7.5 X 12 Long Title.P65
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Kerguelen Plateau: Marine Ecosystem + Fisheries
THE KERGUELEN PLATEAU: MARINE ECOSYSTEM + FISHERIES Proceedings of the Second Symposium Kerguelen plateau Marine Ecosystems & Fisheries • SYMPOSIUM 2017 heardisland.antarctica.gov.au/research/kerguelen-plateau-symposium Important readjustments in the biomass and distribution of groundfish species in the northern part of the Kerguelen Plateau and Skiff Bank Guy Duhamel1, Clara Péron1, Romain Sinègre1, Charlotte Chazeau1, Nicolas Gasco1, Mélyne Hautecœur1, Alexis Martin1, Isabelle Durand2 and Romain Causse1 1 Muséum national d’Histoire naturelle, Département Adaptations du vivant, UMR 7208 BOREA (MNHN, CNRS, IRD, Sorbonne Université, UCB, UA), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France 2 Muséum national d’Histoire naturelle, Département Origines et Evolution, UMR 7159 LOCEAN (Sorbonne Université, IRD, CNRS, MNHN), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France Corresponding author: [email protected] Abstract The recent changes in the conservation status (establishment and extension of a marine reserve) and the long history of fishing in the Kerguelen Islands exclusive economic zone (EEZ) (Indian sector of the Southern Ocean) justified undertaking a fish biomass evaluation. This study analysed four groundfish biomass surveys (POKER 1–4) conducted from 2006 to 2017 across depths ranging from 100 to 1 000 m. Forty demersal species were recorded in total and density distributions of twenty presented. However, only seven species account for the majority of the biomass (96%). Total biomass was 250 000 tonnes during the first three surveys (POKER 1–3), and 400 000 tonnes for POKER 4 due to a high catch of marbled notothen (Notothenia rossii) and mackerel icefish (Champsocephalus gunnari) (accounting for 44% and 17% of the 400 000 tonnes biomass respectively). -
A GUIDE to IDENTIFICATION of FISHES CAUGHT ALONG with the ANTARCTIC KRILL Author(S) 1) Iwami, T
Document No. [ to be completed by the Secretariat ] WG-EMM-07/32 Date submitted [ to be completed by the Secretariat ] 1 July 2007 Language [ to be completed by the Secretariat ] Original: English Agenda Agenda Item No(s): 4.3 Title A GUIDE TO IDENTIFICATION OF FISHES CAUGHT ALONG WITH THE ANTARCTIC KRILL Author(s) 1) Iwami, T. and 2) M. Naganobu Affiliation(s) 1) Laboratory of Biology, Tokyo Kasei Gakuin University 2) National Research Institute of Far Seas Fisheries Published or accepted for publication elsewhere? Yes No x If published, give details ABSTRACT A field key to early life stages of Antarctic fish caught along with the Antarctic krill is produced. The key includes 8 families and 28 species mainly from the Atlantic sector of the Southern Ocean and uses distinguished characters which permit rapid field identification. In some cases, however, it is impossible to discriminate among species of the same family by remarkable characters. A species key is not shown for such resemble species and a brief summary of the main morphological features of species and genera is provided. SUMMARY OF FINDINGS AS RELATED TO NOMINATED AGENDA ITEMS Agenda Item Finding 4.3 We are producing a practical field key to juvenile fish caught along with the Antarctic Scientific krill. To our knowledge more than 40 species of fish have been found as by-catch. Observation However, the number of dominant fish species found in the krill catch never exceeds 20 species. An useful and practical identification key to these dominant species maybe facilitate the quantitative assessment of fish in the krill catch. -
The Systematist 19
