CNTR: Lightweight OS Containers

Total Page:16

File Type:pdf, Size:1020Kb

CNTR: Lightweight OS Containers CNTR: Lightweight OS Containers Jorg¨ Thalheim, Pramod Bhatotia Pedro Fonseca Baris Kasikci University of Edinburgh University of Washington University of Michigan Abstract fundamental to achieve high efficiency in virtualized datacenters and enables important use-cases, namely Container-based virtualization has become the de-facto just-in-time deployment of applications. Moreover, standard for deploying applications in data centers. containers significantly reduce operational costs through However, deployed containers frequently include a higher consolidation density and power minimization, wide-range of tools (e.g., debuggers) that are not required especially in multi-tenant environments. Because of all for applications in the common use-case, but they these advantages, it is no surprise that containers have seen are included for rare occasions such as in-production wide-spread adoption by industry, in many cases replacing debugging. As a consequence, containers are significantly altogether traditional virtualization solutions [17]. larger than necessary for the common case, thus increasing the build and deployment time. Despite being lightweight, deployed containers often include a wide-range of tools such as shells, editors, CNTR1 provides the performance benefits of lightweight coreutils, and package managers. These additional tools containers and the functionality of large containers by are usually not required for the application’s core function splitting the traditional container image into two parts: the — the common operational use-case — but they are “fat” image — containing the tools, and the “slim” image included for management, manual inspection, profiling, — containing the main application. At run-time, CNTR and debugging purposes [64]. In practice, this significantly allows the user to efficiently deploy the “slim” image and increases container size and, in turn, translates into then expand it with additional tools, when and if necessary, slower container deployment and inefficient datacenter by dynamically attaching the “fat” image. resource usage (network bandwidth, CPU, RAM and disk). To achieve this, CNTR transparently combines the two Furthermore, larger images degrade container deployment container images using a new nested namespace, without time [52, 44]. For instance, previous work reported that any modification to the application, the container manager, downloading container images account for 92% of the de- or the operating system. We have implemented CNTR in ployment time [52]. Moreover, a larger code base directly Rust, using FUSE, and incorporated a range of optimiza- affects the reliability of applications in datacenters [50]. tions. CNTR supports the full Linux filesystem API, and it is compatible with all container implementations (i.e., Given the impact of using large containers, users Docker, rkt, LXC, systemd-nspawn). Through extensive are discouraged from including additional tools that would otherwise simplify the process of debugging, evaluation, we show that CNTR incurs reasonable perfor- mance overhead while reducing, on average, by 66:6% the deploying, and managing containers. To mitigate this image size of the Top-50 images available on Docker Hub. problem, Docker has recently adopted smaller run-times but, unfortunately, these efforts come at the expense of 1 Introduction compatibility problems and have limited benefits [13]. Containers offer an appealing, lightweight alternative to To quantify the practical impact of additional tools on VM-based virtualization (e.g., KVM, VMware, Xen) that the container image size, we employed Docker Slim [11] relies on process-based virtualization. Linux, for instance, on the 50 most popular container images available on provides the cgroups and namespaces mechanisms the Docker Hub repository [10]. Docker Slim uses a that enable strong performance and security isolation combination of static and dynamic analyses to generate between containers [24]. Lightweight virtualization is smaller-sized container images, in which, only files needed by the core application are included in the final 1Read it as “center”. image. The results of this experiment (see Figure5) are encouraging: we observed that by excluding unnecessary 2 Background and Motivation files from typical containers it is possible to reduce the 2.1 Container-Based Virtualization container size, on average, by 66.6%. Similarly, others have found that a only small subset (6.4%) of the container Containers consist of a lightweight, process-level form images is read in the common case [53]. of virtualization that is widely used and has become a cor- nerstone technology for datacenters and cloud computing CNTR addresses this problem2 by building lightweight providers. In fact, all major cloud computing providers containers that still remain fully functional, even in uncom- (e.g., Amazon [2], Google [16] and Microsoft [4]) offer mon use-cases (e.g., debugging and profiling). CNTR en- Containers as a Service (CaaS). ables users to deploy the application and its dependencies, Container-based