs. 1–3, 7–9, 12–14, and 17–19 in the online ver- sion are in color. Volume 105 Number 6 November–December 2000 James S. Sims, John G. Hagedorn, Peter The rate of scientific discovery can be condensate modeling, (2) fluid flow in M. Ketcham, Steven G. Satterfield, accelerated through computation and porous materials and in other complex Terence J. Griffin, William L. George, visualization. This acceleration results from geometries, (3) flows in suspensions, Howland A. Fowler, Barbara A. am Ende, the synergy of expertise, computing (4) x-ray absorption, (5) dielectric Howard K. Hung, Robert B. Bohn, John E. Koontz, Nicos S. Martys, Charles E. tools, and hardware for enabling high- breakdown modeling, and (6) dendritic Bouldin, James A. Warren, David L. performance computation, information growth in alloys. Feder, Charles W. Clark, B. James Filla, science, and visualization that is provided and Judith E. Devaney by a team of computation and visualiza- tion scientists collaborating in a peer-to- National Institute of Standards and peer effort with the research scientists. Technology, Gaithersburg, MD 20899-0001 In the context of this discussion, high Key words: discovery science; distri-
[email protected] performance refers to capabilities beyond buted processing; immersive environments;
[email protected] the current state of the art in desktop IMPI; interoperable MPI; message pass-
[email protected] computing.