Formation of Human Long Intergenic Non-Coding RNA Genes and Pseudogenes: Ancestral Sequences Are Key Players

Total Page:16

File Type:pdf, Size:1020Kb

Formation of Human Long Intergenic Non-Coding RNA Genes and Pseudogenes: Ancestral Sequences Are Key Players bioRxiv preprint doi: https://doi.org/10.1101/826784; this version posted October 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Formation of human long intergenic non-coding RNA genes and pseudogenes: ancestral sequences are key players Nicholas Delihas Department of Molecular Genetics and Microbiology Renaissance School of Medicine Stony Brook University Stony Brook, N.Y. USA 11794 Email: [email protected] Key words: gene formation; human long intergenic non-coding RNA genes; pseudogenes; chromosomal segmental duplications; chromosomal 22q11.2 1 bioRxiv preprint doi: https://doi.org/10.1101/826784; this version posted October 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Pathways leading to formation of non-coding RNA and protein genes are varied and complex. We report finding a highly conserved repeat sequence present in both human and chimpanzee genomes that appears to have originated from a common primate ancestor. This sequence is repeatedly copied in human chromosome 22 (chr22) low copy repeats (LCR22) or segmental duplications and forms twenty-one different genes, which include human long intergenic non- coding RNA (lincRNA) gene and pseudogene families, as well as the gamma- glutamyltransferase (GGT) protein gene family and the RNA pseudogenes that originate from GGT sequences. In sharp contrast, only predicted protein genes stem from the homologous repeat sequence present in chr22 of chimpanzee. The data point to an ancestral DNA sequence, highly conserved through evolution and duplicated in humans by chromosomal repeat sequences that serves as a functional genomic element in the development of new and diverse genes in humans and chimpanzee. Introduction Models presented for the pathways in formation of genes are diverse (1). These include formation of long non-coding RNA (lncRNA) genes from protein genes (2-5), with one study based on similarities in open reading frames (5), and the reverse pathway of human protein gene formation from lncRNA genes that are found in rhesus macaque and chimpanzee (6). Here we report new findings on an evolutionarily conserved repeat sequence that is present in multiple and diverse RNA and protein genes and propose that a similar sequence serves as a proto-gene forming unit, a nucleation site for formation of new genes, both non-coding RNA (ncRNA) and protein genes. The repeat sequence is highly prevalent in different segmental duplications or low copy repeats (LCR22) of human chromosome 22 (chr22), specifically in region 22q11.2. Chr22 has the largest number of segmental duplications per unit chromosomal length of any human chromosome (7). These duplications are dynamic (8). Several may have arisen after the separation of human and macaque lineages (9) and they are continuously evolving, as shown by comparisons and differences found in current human populations (10). Segmental duplications have been considered to be important for new gene formation and human evolution (11-13). Additionally, the 22q11.2 region in itself is of special interest as it is prone to genetic deletions formed during fetal development that result in a high rate of genetic abnormalities (14). Segmental duplications have been shown to participate in the deletion process via meiotic nonallelic homologous recombination (9, 11). In this paper we propose a model for the evolutionarily conserved human/chimpanzee repeat sequence and show that it serves as a starting point for formation of new lncRNA genes with subsequent base pair changes, sequence additions and/or deletions. The core sequence consists of the common sequence shared by the gamma-glutamyltransferase (GGT) protein gene family, where GGT is linked to three phylogenetically conserved and distinct sequences. In humans, these sequences form families of long intergenic non-coding RNA genes and pseudogenes that are linked to GGT sequences present in chromosomal segmental duplications; in chimpanzee, the conserved repeat sequence has not been found to form lncRNA genes but to form predicted protein genes. The presence of GGT in the long arm of chr22 was determined several decades ago (15) and its duplication in segmental duplications 2 bioRxiv preprint doi: https://doi.org/10.1101/826784; this version posted October 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. has also been reported (11). The GGT family is well characterized (16, 17). In addition to the GGT-linked gene segments, we describe another protein gene family in LCR22s, the ubiquitin specific peptidase (USP) family that is found linked to lincRNA genes in humans. In