Single-Cell Analysis of Influenza a Virus Replication
Total Page:16
File Type:pdf, Size:1020Kb
Single-Cell Analysis of Influenza A Virus Replication: Sources of Cell-to-Cell Heterogeneity and Discovery of a Novel Type of Defective Interfering Particle Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) von: Dipl.-Ing. Sascha Young Kupke geboren am: 31. Oktober 1984 in Berlin genehmigt durch die Fakultät für Verfahrens- und Systemtechnik der Otto-von-Guericke Universität Magdeburg Promotionskommission: Prof. Dr.-Ing. Kai Sundmacher (Vorsitz) Prof. Dr.-Ing. Udo Reichl (Gutachter) Prof. John Yin (Gutachter) Dr. Hansjörg Hauser (Gutachter) eingereicht am: 08. März 2019 Promotionskolloquium am: 05. Februar 2020 II Abstract Abstract Influenza A viruses (IAVs) cause respiratory disease and are a major human pathogen that can give rise to a high morbidity. Besides annual epidemics, IAVs can occasionally also cause a more severe pandemic. Typically, the best protection against the flu is provided by annual vaccination. One way to produce human influenza vaccines are cell culture-based manufacturing systems. Naturally, the smallest production unit in such a process is the infected single cell. However, it is well known that cells in a seemingly homogenous population display a vast cell-to-cell heterogeneity. In the context of this PhD work, we conducted single-cell analysis of IAV-infected cells for applications in cell culture-based influenza virus production. Specifically, we studied the cell-to-cell variability in virus titers to gain a deeper understanding and an improved description of the process. Moreover, we strived for a comprehension of high- productive single cells to possibly derive strategies to improve the production yield. Therefore, we devised a single-cell analysis workflow for IAV-infected cells. For this, we isolated single IAV-infected Madin-Darby canine kidney (MDCK) cells in 384 well plates using a limiting dilution approach, in which single cells in individual wells were identified by microscopy. After incubation, virus titers in the supernatant were investigated by plaque assay and intracellular parameters by real-time reverse transcription quantitative PCR and conventional RT-PCR. The procedure enabled (i) absolute quantification of virus titers and intracellular genomic viral RNAs (vRNAs), (ii) a good throughput of single-cell measurements, (iii) no apparent perturbation of cellular behavior despite the processing and isolation of single cells, and (iv) multiparametric correlation of the single-cell virus yield to either: the cell size, ribosomal RNAs, up to four different genomic vRNAs (simultaneously), or to intracellular defective interfering (DI) RNAs on up to three viral genome segments (simultaneously). In future studies, we may couple our experimental platform to single-cell RNA sequencing (via next-generation sequencing technologies) to study the whole-cell transcriptome of IAV-infected cells, and specifically, to compare the transcriptomic information to the single-cell virus titer. Next, the established single-cell analysis procedure was used to study cell-to-cell variability in IAV replication. We observed a vast heterogeneity with virus titers that ranged from 1 to about 1000 plaque-forming units per cell, and intracellular vRNAs that showed quantitative differences which spanned almost three orders of magnitude. We further showed that cell-to- cell heterogeneity in IAV replication can be generated by both, the inherent randomness in biochemical reactions (i.e., sources of intrinsic noise) and deterministic factors (i.e., sources of extrinsic noise). The latter are (yet unknown) properties, different between individual cells, that III Abstract can affect virus replication in each cell differently. However, more research in single-cell virology is required to resolve the contribution of stochasticity to the cell-to-cell heterogeneity in virus replication (in comparison to the contribution caused by sources of extrinsic noise). Taken together, we show that virus infections are highly variable at the single cell level, and that cell population-based experiments are not covering crucial aspects of virus infections. Next, we investigated potential deterministic sources of the large cell-to-cell heterogeneity in virus titers. We showed that differences in the cell size and the ribosome content did not appear to affect the virus yield of a single cell. Moreover, the between-cell variability in the properties of individual cells (present in the non-clonal MDCK cell line) did also not seem to account for the large single-cell diversity in IAV replication. Finally, we showed that the virus- to-virus genetic heterogeneity (of the infecting virus population) did also not appear to influence the cell-to-cell heterogeneity in IAV