Fernleaf Biscuitroot (Lomatium Dissectum)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Barlow Herbal Specialties Is Proud to Carry on the Legacy of Our Father, Dr
Made with Love! Medicinal Herbal Products Barlow Herbal Specialties Barlow Herbal Specialties is proud to carry on the legacy of our father, Dr. Max G. Barlow. His herbal formulas are unique, powerful and life-giving. We work from his hand-written notes to make our extracts. They are concentrated and potent. Their extraordinary strengths are achieved without heat, pressure or other mechanical means, giving you strong, high quality extracts. Our formulas are made in small batches. They are concentrated and pure. No water, preservatives, additives or fillers. Every product does what it’s designed to do. Our goal is to educate you and empower you with simple, straightforward information. To allow you to take care of your family’s everyday health challenges the way Mother Nature intended. Barlow Herbal believes that living vibrantly healthy is our right as human beings and that we must be individually responsible for our own wellness. We look forward to sharing our wonderful formulas with you and helping you sow the seeds of natural healing. www.barlowherbal.com Toll free - 866-688-6757 Local - 801-816-9241 You and your health are a vital concern to us. We sincerely hope the information we share and the products that we make help to contribute to your physical health, well-being and prosperity. Please be aware none of these statements have been evaluated by the Food and Drug Administration (FDA). These products and this information are NOT intended to diagnose, treat, cure, or prevent any disease. It is simply the 1st Amendment in action and is presented for information and research purposes only. -
Redacted for Privacy W
AN ABSTRACT OF THE THESIS OF Aaron D. Drew for the degree of Master of Science in Wildlife Science presented on December 19. 2000. Title: Effects of Livestock Grazing and Small Mammal Populations on Endangered Bradshaw's Desert Parsley (Lomatium bradshawii) at Oak Creek. Willamette Valley. Oregon. Abstract approved: Redacted for privacy W. Daniel I evaluated the response of the federally listed endangered plant species Bradshaw's desert parsley (Lomatium bradshawii) to livestock grazing and small mammal depredation at Oak Creek, Linn County, Oregon, 1997-1998. I established six study blocks (three each in wooded and herbaceous pastures) with plots in each block randomly assigned to one of four intensities of livestock grazing based on biomass remaining after grazing (no grazing [1,746 kg/ha], high biomass [969 kg/ha], moderate biomass [670 kg/ha], and light biomass [318 kg/ha]). Small mammals were live-trapped in each of the study blocks pre and post application of the livestock grazing treatments. I mapped and measured 2,807 Bradshaw's desert parsley plants (n1,366 in the wooded and n = 1,441 in the herbaceous pastures) over the two year period to determine changes in schizocarp production, morphological structure (conical surface area and height), population composition (plant stage), survival, emergence of new plants, and effects of small mammal herbivory pre and post application of livestock grazing. Grazing reductions in standing crop biomass appeared to have a positive effect on emergence of new Bradshaw's desert parsley plants, while having no detectible effect on total plant density or survival. Differences in total plant density, survival, schizocarp production, morphological structure, and population composition were related to pasture type. -
Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971). -
MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION to of NORTH AFRICA Opidjd CHEMISTRY and CONSUMPTION by Loutfy Boulos