Newsletter Number 19 www.systass.org July 2002 ———————————————————————————————————————————— Contents From the Editor . 1 Response Of The Systematics Association To The House Of Lords Committee Of Enquiry 1 From Cladograms to Classifications: The Road to DePhylocode. 2 Small Grant Awards 2002 . 3 Small Grant Awards Project Summaries . 3 Report from 2001 Small Grant Award Holder . 5 4th Young Systematist’s Forum . 6 “Voice of the Future” Conference Report . 7 Conference/Algal Flora Advertisements . 8 ———————————————————————————————————————————— From the Editor The House of Lords Report on “Systematic Biology and Biodiversity in the UK” is undoubtedly one of the most important current events for the future of systematics and systematists. The Systematics Association have submitted a response to a request for submissions, and the President has given evidence to the committee compiling the report. The response is included in full below; the transcript of the evidence given by Chris Humphries and Sir David Smith (for the Linnaean Society), as well as that given by Lord May and Dr. Rachel Quinn of the Royal Society, is very long and can be viewed on the website. It is worth noting that the full published documents can be obtained directly from the House of Lords website at the following URL: http://www.parliament.the-stationery-office.co.uk/pa/ld200102/ldselect/ldsctech/118/11801.htm. The latest news is that the report is now published and is in line to be debated in the House of Commons around July 20 – watch this space for more news! Back in December we held very successful AGM, after which the annual address was given by Norman Platnick. -
Cephalopoda, Octopodidae) in the Southeastern Pacific Ocean Revista De Biología Marina Y Oceanografía, Vol
Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Ibáñez, Christian M.; Pardo-Gandarillas, M. Cecilia; Poulin, Elie; Sellanes, Javier Morphological and molecular description of a new record of Graneledone (Cephalopoda, Octopodidae) in the southeastern Pacific Ocean Revista de Biología Marina y Oceanografía, vol. 47, núm. 3, diciembre, 2012, pp. 439-450 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47925145011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 47, Nº3: 439-450, diciembre 2012 Article Morphological and molecular description of a new record of Graneledone (Cephalopoda, Octopodidae) in the southeastern Pacific Ocean Descripción morfológica y molecular de un nuevo registro de Graneledone (Cephalopoda, Octopodidae) en el Océano Pacífico suroriental Christian M. Ibáñez1, M. Cecilia Pardo-Gandarillas1, Elie Poulin1 and Javier Sellanes2,3 1Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile. [email protected] 2Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile 3Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Casilla 160-C, Concepción, Chile Resumen.- Los pulpos del género Graneledone habitan en aguas profundas y constituyen 8 especies reconocidas. Se realizaron análisis filogenéticos de 4 especies de Graneledone con 2 marcadores moleculares (16S y COI), y se informa sobre un nuevo registro de Graneledone para el Océano Pacífico frente a la zona centro-sur de Chile. -
From the Southern Ocean J.M
Antarctic Science 20 (3), 245–251 (2008) & Antarctic Science Ltd 2008 Printed in the UK doi: 10.1017/S0954102008001132 Molecular evolutionary relationships of the octopodid genus Thaumeledone (Cephalopoda: Octopodidae) from the Southern Ocean J.M. STRUGNELL1,2*, M.A. COLLINS1 and A.L. ALLCOCK2 1British Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge CB3 0ET, UK 2Ecology and Evolutionary Biology, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK *[email protected] Abstract: Recent trawling in the Southern Ocean has yielded individuals of a number of species of the deep sea octopod genus Thaumeledone. This paper provides the first molecular study of the genus, employing molecular sequences from five mitochondrial (12S rDNA, 16S rDNA, COI, COIII, cytochrome oxidase b) and a single nuclear gene (rhodopsin) and includes representatives of each of the known Southern Ocean species. Thaumeledone rotunda, believed to be circumpolar in distribution and found in relatively deep water is the sister taxa to T. gunteri, known only from South Georgia. A notable level of sequence variability was evident between a T. peninsulae individual recently captured from the Powell Basin, and two T. peninsulae individuals captured from the continental slope, north of the South Shetland Islands. This is likely to represent population level intraspecific variation within this species. Received 19 July 2007, accepted 12 September 2007 Key words: Antarctic Peninsula, intraspecific variation, octopus, Scotia Sea, South Georgia Introduction species) was used within a phylogenetic study of the The genus Thaumeledone comprises benthic octopods Octopoda (Carlini et al. 2001) and found Thaumeledone known from relatively deep waters in the Southern sp. -