replication, except for defective interfering particles (DIPs). DIPs are defective, non-infectious virus particles that harbor a deleted form of the viral RNA genome, which interfere with the replication of their homologous standard virus. More specifically, we demonstrated that the content of such deleted DI RNAs in an infected single cell can influence the cell-specific virus titer. However, our results also indicated that additional unknown factors may further affect the cell-to-cell variability in IAV replication, which remain to be elucidated. Altogether, our results advance single-cell virology research towards an understanding of the large cell-to-cell heterogeneity in virus infections. Finally, utilizing single-cell analysis, we discovered (and enriched) a novel type of IAV-derived DIP, termed “OP7” virus. Conventional DIPs (cDIPs) typically harbor a large internal deletion in one genomic vRNA, whereas OP7 virus contained various point mutations in segment 7 (S7) vRNA. These substitutions affected the promotor regions, encoded proteins, and genome packaging signals. We further characterized OP7 virus replication at different intracellular viral life cycle steps in cell-population-based experiments. Most importantly, similar to cDIPs, OP7 virus showed strong interference with replication of various IAV strains, including relevant epidemic and pandemic human IAV strains. Moreover, we demonstrated that OP7 virus can also interfere with IAV replication in human cell lines. Therefore, we believe that OP7 virus may be a promising candidate for antiviral therapy. Future research efforts may focus on gathering mechanistic insights into OP7 virus molecular biology, animal trials (e.g. in mice and in ferrets) to investigate its antiviral potential, and the development of cell culture-based manufacturing of OP7 virus. IV Kurzfassung Kurzfassung Influenza A Viren (IAV) verursachen Atemwegserkrankungen und sind ein bedeutendes humanes Pathogen, welches zu einem hohen Erkrankungsrate führen kann. Neben der jährlichen Epidemie können IAV auch gelegentlich zu schweren Pandemien führen. Üblicherweise wird der beste Schutz gegen die Grippe durch eine jährliche Impfung gewährleistet. Eine Möglichkeit, humane Influenza Impfstoffe zu produzieren, sind zellkulturbasierte Herstellungssysteme. Selbstverständlich ist die kleinste Produktionseinheit in solch einem Prozess die infizierte Einzelzelle. Es ist jedoch bekannt, dass Zellen in einer scheinbar homogenen Population eine enorme Heterogenität von Zelle zu Zelle aufweisen. Im Kontext dieser Doktorarbeit haben wir die Einzelzellanalyse von IAV-infizierten Zellen für mögliche Anwendungen in der zellkulturbasierten Influenzavirus Produktion durchgeführt. Insbesondere haben wir die Variabilität in den Virustitern zwischen den Zellen untersucht, um ein besseres Verständnis und eine verbesserte Beschreibung des Prozesses zu erreichen. Weiterhin haben wir ein Verständnis von hochproduktiven Einzelzellen angestrebt, um gegebenenfalls Strategien für eine höhere Produktionsausbeute abzuleiten zu können. Aus diesem Grund haben wir einen Workflow zur Einzelzellanalyse für IAV-infizierte Zellen entwickelt. Hierfür haben wir einzelne, IAV-infizierte Madin-Darby canine kidney (MDCK) Zellen in 384 Well Platten mit Hilfe eines „limitierenden Verdünnungsansatzes“ isoliert, in welchem wir die Einzelzellen (in einzelnen Wells) mikroskopisch identifiziert haben. Nach der Inkubation wurden die Virustiter in den Überständen mit Hilfe des Plaque Tests quantifiziert und intrazelluläre Parameter durch quantitative real-time reverse Transkription PCR und der konventionellen RT-PCR untersucht. Die Prozedur ermöglicht (i) die absolute Quantifizierung von Virustitern und intrazellulärer genomischer viraler RNA (vRNA), (ii) einen guten Durchsatz an Einzelzellmessungen, (iii) keine offensichtliche Störung des zellulären Verhaltens trotz der Verarbeitung und Isolierung von Einzelzellen und (iv) eine multiparametrische Korrelation des Virustiters mit: der Größe der Zelle, ribosomalen RNAs, bis zu vier verschiedenen genomischen vRNAs (gleichzeitig) oder mit intrazellulären defekt-interferierenden (DI) RNAs von drei verschiedenen Genomsegmenten (gleichzeitig). In zukünftigen Studien könnten wir unsere experimentelle Plattform mit der Einzelzell-RNA Sequenzierung (mit Hilfe von „next-generation“ Sequenziertechnologien) koppeln, um das Gesamtzelltranskriptom von IAV-infizierten Einzelzellen zu untersuchen und insbesondere, um die transkriptomische Informationen mit dem Einzelzelltiter zu vergleichen. V Kurzfassung Anschließend wurde die etablierte Prozedur für die Einzelzellanalyse verwendet, um die Variabilität in der IAV Replikation von Zelle zu Zelle zu untersuchen. Wir haben eine enorme Heterogenität beobachtet. Die Virustiter reichten von 1