virtualization often relies on three while the additional tools required for other use-cases are key components: (1) the OS mechanism that enforces supported by expanding the container “on-demand”, dur- the process-level isolation (e.g., the Linux cgroups [41] ing runtime (Figure1 (a)). More specifically, CNTR splits and namespaces [40] mechanisms), (2) the application the traditional container image into two parts: the “fat” im- packaging system and runtime (e.g., Docker [9], Rkt [38]), age containing the rarely used tools and the “slim” image and (3) the orchestration manager that deploys, distributes containing the core application and its dependencies. and manages containers across machines (e.g., Docker During runtime, CNTR allows the user of a container to Swarm [12], Kubernetes [22]). Together, these com- efficiently deploy the “slim” image and then expand it with ponents enable users to quickly deploy services across additional tools, when and if necessary, by dynamically machines, with strong performance and security isolation attaching the “fat” image. As an alternative to using a “fat” guarantees, and with low-overheads. image, CNTR allows tools from the host to run inside the Unlike VM-based virtualization, containers do not container. The design of CNTR simultaneously preserves include a guest kernel and thus have often smaller memory the performance benefits of lightweight containers and footprint than traditional VMs. Containers have important provides support for additional functionality required by advantages over VMs for both users and data centers: different application workflows. 1. Faster deployment. Containers are transferred and The key idea behind our approach is to create a new deployed faster from the registry [44]. nested namespace inside the application container (i.e., 2. Lower resource usage. Containers consume fewer “slim container”), which provides access to the resources in resources and incur less performance overhead [62]. the “fat” container, or the host, through a FUSE filesystem 3. Lower build times. Containers with fewer binaries interface. CNTR uses the FUSE system to combine the and data can be rebuilt faster [64]. filesystems of two images without any modification to the Unfortunately, containers in practice are still unnecessar- application, the container implementation, or the operating ily large because users are forced to decide which auxiliary system. CNTR selectively redirects the filesystem requests tools (e.g. debugging, profiling, etc.) should be included between the mount namespace of the container (i.e., what in containers at packaging-time. In essence, users are cur- applications within the container observe and access) and rently forced to strike a balance between lightweight con- the “fat” container image or the host, based on the filesys- tainers and functional containers, and end up with contain- tem request path. Importantly, CNTR supports the full ers that are neither as light nor as functional as desirable. Linux filesystem API and all container implementations (i.e., Docker, rkt, LXC, systemd-nspawn). 2.2 Traditional Approaches to Minimize Containers We evaluated CNTR across three key dimensions: The container-size problem has been a significant source (1) functional completeness – CNTR passes 90 out of of concern to users and developers. Unfortunately, existing 94 (95:74%) xfstests filesystem regression tests [14] solutions are neither practical nor efficient. supporting applications such as SQLite, Postgres, and An approach that has gained traction, and has been Apache; (2) performance – CNTR incurs reasonable over- adopted by Docker, consists of packing containers using heads for the Phoronix filesystem benchmark suite [18], smaller base distributions when building the container and the proposed optimizations significantly improve runtime. For instance, most of Docker’s containers are the overall performance; and lastly, (3) effectiveness – now based on the Alpine Linux distribution [13], resulting CNTR’s approach on average results in a 66:6% reduction in smaller containers than traditional distributions. Alpine of image size for the Top-50 images available on Docker Linux uses the musl library, instead of libc, and bundles hub [10]. We have made publicly available the CNTR busybox , instead of coreutils — these differences implementation along with the experimental setup [6]. enable a smaller container runtime but at the expense of compatibility problems caused by runtime
Recommended publications
  • Securing Embedded Systems: Analyses of Modern Automotive Systems and Enabling Near-Real Time Dynamic Analysis