Molecular Investigation of the Cnidarian-Dinoflagellate Symbiosis
AN ABSTRACT OF THE DISSERTATION OF Laura Lynn Hauck for the degree of Doctor of Philosophy in Zoology presented on March 20, 2007. Title: Molecular Investigation of the Cnidarian-dinoflagellate Symbiosis and the Identification of Genes Differentially Expressed during Bleaching in the Coral Montipora capitata. Abstract approved: _________________________________________ Virginia M. Weis Cnidarians, such as anemones and corals, engage in an intracellular symbiosis with photosynthetic dinoflagellates. Corals form both the trophic and structural foundation of reef ecosystems. Despite their environmental importance, little is known about the molecular basis of this symbiosis. In this dissertation we explored the cnidarian- dinoflagellate symbiosis from two perspectives: 1) by examining the gene, CnidEF, which was thought to be induced during symbiosis, and 2) by profiling the gene expression patterns of a coral during the break down of symbiosis, which is called bleaching. The first chapter characterizes a novel EF-hand cDNA, CnidEF, from the anemone Anthopleura elegantissima. CnidEF was found to contain two EF-hand motifs. A combination of bioinformatic and molecular phylogenetic analyses were used to compare CnidEF to EF-hand proteins in other organisms. The closest homologues identified from these analyses were a luciferin binding protein involved in the bioluminescence of the anthozoan Renilla reniformis, and a sarcoplasmic calcium- binding protein involved in fluorescence of the annelid worm Nereis diversicolor. Northern blot analysis refuted link of the regulation of this gene to the symbiotic state. The second and third chapters of this dissertation are devoted to identifying those genes that are induced or repressed as a function of coral bleaching. In the first of these two studies we created a 2,304 feature custom DNA microarray platform from a cDNA subtracted library made from experimentally bleached Montipora capitata, which was then used for high-throughput screening of the subtracted library. -
A Stalked Jellyfish (Calvadosia Campanulata)
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles A stalked jellyfish (Calvadosia campanulata) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Harvey Tyler-Walters & Jessica Heard 2017-02-22 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/2101]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H. & Heard, J.R. 2017. Calvadosia campanulata A stalked jellyfish. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on- line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.2101.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2017-02-22 A stalked jellyfish (Calvadosia campanulata) - Marine Life Information Network See online review for distribution map Calvadosia campanulata. -
Highlights Report with Live Links
CENSUS OF MARINE LIFE MAKING OCEAN LIFE COUNT www.coml.org Census of Marine Life Projects Information System: OBIS Nearshore: NaGISA Coral Reefs: CReefs Regional Ecosystems: GoMA Continental Shelves: POST Continental Margins: COMARGE Abyssal Plains: CeDAMar Mid-Ocean Ridges: MAR-ECO Seamounts: CenSeam Vents and Seeps: ChEss Arctic Ocean: ArcOD Antarctic Ocean: CAML Top Predators: TOPP Zooplankton: CMarZ Microbes: ICoMM Oceans Past: HMAP Oceans Future: FMAP National and Regional Implementation Committees Australia Canada Caribbean China Europe Japan Indian Ocean Indonesia South Korea South America Sub-Saharan Africa United States Like an underwater spaceship, a jellyfish,Aequorea macrodactyla, travels through the warm, clear waters of the Celebes Sea in the Western Pacific Ocean. The jellyfish was but one of thousands of specimens photographed during a three-week Census expedition to explore this highly