Application of zinc and magnesium oxides nanoparticles in crosslinking of carboxylated butadiene-acrylonitrile rubber. M. Lipinska*, M. Zaborski** *Technical University of Lodz, Institute of Polymer and Dye Technology Stefanowskiego 12/16 street, 90-924 Lodz, Poland,
[email protected] **Technical University of Lodz, Institute of Polymer and Dye Technology Stefanowskiego 12/16 street, 90-924 Lodz, Poland,
[email protected] ABSTRACT and accelerators. These advantages result from their higher ability for stress relaxation. Moreover, ionic elastomers In our work nanosized zinc oxides as well as magnesium demonstrate thermoplastic properties and can be processed 7 oxide of different size and morphology for crosslinking of in a molten state . carboxylated butadiene-acrylonitrile rubber XNBR were applied. The relationship between the most important 2 EXPERIMENTAL parameters influencing the activity during the ionic 2.1 Materials and characterization crosslinking process i.e specific surface area, particle size and morphology of oxides surface and the mechanical In our work to prepare rubber mixtures carboxylated properties of obtained crosslinked materials were examined. butadiene-acrylonitrile rubber XNBR (Krynac X7.50) The influence of used oxides on the curing kinetics, containing 27 wt% acrylonitrile and 6.7 wt% carboxylic crosslink density of vulcanisates and the content of ionic groups produced by Bayer AG was used. As a crosslinking crosslinks was determined. We conclude that zinc and agents were applied: magnesium oxides allowed to obtain vulcanisates with • magnesium oxide MgO – nanopowder (Sigma considerably better mechanical properties as compared to – Aldrich with surface area 130 m2/g those crosslinked with 8 phr of commercially used • zinc oxide ZnO A – nanopowder (Qinetiq microsized zinc oxide.