hv'IERIGAN BCXtlNICAL COJNCIL -----New Act(uisition~---------l ETHNOBOTANY FLORA OF LOUISIANA Jllll!llll GUIDE TO FLOWERING FLORA Ed. by Richard E. Schultes and Siri of by Margaret Stones. 1991. Over PLANT FAMILIES von Reis. 1995. Evolution of o LOUISIANA 200 beautiful full color watercolors by Wendy Zomlefer. 1994. 130 discipline. Thirty-six chapters from and b/w illustrations. Each pointing temperate to tropical families contributors who present o tru~ accompanied by description, habitat, common to the U.S. with 158 globol perspective on the theory and and growing conditions. Hardcover, plates depicting intricate practice of todoy's ethnobotony. 220 pp. $45. #8127 of 312 species. Extensive Hardcover, 416 pp. $49.95. #8126 glossary. Hardcover, 430 pp. $55. #8128 FOLK MEDICINE MUSHROOMS: TAXOL 4t SCIENCE Ed. by Richard Steiner. 1986. POISONS AND PANACEAS AND APPLICATIONS Examines medicinal practices of by Denis Benjamin. 1995. Discusses Ed. by Matthew Suffness. 1995. TAXQL® Aztecs and Zunis. Folk medicine Folk Medicine signs, symptoms, and treatment of Covers the discovery and from Indio, Fup, Papua New Guinea, poisoning. Full color photographic development of Toxol, supp~. Science and Australia, and Africa. Active identification. Health and nutritional biology (including biosynthesis and ingredients of garlic and ginseng. aspects of different species. biopharmoceutics), chemistry From American Chemical Society Softcover, 422 pp. $34.95 . #8130 (including structure, detection and Symposium. Softcover, isolation), and clinical studies. 223 pp. $16.95. #8129 Hardcover, 426 pp. $129.95 #8142 MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION TO OF NORTH AFRICA OpiDJD CHEMISTRY AND CONSUMPTION by Loutfy Boulos. 1983. Authoritative, Poppy PHARMACOLOGY TEA Ed. -
Washington Plant List Douglas County by Scientific Name
The NatureMapping Program Washington Plant List Revised: 9/15/2011 Douglas County by Scientific Name (1) Non- native, (2) ID Scientific Name Common Name Plant Family Invasive √ 763 Acer glabrum Douglas maple Aceraceae 800 Alisma graminium Narrowleaf waterplantain Alismataceae 19 Alisma plantago-aquatica American waterplantain Alismataceae 1087 Rhus glabra Sumac Anacardiaceae 650 Rhus radicans Poison ivy Anacardiaceae 29 Angelica arguta Sharp-tooth angelica Apiaceae 809 Angelica canbyi Canby's angelica Apiaceae 915 Cymopteris terebinthinus Turpentine spring-parsley Apiaceae 167 Heracleum lanatum Cow parsnip Apiaceae 991 Ligusticum grayi Gray's lovage Apiaceae 709 Lomatium ambiguum Swale desert-parsley Apiaceae 997 Lomatium canbyi Canby's desert-parsley Apiaceae 573 Lomatium dissectum Fern-leaf biscuit-root Apiaceae 582 Lomatium geyeri Geyer's desert-parsley Apiaceae 586 Lomatium gormanii Gorman's desert-parsley Apiaceae 998 Lomatium grayi Gray's desert-parsley Apiaceae 999 Lomatium hambleniae Hamblen's desert-parsley Apiaceae 609 Lomatium macrocarpum Large-fruited lomatium Apiaceae 1000 Lomatium nudicaule Pestle parsnip Apiaceae 634 Lomatium triternatum Nine-leaf lomatium Apiaceae 474 Osmorhiza chilensis Sweet-cicely Apiaceae 264 Osmorhiza occidentalis Western sweet-cicely Apiaceae 1044 Osmorhiza purpurea Purple sweet-cicely Apiaceae 492 Sanicula graveolens Northern Sierra) sanicle Apiaceae 699 Apocynum androsaemifolium Spreading dogbane Apocynaceae 813 Apocynum cannabinum Hemp dogbane Apocynaceae 681 Asclepias speciosa Showy milkweed Asclepiadaceae -
Okanogan County Plant List by Scientific Name
The NatureMapping Program Washington Plant List Revised: 9/15/2011 Okanogan County by Scientific Name (1) Non- native, (2) ID Scientific Name Common Name Plant Family Invasive √ 763 Acer glabrum Douglas maple Aceraceae 3 Acer macrophyllum Big-leaf maple Aceraceae 800 Alisma graminium Narrowleaf waterplantain Alismataceae 19 Alisma plantago-aquatica American waterplantain Alismataceae 1155 Amaranthus blitoides Prostrate pigweed Amaranthaceae 1087 Rhus glabra Sumac Anacardiaceae 650 Rhus radicans Poison ivy Anacardiaceae 1230 Berula erecta Cutleaf water-parsnip Apiaceae 774 Cicuta douglasii Water-hemlock Apiaceae 915 Cymopteris terebinthinus