diverse area. Photo: Larry Madin, Woods Hole Oceanographic Institution. A Truly Global Endeavor The Census of Marine Life is a global network of researchers in more than 80 nations engaged in a ten-year scientific initiative to assess and ex- plain the diversity, distribution, and abundance of marine life in the oceans. The world’s first com- prehensive Census of Marine Life—past, present, and future—will be released in 2010. The Census gratefully acknowledges the financial support of numerous governments and organiza- tions from around the world. Moreover, many of the highlights in this report were only realized through the generous collaborative spirit and un- precedented cooperation of Census researchers and their international colleagues. A complete list of Census sponsors, funding partners, collaborat- ing institutions, and participating individuals is available at www.coml.org. -
The Southern Ocean 118 Worldwide Review of Bottom Fisheries in the High Seas
THE SOUTHERN OCEAN 118 Worldwide review of bottom fisheries in the high seas 30°W 15°W 0° 15°E 30°E °S °S 10 10 47 °S a n t i c °S A t l O c e a 20 n 20 t h o u 41 S Bouvet Prince Edward 51 Island Islands R i d i a g So t e ut S o hern Crozet °S c O o °S S South Georgia ce 30 Island an Islands u 30 t h 48 I n d Kerguelen e Islands g i id a McDonald R g Islands r n Weddell e Heard b Sea Island ss u O 5858 a -G en c el u e rg Bellingshausen e a K 87 n 87 Sea Davis Amundsen Sea n a Sea e c S O o n Ross r e u h S Sea t t outh u o h e 88 S rn O P c ea a n c i °S f °S i M 30 c 30 a O c c qu Macquarie e a a r Island 81 n ie R 57 i d g e °S °S 20 20 Tasman 77 Sea °S °S 10 150°W 165°W 180° 165°E 150°E 10 Antarctic Convergence FAO Fishing Areas 200 nautical miles arcs CCAMLR Regulatory Area Map Projection: Lambert Azimuthal equal area FAO, 2008 MAP 1 The Southern Ocean 119 Southern Ocean FAO Statistical Areas 48, 58 and 88 GEOGRAPHIC DESCRIPTION OF THE REGION The Southern Ocean surrounds the continent of Antarctica, and constitutes about 15 percent of the world’s total ocean surface (CCAMLR, 2000). -
Volume 16 - Résultats Des Campagnes Musorsidm, Volume 16 - Résultats Des ' 7
ÉSULTATS DES CAMPAGNES MUSORSIDM, VOLUME 16 - RÉSULTATS DES CAMPAGNES MUSORSIDM, VOLUME 16 - RÉSULTATS DES ' 7 Mollusca Cephalopoda: Mid-depth octopuses (200-1000 m) of the Banda and Arafura Seas (Octopodidae and Alloposidae) Mark D. NORMAN*, F.G. HOCHBERG** & c.c. LU*** *Department of Zoology, University of Melbourne Parkville, VIC 3052, Australia **Invertebrate Zoology, Santa Barbara Museum of Natural History 2559 Puesta deI Sol Road., Santa Barbara, CA 93105, USA ***Invertebrate Zoology, Museum of Victoria, 328 Swanston Walk Melbourne, VIC 3000, Australia ABSTRACT Six mid-depth octopuses of the Order Octopoda are reported from the Banda and Arafura Seas off Indonesia and northern Australia, based on material collected through the collaborative French-Indonesian KARuBAR cmise of 1991. Octopod material was collected through benthic trawls at 18 of 91 stations, at depths between 199 and 869 metres. Two new species are described here, Benthoctopus karubar sp. nov. and Octopus pyrum sp. nov. An additional species of the genus Octopus is reported as indeterminate but distinct from O. pyrum. The genus Pteroctopus is reported from Indo- Pacifie waters for the first time, based on female material collected through the KARuBAR cmise and linked with additional male material collected off New Caledonia and Vanuatu. Eledone palari is recorded as a northerly extension to the Australian distribution reported in the original description for this species. A single submature female of the pelagie octopod, Haliphron atlanticus (previously treated under the name Alloposus mollis), is also reported from the region. The depth distributions and phylogenetic affinities of this fauna are discussed. RÉSUMÉ Mollusca Cephalopoda : Pieuvres bathyales (200-1000 m) des mers de Banda et d'Ararura (Octopodidae et Alloposidae). -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
Guide to Theecological Systemsof Puerto Rico
United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299.