    Securing Embedded Systems: Analyses of Modern Automotive Systems and Enabling Near-Real Time Dynamic Analysis Karl Koscher A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Tadayoshi Kohno, Chair Gaetano Borriello Shwetak Patel Program Authorized to Offer Degree: Computer Science and Engineering © Copyright 2014 Karl Koscher University of Washington Abstract Securing Embedded Systems: From Analyses of Modern Automotive Systems to Enabling Dynamic Analysis Karl Koscher Chair of the Supervisory Committee: Associate Professor Tadayoshi Kohno Department of Computer Science and Engineering Today, our life is pervaded by computer systems embedded inside everyday products. These embedded systems are found in everything from cars to microwave ovens. These systems are becoming increasingly sophisticated and interconnected, both to each other and to the Internet. Unfortunately, it appears that the security implications of this complexity and connectivity have mostly been overlooked, even though ignoring security could have disastrous consequences; since embedded systems control much of our environment, compromised systems could be used to inflict physical harm. This work presents an analysis of security issues in embedded systems, including a comprehensive security analysis of modern automotive systems. We hypothesize that dynamic analysis tools would quickly discover many of the vulnerabilities we found. However, as we will discuss, there
    [Show full text]
  • Root Filesystem
    >>> Operating Systems And Applications For Embedded Systems >>> Root Filesystem Name: Mariusz Naumowicz Date: 27 sierpnia 2018 [~]$ _ [1/21] >>> Plan 1. Root Filesystem Useful System Filesystem Hierarchy Standard (FHS) Staging directory 2. Programs The init program Shell Utilities BusyBox ToyBox Libraries Reducing size by stripping Device nodes The proc and sysfs flesystems Mounting flesystems Additional reading Standalone ramdisk Minimizing size Booting with QEMU Additional reading [~]$ _ [2/21] >>> Useful System * init: The program that starts everything off, usually by running a series of scripts. * shell: Needed to give you a command prompt but, more importantly, to run the shell scripts called by init and other programs. * daemons: Various server programs, started by init. * libraries: Usually, the programs mentioned so far are linked with shared libraries which must be present in the root filesystem. * Configuration files: The configuration for init and other daemons is stored in a series of ASCII text files, usually in the /etc directory. * Device nodes: The special files that give access to various device drivers. * /proc and /sys: Two pseudo filesystems that represent kernel data structures as a hierarchy of directories and files. Many programs and library functions read these files. * kernel modules: If you have configured some parts of your kernel to be modules, they will be here, usually in /lib/modules/[kernel version]. [1. Root Filesystem]$ _ [3/21] >>> Filesystem Hierarchy Standard (FHS) * /bin: programs essential for all
    [Show full text]
  • Yocto-Slides.Pdf
    Yocto Project and OpenEmbedded Training Yocto Project and OpenEmbedded Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 6, 2021. Document updates and sources: https://bootlin.com/doc/training/yocto Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/296 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/296 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/296 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb.
    [Show full text]
  • MANAGING a REAL-TIME EMBEDDED LINUX PLATFORM with BUILDROOT John Diamond, Kevin Martin Fermi National Accelerator Laboratory, Batavia, IL 60510
    MANAGING A REAL-TIME EMBEDDED LINUX PLATFORM WITH BUILDROOT John Diamond, Kevin Martin Fermi National Accelerator Laboratory, Batavia, IL 60510 Desktop distributions are an awkward Buildroot + ucLibc + Busybox + RTAI Quantitative Results implementation of an Embedded RTOS Buildroot – downloads, unpacks, • Whole build process is automated resulting in • Architecture-dependent binary configures, compiles and installs system much quicker build times (hours not days) software automatically • Kernel and root filesystem size: 3.5 MB – 20 packages uClibc – Small-footprint standard C library MB (reduction of 99%) • Loaded with unnecessary software Busybox – all-in-one UNIX utilities and shell • Boot-time: ~9 seconds • Huge footprints RTAI – Real-Time Linux extensions = Qualitative Results • Allows integration with revision control into First Try: Build Linux from Source the platform development process, making it • Success! But.. 2. Buildroot’s menuconfig generates a package configuration file easier to manage an ecosystem of targets • Is as difficult as it sounds and kernel configuration file • Community support for x86 & ARM targets Linux Kernel • Overwhelming number of packages and Configuration gives us confidence that future targets can be patches Package supported without much effort 1. Developer Configuration • No version control configures build via Buildroot’s • Cross-compile even more headaches menuconfig Internet Build Process Power Supply Control Quench Protection Git / CVS / SVN and Regulation for the System for Tevatron Did not do what we needed: Fermilab Linac Electron Lens (TEL II) 3. The build process pulls 4. The output from the software packages from build process is a kernel • Small-footprint network bootable image the internet and custom bzImage bzImage file with an softare packages from a integrated root filesystem ARM Cortex A-9 source code repository file PC/104 AMD • Automated build system Geode SBC Beam Position Monitor Power Supply Control prototype for Fermilab and Regulation for • Support for multiple architectures 5.