chimpanzee, the USP-linked sequences encode only predicted protein genes, which is similar to the findings with GGT–associated sequences. The significance of chromosomal segmental duplications to gene development described here has parallels to the importance of human genome expansion of repeat units in the evolution of regulatory elements (18). Methods Reference genomes for primate species. Homo sapiens chromosome 22, GRCh38.p12 Primary Assembly NCBI was the source of sequences and properties of RNA and protein genes. Pan troglodytes, isolate Yerkes chimp pedigree #C0471 (Clint) chromosome 22, Clint_PTRv2, NCBI was the source of chimpanzee sequences and protein genes. In addition, a cloned sequence from Pan troglodytes, clone rp43-41g5, complete sequence GenBank: AC099533.36 provided an additional copy of the conserved repeat sequence. Gorilla gorilla (western gorilla) chromosome 22, gorGor4, NCBI Reference Sequence: NC_018446.2, locus: NC_018446 (19) was used to search for the presence of GGT genes and the conserved repeat sequence. Gene properties and gene searches. NCBI and Ensembl websites: (https://www.ncbi.nlm.nih.gov/gene) (19-21) and (http://useast.ensembl.org/Homo_sapiens/Info/Index) (22, 23) were used as the primary sources for gene properties. However FAM230A gene annotations provided a partial gene sequence as there is a 50 kbp unsequenced gap within the gene. For, sequence analysis both the FAM230A NMD RNA transcript sequence from NCBI and the FAM230A gene sequence provided by Ensembl was used. Additional databases employed for gene properties were: Gene Cards: GeneCards – the human gene database, (www.genecards.org) (24), HGNC: (Genenames.org) (25), RNAcentral: rnacentral.org/ (26). For chimpanzee gene searches, the NCBI Reference sequence (RefSeq) database was used (19). The NCBI annotation of chimpanzee protein genes are with the Gnomon-The NCBI eukaryotic gene prediction tool (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/). Genomic coordinates. The NCBI and Ensembl gene coordinates differ for a number of genes, especially at the 5’ ends. For uniformity, all coordinates used here were according to NCBI with the expectation of AC023490.3 that has been annotated only by Ensembl. The description of linked gene segments in Table 1 is in the order of FAM230-clincRNA-GGT or pseudogenene- GGT. However, in the genome, the gene order for several of the repeat segments is in the reverse orientation. For consistency, all linked genes are shown in the same orientation as in Table 1. Blast, BLAT searches and sequence identity determinations. The Blast search engine (https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome (27) and Blat search engine (http://useast.ensembl.org/Homo_sapiens/Tools/Blast?db=core) (22) were both used to find similarities is gene sequences and to initially detect gene families. Nucleotide and amino acid sequence alignments and identity determinations. The EMBL- EBI Clustal Omega Multiple Sequence Alignment program,website: http://www.ebi.ac.uk/Tools/msa/clustalo/ was used for alignment of two or more nucleotide or 3 bioRxiv preprint doi: https://doi.org/10.1101/826784; this version posted October 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. amino acid sequences. This program was also used to determine phylogenetic relationships via generation of a phylogram. The identity between two sequences was determined by the NCBI Basic Local Alignment Search Tools, blastn and blastp, align two or more sequences with the Program Selection: Optimize for Highly similar sequences (megablast) (27). The identities represent only aligned sequences and do not including gaps sequences. RNA expression The expression of RNA from normal tissues were obtained from website: www.ncbi.nlm.nih.gov/gene/, human tissue-specific expression (HPA) RNA-seq normal tissues (28). The expression of circular RNAs: Tissue-specific circular RNA induction during human fetal development was obtained from website: www.ncbi.nlm.nih.gov/gene/ (29) where RNA-seq was performed on 27 different human tissues with samples from 95 individuals. Protein properties. UniProtKB (uniprot.org/uniprot/) was the source of human protein amino acid sequences. For chimpanzee proteins, amino acid sequences and regions of the protein sequence that have predicted functional domains were from: www.ncbi.nlm.nih.gov/protein (20). RepeatMasker analysis of nt sequences. The RepeatMasker program, www.repeatmasker.org/cgi-bin/WEBRepeatMasker (30) was employed to search for transposable elements. The search engine, “hmmer” for DNA sequences and interspersed repeats was used to detect transposable elements. Results Background on GGT-linked gene repeat sequences The DNA repeat sequence was detected in human chr22 segmental duplications LCR22A and LCR22D while analyzing the FAM230 lincRNA genes (31).