Turpentine spring-parsley Apiaceae 167 Heracleum lanatum Cow parsnip Apiaceae 1471 Ligusticum canbyi Canby's lovage Apiaceae 991 Ligusticum grayi Gray's lovage Apiaceae 709 Lomatium ambiguum Swale desert-parsley Apiaceae 1475 Lomatium brandegei Brandegee's lomatium Apiaceae 573 Lomatium dissectum Fern-leaf biscuit-root Apiaceae Coeur d'Alene desert- Lomatium farinosum Apiaceae 548 parsley 582 Lomatium geyeri Geyer's desert-parsley Apiaceae 586 Lomatium gormanii Gorman's desert-parsley Apiaceae 998 Lomatium grayi Gray's desert-parsley Apiaceae 999 Lomatium hambleniae Hamblen's desert-parsley Apiaceae 609 Lomatium macrocarpum Large-fruited lomatium Apiaceae 1476 Lomatium martindalei Few-flowered lomatium Apiaceae 1000 Lomatium nudicaule Pestle parsnip Apiaceae 1477 Lomatium piperi Piper's bisciut-root Apiaceae 634 Lomatium triternatum Nine-leaf lomatium Apiaceae 1528 Osmorhiza berteroi Berter's sweet-cicely -
Common Fennel Control
About Common Fennel: Closely related to domestic garden fennels, common fennel is a large, aromatic, perennial with upright, branched stems, growing up to 7 feet tall, with a very large taproot. The fern-like If you would like weed identification, foliage, as well as stems, roots, and seeds are site-specific control recommendations, Common Fennel hairless and all have a strong licorice scent. or additional noxious weed information, (Foeniculum vulgare var. vulgare) The finely divided leaves have a triangular contact the San Juan County Noxious arrangement and are dark green to bronze. Weed Control Program. Leaf stems are swollen, fleshy and have a wid- ened base. The small, yellow flowers form an Class B Noxious Weed umbrella-shaped cluster and bloom from May to September. Plants reproduce from thousands of seeds and fragments of root crown. (Control required in San Juan County) Why control Common Fennel? Common fennel rapidly spreads by seed, form- ing dense, monotypic stands that overtake native plants and habitats critical to wildlife and pollinators, as well as gardens and land- scaping. Plants can be difficult to control once San Juan County Noxious established. In San Juan County, mature plants Weed Control Program harbor great numbers of invasive snails that 2020 further threaten native plant populations. Before you begin: Create a plan for restoration before removing weeds or disturbing the soil. Common fennel seeds germinate easily on bare soil, but have a P.O. Box 1634 more difficult time in established vegetation. If or enough desirable vegetation is not present to 62 Henry Road #26 replace the fennel, newly exposed soil can be Eastsound, WA 98245 sown with native plants or non-invasive peren- (360) 376-3499 nial grasses to promote competition. -
Herban Legends and Clinical Pearls
5/11/2018 Herban Legends and Clinical Pearls PAUL BERGNER TRADITIONAL ROOTS CONFERENCE NATIONAL UNIVERSITY OF NATURAL MEDICINE PORTLAND, OR MAY 2018 Paul Bergner P.O. Box 13758 Portland, OR 97213 http://naimh.com Notes and slides: http://naimh.com/nunm 1 5/11/2018 Herban Legend A persistent, widely and firmly held belief about a plant and its medicinal effects which is not true. It is passed from textbook to textbook, and from teacher to student and perpetuated across generations based on students faith in their teachers, their textbooks, and their misinterpretation of science, tradition, or subjective experience. Why Herban Legends? General lack of critical thinking in modern society 2 5/11/2018 The influence of natural products industry Marketing (deliberate lies and spin) The corruption of the alternative health media Lack of functional scientific literacy Animal trials Epidemiology The misapplication of science by herbalists wanting to appear to be “scientific” 3 5/11/2018 The romanticization and idealization of the past Pseudo folk traditions Superficial Ethnobotany Herbal medical traditions Uncritical acceptance of authorities and their books. 