    [Show full text]
  • Cross-Compiler Bipartite Vulnerability Search
    electronics Article Cross-Compiler Bipartite Vulnerability Search Paul Black * and Iqbal Gondal Internet Commerce Security Laboratory (ICSL), Federation University, Ballarat 3353, Australia; [email protected] * Correspondence: [email protected] Abstract: Open-source libraries are widely used in software development, and the functions from these libraries may contain security vulnerabilities that can provide gateways for attackers. This paper provides a function similarity technique to identify vulnerable functions in compiled programs and proposes a new technique called Cross-Compiler Bipartite Vulnerability Search (CCBVS). CCBVS uses a novel training process, and bipartite matching to filter SVM model false positives to improve the quality of similar function identification. This research uses debug symbols in programs compiled from open-source software products to generate the ground truth. This automatic extraction of ground truth allows experimentation with a wide range of programs. The results presented in the paper show that an SVM model trained on a wide variety of programs compiled for Windows and Linux, x86 and Intel 64 architectures can be used to predict function similarity and that the use of bipartite matching substantially improves the function similarity matching performance. Keywords: malware similarity; function similarity; binary similarity; machine-learning; bipar- tite matching 1. Introduction Citation: Black, P.; Gondal, I. Cross-Compiler Bipartite Function similarity techniques are used in the following activities, the triage of mal- Vulnerability Search. Electronics 2021, ware [1], analysis of program patches [2], identification of library functions [3], analysis of 10, 1356. https://doi.org/10.3390/ code authorship [4], the identification of similar function pairs to reduce manual analysis electronics10111356 workload, [5], plagiarism analysis [6], and for vulnerable function identification [7–9].
    [Show full text]
  • No Starch Press, Inc
    Table of Contents The Book of VMware—The Complete Guide to VMware Workstation.......................................................1 Chapter 1: Introduction.....................................................................................................................................3 Overview..................................................................................................................................................3 1.1 Who Should Read This Book............................................................................................................3 1.2 Terms and Conventions.....................................................................................................................4 1.3 Book Layout......................................................................................................................................4 1.4 VMware Applications........................................................................................................................6 1.4.1 Quality Assurance (QA)....................................................................................................6 1.4.2 Network Programming and Testing...................................................................................6 1.4.3 Operating System Development, Research, and Education..............................................7 1.4.4 Other VMware Products....................................................................................................7 Chapter 2: The VMware Virtual Machine.......................................................................................................8
    [Show full text]
  • Operating System Components for an Embedded Linux System
    INSTITUTEFORREAL-TIMECOMPUTERSYSTEMS TECHNISCHEUNIVERSITATM¨ UNCHEN¨ PROFESSOR G. F ARBER¨ Operating System Components for an Embedded Linux System Martin Hintermann Studienarbeit ii Operating System Components for an Embedded Linux System Studienarbeit Executed at the Institute for Real-Time Computer Systems Technische Universitat¨ Munchen¨ Prof. Dr.-Ing. Georg Farber¨ Advisor: Prof.Dr.rer.nat.habil. Thomas Braunl¨ Author: Martin Hintermann Kirchberg 34 82069 Hohenschaftlarn¨ Submitted in February 2007 iii Acknowledgements At first, i would like to thank my supervisor Prof. Dr. Thomas Braunl¨ for giving me the opportunity to take part at a really interesting project. Many thanks to Thomas Sommer, my project partner, for his contribution to our good work. I also want to thank also Bernard Blackham for his assistance by email and phone at any time. In my opinion, it was a great cooperation of all persons taking part in this project. Abstract Embedded systems can be found in more and more devices. Linux as a free operating system is also becoming more and more important in embedded applications. Linux even replaces other operating systems in certain areas (e.g. mobile phones). This thesis deals with the employment of Linux in embedded systems. Various architectures of embedded systems are introduced and the characteristics of common operating systems for these devices are reviewed. The architecture of Linux is examined by looking at the particular components such as kernel, standard C libraries and POSIX tools for embedded systems. Furthermore, there is a survey of real-time extensions for the Linux kernel. The thesis also treats software development for embedded Linux ranging from the prerequi- sites for compiling software to the debugging of binaries.