Recommended publications
  • Human Intelligence: Does It Depend on a Genetic Error?
    This page was exported from - TheologyPlus Export date: Fri Sep 24 4:32:48 2021 / +0000 GMT Human Intelligence: Does It Depend on a Genetic Error? What makes humans different from the great apes? What makes our brains larger and more complex? We know that our DNA is remarkable similar to other mammals. What subtle genetic changes can explain such huge behavioral differences? One surprising possibility is that our brains are bigger and more complex not so much because of new genes but because of gene duplication. One gene in particular?SRGAP2?plays a role in how brain cells migrate. It is found widely in mammals of all sorts, from mice to humans. In the great apes, the more archaic form of SRGAP2 results in a relatively slow spread of neurons throughout the brain. Twice in the ancient past, however, SRGAP2 was duplicated, first about 3.4 million years ago and then again around 2.4 million years ago. The second duplication occurred right around the time when the genus Homo separated from Australopithecus. It appears that as a result of these duplications, brains in the Homo lineage?including our own as Homo sapiens?are both large and complex in their number of neuronal connections and in their ability to process information. A key piece of supporting evidence comes from recent discoveries of the role of SRGAP2 in the development of the human neocortex. When the distinctly human SRGAP2 variants are missing, normal human brain development is impaired. This research appears in two papers appearing May 3, 2012 in the journal Cell.
    [Show full text]
  • Polleux SRGAP2 Qanda 09-19-16 FINAL
    This Gene May Underpin Our Brain’s Extraordinary Abilities Scientists at Columbia’s Zuckerman Institute have shed light on how a single change to our genome had a significant impact on the evolution of the human brain To say that evolution is complex would be an understatement. But every once in a while, it can also be elegant in its simplicity. In a study published this June in Neuron, Zuckerman Institute Principal Investigator Franck Polleux, PhD, and colleagues described a stunning example of human evolution — one that may have guided the development of the human brain. We spoke with Dr. Polleux, the paper’s co-senior author, about his discovery. What propelled you to study human evolution? I have long been interested in understanding the genetic changes that drove the evolution of the human brain. It’s one of the biggest questions in biology: How did our brains develop the ability to create a piece of music or learn a language? Ultimately, the answers to these questions are encoded in our DNA — we just have to know where to find them. Within the last decade, researchers began to notice peculiarities in the human genome that we found intriguing. We called them human-specific gene duplications. What is a gene duplication? A gene duplication occurs when a single piece of DNA is copied and then inserted elsewhere in the genome. Gene duplications occur in all living organisms. But scientists have recently identified more than 30 gene duplications that are unique to humans. Early on, we speculated that because these particular duplications are found only in the human genome, they might be tied to some of our uniquely human traits — both of brain development and function — that ultimately allow for the emergence of cognitive abilities such creativity, language and problem-solving.
    [Show full text]