4 5/11/2018 A vacuum of hands-on experience in the later 20th and early 21st centuries. Critical Thinking from Four Directions North TRADITIONS West East INTUITION/INSTINCT SCIENCE South EXPERIENCE 5 5/11/2018 Lomatium LOMATIUM IS NOT AN “ANTIVIRAL” History During the Great Influenza epidemic of 1918, a physician in the Lake Tahoe noticed that although mortality was high among the Whites, he was unaware of any mortality among local Native Americans. The same was observed for Whites who used the methods of the Native Americans See history section at www.lomatium.com 6 5/11/2018 The chief medicine was a long decoction of Lomatium dissectum. -
Mckayla Stevens, Donald H. Mansfield James F. Smith Mary Ann E. Feist
RESOLVING THE ANOMALY OF LOMATIUM ANOMALUM: DISCOVERY OF A NEW SPECIES IN SOUTHWESTERN IDAHO (U.S.A.), LOMATIUM ANDRUSIANUM (APIACEAE) Mckayla Stevens, Donald H. Mansfield James F. Smith The College of Idaho Boise State University 2112 Cleveland Blvd. 1910 W. University Drive Caldwell, Idaho 83605, U.S.A. Boise, Idaho 83725, U.S.A. Mary Ann E. Feist University of Wisconsin-Madison 430 Lincoln Drive Madison, Wisconsin 53706, U.S.A. ABSTRACT Apparent polyphyly within the unresolved clade of Lomatium (Apiaceae) containing L. triternatum, L. anomalum, L. thompsonii, and L. pack- ardiae suggests conflict among current taxonomic classification schemes. To recover this clade and more clearly define species boundaries, we examined populations of L. anomalum from three geographic regions in Idaho and adjacent Oregon. Using phylogenetic, morphological, and ecological data, we conclude that the L. anomalum complex currently circumscribes multiple species. Phylogenetic analysis of the nuclear ribosomal ITS and ETS, and cpDNA rpl32-trnLUAG, rps-16 intron, trnD-trnT, ndhA intron, and psbA-trnH recovered populations from the Boise foothills as a distinct, monophyletic clade. Principal Components Analysis of 30 reproductive and vegetative characters show two distinct groups: one of Boise foothills and one of the combined Mann Creek and Camas Prairie vicinities. Principal Components Analysis of 16 soil characteristics show that soils occupied by Boise foothills populations are distinct from those occupied by Mann Creek and Camas Prairie populations. Based on phylogenetic, morphometric, and ecologic criteria, populations of what had been considered L. anomalum from the Boise foothills and vicinity are here described as a new species—Lomatium andrusianum. -
Washington Flora Checklist a Checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium
Washington Flora Checklist A checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium The Washington Flora Checklist aims to be a complete list of the native and naturalized vascular plants of Washington State, with current classifications, nomenclature and synonymy. The checklist currently contains 3,929 terminal taxa (species, subspecies, and varieties). Taxa included in the checklist: * Native taxa whether extant, extirpated, or extinct. * Exotic taxa that are naturalized, escaped from cultivation, or persisting wild. * Waifs (e.g., ballast plants, escaped crop plants) and other scarcely collected exotics. * Interspecific hybrids that are frequent or self-maintaining. * Some unnamed taxa in the process of being described. Family classifications follow APG IV for angiosperms, PPG I (J. Syst. Evol. 54:563?603. 2016.) for pteridophytes, and Christenhusz et al. (Phytotaxa 19:55?70. 2011.) for gymnosperms, with a few exceptions. Nomenclature and synonymy at the rank of genus and below follows the 2nd Edition of the Flora of the Pacific Northwest except where superceded by new information. Accepted names are indicated with blue font; synonyms with black font. Native species and infraspecies are marked with boldface font. Please note: This is a working checklist, continuously updated. Use it at your discretion. Created from the Washington Flora Checklist Database on September 17th, 2018 at 9:47pm PST. Available online at http://biology.burke.washington.edu/waflora/checklist.php Comments and questions should be addressed to the checklist administrators: David Giblin ([email protected]) Peter Zika ([email protected]) Suggested citation: Weinmann, F., P.F. Zika, D.E. Giblin, B. -