    [Show full text]
  • Run Ds Homebrew Through Ds Download Play Pc How to Homebrew a Nintendo 3DS/2DS
    run ds homebrew through ds download play pc How to Homebrew a Nintendo 3DS/2DS. Homebrewing is the process of using various exploits to allow your device to run custom software, this can include games, emulators, and various tools. There are a wide variety of ways to homebrew your 3DS, but for this Instructable we will be using Browserhax, an exploit using the Nintendo 3DS's internet browser. This is a fairly simple and quick process that just about anyone can accomplish that works on all versions of the 3DS, including the 2DS. Step 1: Determine If Your 3DS Is Capable of Being Homebrewed. The firmware is the operating system that the 3DS runs on. Firmware is updated as time goes on just like any major product, with higher numbers being newer versions. The firmware version of your 3DS can easily be determined by selecting the System Settings icon and checking the bottom- right corner of the top screen. Currently in order to use Browserhax your firmware must be lower than 10.3.0-28. However, starting with version 9.9 the firmware will check if the system is up to date, and if not, refuse to allow you to use the browser. If you see the nag message you will not be able to use Browserhax, but it is possible to circumvent the nag message by performing the following steps: 1.Go to System Settings and change the date to January 1, 2000, 00:00. 2.Use the browser 'Initialize save data' option, before any page gets loaded triggering the browser version message.(Note that you can't press the HOME button to return from the browser, otherwise you will have to re-initialize the save data again.
    [Show full text]
  • Buildroot Training Buildroot Training
    Buildroot Training Buildroot Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 6, 2021. Document updates and sources: https://bootlin.com/doc/training/buildroot Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/353 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/353 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/353 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb.
    [Show full text]
  • 0137017839.Pdf
    Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales (800) 382-3419 [email protected] For sales outside the United States, please contact: International Sales [email protected] Visit us on the Web: informit.com/aw Library of Congress Cataloging-in-Publication Data: Hallinan, Christopher. Embedded Linux primer : a practical real-world approach / Christopher Hallinan. p. cm. ISBN 978-0-13-701783-6 (hardback : alk. paper) 1. Linux. 2. Operating systems (Computers) 3. Embedded computer systems--Programming. I. Title. QA76.76.O63H34462 2011 005.4’32--dc22 2010032891 Copyright © 2011 Pearson Education, Inc. All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
    [Show full text]
  • Embedded Linux Size Reduction Techniques
    Embedded Linux Conference 2017 Embedded Linux size reduction techniques Michael Opdenacker free electrons [email protected] free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 1/1 Michael Opdenacker I Michael Opdenacker I Founder and Embedded Linux engineer at free electrons I Embedded Linux expertise I Development, consulting and training I Strong open-source focus I Long time interest in embedded Linux boot time, and one of its prerequisites: small system size. I From Orange, France Penguin from Justin Ternet (https://openclipart.org/detail/182875/pinguin) free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 2/1 Why reduce size? There are multiple reasons for having a small kernel and system I Run on very small systems (IoT) I Run Linux as a bootloader I Boot faster (for example on FPGAs) I Reduce power consumption Even conceivable to run the whole system in CPU internal RAM or cache (DRAM is power hungry and needs refreshing) I Security: reduce the attack surface I Cloud workloads: optimize instances for size and boot time. I Spare as much RAM as possible for applications and maximizing performance. See https://tiny.wiki.kernel.org/use_cases free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 3/1 Reasons for this talk I No talk about size since ELCE 2015 I Some projects stalled (Linux tinification, LLVM Linux...) I Opportunity to have a look at solutions I didn’t try: musl library, Toybox, gcc LTO, new gcc versions, compiling with Clang..
    [Show full text]
  • Checkpoints of GUI-Based Applications Victor C
    Checkpoints of GUI-based Applications Victor C. Zandy and Barton P. Miller Computer Sciences Department University of Wisconsin – Madison, USA {zandy,bart}@cs.wisc.edu Abstract tion’s GUI might migrate as the application itself migrates, or independently of the application. Both We describe a new system, called guievict, that enables the types of migration require the ability to capture the graphical user interface (GUI) of any application to be application’s window session, a transportable represen- transparently migrated to or replicated on another display tation of its GUI. Window sessions are difficult to cap- without premeditative steps such as re-linking the application ture because not all of the state they represent is resident program binary or re-directing the application process’s in the application. Portions of an application’s GUI state window system communication through a proxy. Guievict is reside in the window server, a separate system that han- based on a small X window server extension that enables an dles the display of all GUI-based applications on the application to retrieve its window session, a transportable representation of its GUI, from the window server and a library same host. Most window servers do not provide a way to of GUI migration functionality that is injected in the extract the state of an individual application’s resources. application process at run time. We discuss the underlying Guievict has been implemented for the X window technical issues: controlling and synchronizing the system [19] and has the following characteristics: communication between the application and the window ❏ Migration occurs at application granularity; users system, identifying and retrieving the GUI resources that form the window session, regenerating the window session in a new can select and move the GUI of individual applica- window system, and maintaining application transparency.
    [Show full text]