  • Palmitic Acid Effects on Hypothalamic Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454666; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Running title: Oleic and palmitic acid effects on hypothalamic neurons Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids Fabiola Pacheco Valencia1^, Amanda F. Marino1^, Christos Noutsos1, Kinning Poon1* 1Department of Biological Sciences, SUNY Old Westbury, Old Westbury NY, United States ^Authors contributed equally to this work *Corresponding Author: Kinning Poon 223 Store Hill Rd Old Westbury, NY 11568, USA 1-516-876-2735 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454666; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Prenatal high-fat diet exposure increases hypothalamic neurogenesis events in embryos and programs offspring to be obesity-prone. The molecular mechanism involved in these dietary effects of neurogenesis are unknown. This study investigated the effects of oleic and palmitic acids, which are abundant in a high-fat diet, on the hypothalamic neuronal transcriptome and how these changes impact neurogenesis events. The results show differential effects of low and high concentrations of oleic or palmitic acid treatment on differential gene transcription.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • NLS-Mediated NPC Functions of the Nucleoporin Pom121
    FEBS Letters 584 (2010) 3292–3298 journal homepage: www.FEBSLetters.org NLS-mediated NPC functions of the nucleoporin Pom121 Sevil Yavuz, Rachel Santarella-Mellwig, Birgit Koch, Andreas Jaedicke, Iain W. Mattaj *,1, Wolfram Antonin **,1 European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany article info abstract Article history: RanGTP mediates nuclear import and mitotic spindle assembly by dissociating import receptors Received 23 February 2010 from nuclear localization signal (NLS) bearing proteins. We investigated the interplay between Revised 31 May 2010 import receptors and the transmembrane nucleoporin Pom121. We found that Pom121 interacts Accepted 2 July 2010 with importin a/b and a group of nucleoporins in an NLS-dependent manner. In vivo, replacement Available online 14 July 2010 of Pom121 with an NLS mutant version resulted in defective nuclear transport, induction of aber- Edited by Ulrike Kuttay rant cytoplasmic membrane stacks and decreased cell viability. We propose that the NLS sites of Pom121 affect its function in NPC assembly both by influencing nucleoporin interactions and pore membrane structure. Keywords: Pom121 Nucleoporin Structured summary: Importin MINT-7951230: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uni- protkb:O75694), Nup133 (uniprotkb:Q8WUM0) and Importin beta (uniprotkb:Q14974) by pull down (MI:0096) MINT-7951210: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0915) with Importin alpha (uni- protkb:P52170) and Importin beta (uniprotkb:P52297)
    [Show full text]
  • Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells During Replicative Senescence
    Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells during Replicative Senescence Jennifer M. Röhrl, Rouven Arnold and Karima Djabali * Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Technical University of Munich (TUM), 85748 Garching, Germany; [email protected] (J.M.R.); [email protected] (R.A.) * Correspondence: [email protected] Supplementary Figures Figure S1: Seeding of NPCs, by ELYS on anaphase chromosomes was not affected in HGPS. Immunocytochemistry of (a) control (GMO1652c) and (b) HGPS (HGADFN003) fibroblasts using α‐ELYS and α‐LA antibody, counterstained with DAPI. NPCs cluster in interphase HGPS cells (b), unlike the evenly distributed punctate pattern in interphase control cells (a). Recruitment of ELYS to anaphase chromosomes is not affected in HGPS cells, compared to control. No defect in ELYS localization can be observed in HGPS from prophase to cytokinesis. NPC, nuclear pore complex; HGPS, Hutchinson‐Gilford progeria. n ≥3. Figure S2: Recruitment of basket nucleoporin NUP153 and scaffold nucleoporin NUP107 were not affected in HGPS. Immunocytochemistry of (a) control (GMO1652c) and (b) HGPS (HGADFN003) fibroblasts using α‐ NUP107 and α‐NUP153 antibodies, counterstained with DAPI. NPCs cluster in interphase HGPS cells (b), unlike the evenly spread out punctate pattern in control interphase (a). Recruitment of NUP153 to anaphase chromosomes is not affected in HGPS cells, compared to the control. No defect in NUP153 or NUP107 localization can be observed in HGPS from prophase to cytokinesis. n ≥3. Figure S3: SUN1 aggregates did not colocalize with mAb414. Immunocytochemistry of (a) control (GMO1652c) and (b) HGPS (HGADFN003) fibroblasts using mAb414 and α‐SUN1 antibodies, counterstained with DAPI.