Ntfps in British Columbia
An Economic Strategy to Develop Non-Timber Forest Products and Services in British Columbia Forest Renewal BC Project No. PA97538-ORE Final Report Russel M. Wills and Richard G. Lipsey Cognetics International Research Inc. 579 Berry Road, Cates Hill Bowen Island, British Columbia V0N lG0 tel. 604-947027l fax: 604-9470270 email: [email protected] [email protected] March 15, 1999 acknowledgements We wish to express our deep appreciation to the companies which provided the information upon which this research is based and to our project colleagues from the Mount Currie Band, Lyle Leo, Loretta Steager and Sarah Brown. For information or for reviewing drafts of this work, we are also grateful to these people: Robert Adamson, Lynn Atwood, Paige Axelrood, Kelly Bannister, Shannon Berch, Keith Blatner, Tim Brigham, Sarah Brown, Todd Caldecott, Jim Cathcart, Jeff Chilton, Julien Davies, Fidel Fogarty, Steven Foster, Jim Frank, Shawn Freeman, Christopher French, Sharmin Gamiet, Swann Gardiner, Nelly De Geus, Steven Globerman, Andrea Gunnar, Richard Hallman, Evelyn Hamilton, Wendy Holm, James Hudson, Shun Ishiguru, Murray Isman, Eric Jones, Morley Lipsett, Yuan-chun Ma, Howard Mann, Allison McCutcheon, Richard Allen Miller, Stephen Mills, Darcy Mitchell, Gerrard Olivotto, Gabriel Perche, Scott Redhead, Hassan Salari, David Smith, Randy Spence, Neil Towers, Ian Townsend-Gault, Nancy Turner, Stephen Tyler, Gunta Vitens, James Weigand, and Charles Weiss. The mistakes which remain are ours. We express our gratitude also to Forest Renewal BC for funding this economic strategy and to our program officers at the Science Council of British Columbia, Louise Rees and John Matechuk, for their timely and efficient administration of this project. -
Phylogenetic Relationships Among the Perennial
Plant Div. Evol. Vol. 128/1–2, 151–172 E Stuttgart, August 20, 2010 Phylogenetic relationships among the perennial, endemic Apiaceae subfamily Apioideae of western North America: additional data from the cpDNA trnF-trnL-trnT region continue to support a highly polyphyletic Cymopterus By Feng-Jie Sun and Stephen R. Downie With 3 figures and 3 tables Abstract Sun, F.-J. & Downie, S.R.: Phylogenetic relationships among the perennial, endemic Apiaceae sub- family Apioideae of western North America: additional data from the cpDNA trnF-trnL-trnT region continue to support a highly polyphyletic Cymopterus. — Plant Div. Evol. 128: 151–172. 2010. — ISSN 1869-6155. Considerable confusion exists with regard to the delimitation of Cymopterus and its relationship to the other herbaceous, perennial genera of Apiaceae subfamily Apioideae endemic to western North Amer- ica north of Mexico. Previous molecular systematic studies using nrDNA ITS and cpDNA rps16 in- tron sequences have shown that the genus Cymopterus is highly polyphyletic, with its species inextri- cably linked with those of Aletes, Lomatium, Oreoxis, Pseudocymopterus, Pteryxia, and several other genera of the region. The general lack of resolution of these trees and their overall low branch support values, however, suggested that additional data might be useful to establish monophyly of genera or identify major clades for further phylogenetic and revisionary studies. In this study, we analyze cpD- NA trnF-trnL-trnT sequence data from 129 accessions of North American Apioideae (representing 111 species and 21 genera) using maximum parsimony, maximum likelihood and Bayesian inference methods individually and in combination with ITS and rps16 intron sequence data available through previous phylogenetic studies for the same set of accessions.