    [Show full text]
  • Snapshot: the Nuclear Envelope II Andrea Rothballer and Ulrike Kutay Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
    SnapShot: The Nuclear Envelope II Andrea Rothballer and Ulrike Kutay Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland H. sapiens D. melanogaster C. elegans S. pombe S. cerevisiae Cytoplasmic filaments RanBP2 (Nup358) Nup358 CG11856 NPP-9 – – – Nup214 (CAN) DNup214 CG3820 NPP-14 Nup146 SPAC23D3.06c Nup159 Cytoplasmic ring and Nup88 Nup88 (Mbo) CG6819 – Nup82 SPBC13A2.02 Nup82 associated factors GLE1 GLE1 CG14749 – Gle1 SPBC31E1.05 Gle1 hCG1 (NUP2L1, NLP-1) tbd CG18789 – Amo1 SPBC15D4.10c Nup42 (Rip1) Nup98 Nup98 CG10198 Npp-10N Nup189N SPAC1486.05 Nup145N, Nup100, Nup116 Nup 98 complex RAE1 (GLE2) Rae1 CG9862 NPP-17 Rae1 SPBC16A3.05 Gle2 (Nup40) Nup160 Nup160 CG4738 NPP-6 Nup120 SPBC3B9.16c Nup120 Nup133 Nup133 CG6958 NPP-15 Nup132, Nup131 SPAC1805.04, Nup133 SPBP35G2.06c Nup107 Nup107 CG6743 NPP-5 Nup107 SPBC428.01c Nup84 Nup96 Nup96 CG10198 NPP-10C Nup189C SPAC1486.05 Nup145C Outer NPC scaffold Nup85 (PCNT1) Nup75 CG5733 NPP-2 Nup-85 SPBC17G9.04c Nup85 (Nup107-160 complex) Seh1 Nup44A CG8722 NPP-18 Seh1 SPAC15F9.02 Seh1 Sec13 Sec13 CG6773 Npp-20 Sec13 SPBC215.15 Sec13 Nup37 tbd CG11875 – tbd SPAC4F10.18 – Nup43 Nup43 CG7671 C09G9.2 – – – Centrin-21 tbd CG174931, CG318021 R08D7.51 Cdc311 SPCC1682.04 Cdc311 Nup205 tbd CG11943 NPP-3 Nup186 SPCC290.03c Nup192 Nup188 tbd CG8771 – Nup184 SPAP27G11.10c Nup188 Central NPC scaffold Nup155 Nup154 CG4579 NPP-8 tbd SPAC890.06 Nup170, Nup157 (Nup53-93 complex) Nup93 tbd CG7262 NPP-13 Nup97, Npp106 SPCC1620.11, Nic96 SPCC1739.14 Nup53(Nup35, MP44) tbd CG6540 NPP-19 Nup40 SPAC19E9.01c
    [Show full text]
  • Two Distinct Human POM121 Genes: Requirement for the Formation of Nuclear Pore Complexes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 581 (2007) 4910–4916 Two distinct human POM121 genes: Requirement for the formation of nuclear pore complexes Tomoko Funakoshia, Kazuhiro Maeshimaa, Kazuhide Yahatab, Sumio Suganoc, Fumio Imamotob, Naoko Imamotoa,* a Cellular Dynamics Laboratory, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan b Department of Molecular Biology, BIKEN, Osaka University, Osaka, Japan c The Institute of Medical Science, The University of Tokyo, Tokyo, Japan Received 30 March 2007; revised 12 September 2007; accepted 12 September 2007 Available online 21 September 2007 Edited by Ulrike Kutay essential in somatic cells, as this protein is not ubiquitously ex- Abstract Pom121 is one of the integral membrane components of the nuclear pore complex (NPC) in vertebrate cells. Unlike ro- pressed in mammalian cells [6]. Pom121 is recruited at an early dent cells carrying a single POM121 gene, human cells possess stage of post-mitotic nuclear reassembly in vertebrate cells, multiple POM121 gene loci on chromosome 7q11.23, as a conse- and its turnover on the interphase NPC is very slow [7]. These quence of complex segmental-duplications in this region during findings make Pom121 a strong candidate that could possess human evolution. In HeLa cells, two ‘‘full-length’’ Pom121 are essential roles in anchoring the NPC to the NE. Indeed, transcribed and translated by two distinct genetic loci. RNAi Pom121 was shown to be essential for NPC formation, but experiments showed that efficient depletion of both Pom121 pro- not gp210 in the Xenopus egg extracts [8].
    [Show full text]
  • Genetic Changes Shaping the Human Brain.Pdf
    Developmental Cell Review Genetic Changes Shaping the Human Brain Byoung-Il Bae,1 Divya Jayaraman,1 and Christopher A. Walsh1,* 1Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; and Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.devcel.2015.01.035 The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-gener- ation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both pro- tein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological and neuropsychiatric disorders, such as autism and schizophrenia. All life forms develop, reproduce, and age based on their genetic changes affecting the development and evolution of the human blueprint. The human genetic blueprint is written in approximately neocortex. three billion base pairs (bp) and contains protein-coding genes (estimated at 21,000 or fewer), RNA genes (e.g., microRNAs,
    [Show full text]
  • Compositionally Distinct Nuclear Pore Complexes of Functionally Distinct Dimorphic Nuclei in the Ciliate Tetrahymena
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1822-1834 doi:10.1242/jcs.199398 RESEARCH ARTICLE Compositionally distinct nuclear pore complexes of functionally distinct dimorphic nuclei in the ciliate Tetrahymena Masaaki Iwamoto1, Hiroko Osakada1, Chie Mori1, Yasuhiro Fukuda2, Koji Nagao3, Chikashi Obuse3, Yasushi Hiraoka1,4,5 and Tokuko Haraguchi1,4,5,* ABSTRACT targeted transport of components to the MIC versus MAC, for which The nuclear pore complex (NPC), a gateway for nucleocytoplasmic differences in the NPCs may be important determinants. trafficking, is composed of ∼30 different proteins called nucleoporins. Previously, we analyzed 13 Tetrahymena nucleoporins (Nups), It remains unknown whether the NPCs within a species are and discovered that four paralogs of Nup98 were differentially homogeneous or vary depending on the cell type or physiological localized to the MAC and MIC (Iwamoto et al., 2009). The MAC- condition. Here, we present evidence for compositionally distinct and MIC-specific Nup98s are characterized by Gly-Leu-Phe-Gly NPCs that form within a single cell in a binucleated ciliate. In (GLFG) and Asn-Ile-Phe-Asn (NIFN) repeats, respectively, and this Tetrahymena thermophila, each cell contains both a transcriptionally difference is important for the nucleus-specific import of linker active macronucleus (MAC) and a germline micronucleus (MIC). By histones (Iwamoto et al., 2009). The full extent of the compositional combining in silico analysis, mass spectrometry analysis for immuno- differentiation of MAC and MIC NPCs could not, however, isolated proteins and subcellular localization analysis of GFP-fused be assessed, since only a small subset of the expected NPC proteins, we identified numerous novel components of MAC and MIC components were detected.
    [Show full text]
  • The Influence of Evolutionary History on Human Health and Disease
    REVIEWS The influence of evolutionary history on human health and disease Mary Lauren Benton 1,2, Abin Abraham3,4, Abigail L. LaBella 5, Patrick Abbot5, Antonis Rokas 1,3,5 and John A. Capra 1,5,6 ✉ Abstract | Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual’s DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential. Genetic disease is a necessary product of evolution These studies are radically changing our understanding (BOx 1). Fundamental biological systems, such as DNA of the genetic architecture of disease8. It is also now possi- replication, transcription and translation, evolved very ble to extract and sequence ancient DNA from remains early in the history of life. Although these ancient evo- of organisms that are thousands of years old, enabling 1Department of Biomedical lutionary innovations gave rise to cellular life, they also scientists to reconstruct the history of recent human Informatics, Vanderbilt created the potential for disease.
    [Show full text]
  • Nuclear Pore Density Controls Heterochromatin Reorganization During 2 Senescence 3 4 Charlene Boumendil1, Priya Hari2, Karl C
    bioRxiv preprint doi: https://doi.org/10.1101/374033; this version posted July 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Nuclear pore density controls heterochromatin reorganization during 2 senescence 3 4 Charlene Boumendil1, Priya Hari2, Karl C. F. Olsen1, Juan Carlos Acosta2, Wendy A. 5 Bickmore1* 6 7 1MRC Human Genetics Unit, Institute oF Genetics and Molecular Medicine, University 8 of Edinburgh, Crewe Road South, Edinburgh EH4 2XU 9 10 2Cancer Research UK Edinburgh Centre, Institute oF Genetics and Molecular Medicine, 11 University oF Edinburgh, Crewe Road South, Edinburgh EH4 2XR 12 13 *correspondence to WAB, MRC Human Genetics Unit, Institute oF Genetics and Molecular 14 Medicine, University oF Edinburgh, Crewe Road South, Edinburgh EH4 2XU. 15 [email protected] 16 17 18 19 Abstract 20 Oncogene induced senescence (OIS) is a cell cycle arrest program triggered by oncogenic signalling. 21 An important characteristic oF OIS is activation oF the senescence associated secretory phenotype 22 (SASP)1 which can reinForce cell cycle arrest, lead to paracrine senescence but also promote tumour 23 progression2–4. Concomitant with cell cycle arrest and the SASP activation, OIS cells undergo a striking 24 nuclear chromatin reorganization, with loss oF heterochromatin From the nuclear periphery and the 25 appearance oF internal senescence-associated heterochromatin Foci (SAHF)5. The mechanisms by 26 which SAHF are Formed, and their role in cell cycle arrest and expression oF the SASP, remain poorly 27 understood.
    [Show full text]