On Ingeae Systematics of Synandrous Mimosoids

Total Page:16

File Type:pdf, Size:1020Kb

On Ingeae Systematics of Synandrous Mimosoids Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1969 On Ingeae Systematics of synandrous mimosoids JULIA FERM ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1013-8 UPPSALA urn:nbn:se:uu:diva-420681 2020 Dissertation presented at Uppsala University to be publicly examined in Friessalen, EBC, Norbyvägen 14, Uppsala, Friday, 20 November 2020 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Tiina Särkinen (Royal Botanic Garden Edinburgh). Abstract Ferm, J. 2020. On Ingeae Systematics of synandrous mimosoids. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1969. 50 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1013-8. Background: The Ingeae tribe (Caesalpiniodeae, Fabaceae) has a long history of taxonomic complexity with genera being merged and split, and many species with former placements in several different genera. Moreover, phylogenetic studies have shown that the tribe is non- monophyletic with the genus Acacia (of tribe Acacieae) nested within Ingeae. This problem of non-monophyly is also reflected at the generic and specific level of ingoid taxa. Phylogenetic relationships have been difficult to resolve, with unsettled generic delimitations as a result. In this thesis, I investigated the systematics and phylogeny of the Ingeae-Acacia complex, with reflections on taxonomy and biogeography. Methods: Molecular data of plastid (matK, psbA, trnL-trnF, ycf1) and nuclear (ETS, ITS) DNA sequences were analysed using Bayesian inference and Ultrafast Bootstrap in order to investigate phylogenetic relationships of the Ingeae-Acacia complex. Results: In paper I, Marmaroxylon was shown to be included in Zygia and Zygia inundata in Inga. Marmaroxylon magdalenae, M. ocumarense and Zygia sabatieri were not recovered in the Zygia-Marmaroxylon clade and therefore left without a placement in any genus. In paper II, Zapoteca was shown to be monophyletic but the subgenera comprising more than one species, and four species, were non- monophyletic. In paper III, a new subgeneric classification of Zapoteca and an identification key to the subgenera are presented, as well as a phytogeographical review of the genus. Zapoteca formosa subsp. schottii and Z. formosa subsp. gracilis were recognized as distinct species. In paper IV, Afrocalliandra and Calliandra were recovered as the earliest diverging lineage within the Ingeae-Acacia complex, and the other taxa possessing the same pod-type as Calliandra, i.e. Sanjappa, Thailentadopsis, Viguieranthus and Zapoteca, were shown to be more closely related to each other and other ingoid genera than to Calliandra. Discussion and conclusions: Phylogenetic relationships of the Ingeae-Acacia complex are possible to resolve with a broad sampling and a combination of several nuclear and plastid informative DNA sequences. Taxonomic revisions are, however, needed for several ingoid genera, as well as for the entire Ingeae tribe since it currently is non-monophyletic with respect to Acacia. Shared morphological characters are not always indicative of common ancestry and older morphology-based classifications do not always reflect the evolutionary history of the group. One example is the “Calliandra-pod” fruit type. While it has often been argued to indicate close relationships, I show that this seemingly specific type of pod occurs in several unrelated genera. Keywords: Fabaceae, Ingeae, Systematics, Phylogenetics, Taxonomy, Morphology Julia Ferm, Department of Organismal Biology, Systematic Biology, Norbyv. 18 D, Uppsala University, SE-75236 Uppsala, Sweden. © Julia Ferm 2020 ISSN 1651-6214 ISBN 978-91-513-1013-8 urn:nbn:se:uu:diva-420681 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420681) Ruusu on ruusu, Ja oli aina ruusu. Mutta teoria menee nyt Että omena on ruusu, Ja päärynä on, ja niin on Luumu, luulisin. Rakas tietää vain Mikä todistaa seuraavaksi ruusun. Olet tietysti ruusu - Mutta ollaan kaiki aina ruusuja. - Robert Frost List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Ferm J., Korall P., Lewis G. P. & Ståhl B. (2019) Phylogeny of the Neotropical legume genera Zygia and Marmaroxylon and close relatives. Taxon. 68(4): 661-672. II Ferm J. (2019) A preliminary phylogeny of Zapoteca (Faba- ceae: Caesalpinioideae: Mimosoid clade). Plant Systematics and Evolution. 305(5): 341-352. III Ferm J. & Ståhl B. A revised classification of the Neotropical genus Zapoteca (Caesalpinioideae; Fabaceae), with one new sub- genus and two new species combinations. [Manuscript submitted for publication.] IV Ferm J., Ståhl B., Wikstöm N. & Rydin C. Phylogenetic relation- ships of the mimosoid Ingeae–AcaCia complex (Fabaceae), based on plastid and nuclear data. [Manuscript.] Published papers were reproduced with permission from the respective pub- lishers. Contents Introduction ................................................................................................... 11 Systematics ............................................................................................... 11 The Ingeae-AcaCia complex .................................................................... 11 Selected ingoid genera .............................................................................. 15 Fieldwork ...................................................................................................... 19 Objectives ...................................................................................................... 23 Materials & Methods ..................................................................................... 25 Taxon sampling ........................................................................................ 25 Laboratory work ....................................................................................... 26 Phylogenetic analyses ............................................................................... 27 Summary of papers ........................................................................................ 29 Phylogeny of the Neotropical legume genera Zygia and Marmaroxylon and close relatives. (Paper I) ..................................................................... 29 A preliminary phylogeny of Zapoteca (Fabaceae: Caesalpinioideae: Mimosoid clade). (Paper II) ...................................................................... 31 A revised classification of the Neotropical genus Zapoteca (Caesalpinioideae; Fabaceae), with one new subgenus and two new species combinations. (Paper III) ............................................................. 32 Phylogenetic relationships of the mimosoid Ingeae–AcaCia complex (Fabaceae), based on plastid and nuclear data. (Paper IV) ....................... 34 Concluding remarks ...................................................................................... 37 Svensk sammanfattning ................................................................................. 39 Systematik ................................................................................................ 39 Den mimosoida tribusen Ingeae ............................................................... 39 Zygia och Marmaroxylon ......................................................................... 40 Zapoteca och närbesläktade (?) taxa ........................................................ 41 Slutsats ...................................................................................................... 43 Acknowledgements ....................................................................................... 45 References ..................................................................................................... 47 Abbreviations DNA Deoxyribonucleic acid PCR Polymerase Chain Reaction s.l. sensu lato (in the broad sense) s.s. sensu stricto (in the narrow sense) sp. Species (singular) spp. Species (plural) subsp. Subspecies subg. Subgenera ser. Series sect. Section LPWG Legume Phylogeny Working Group POWO Plants of the World Online Introduction Systematics Systematics is the study of evolutionary relationships of taxa at all levels, of groups of organisms and lineages over time. These relationships can be visu- alized through phylogenetic trees, which illustrates common ancestry and di- versification in a straight forward way that is easy to interpret. Systematics includes also taxonomy, i.e. the formal classification and naming of taxa. Nowadays phylogenetic analysis is an important foundation for taxonomic work and evolutionary studies. With new techniques for the production of enormous amounts of DNA data, the possibilities for addressing and answer- ing evolutionary questions has increased well beyond expectation in a short period of time. By using modern phylogenetic analysis as a basis we can con- struct classifications that actually reflect the evolutionary relationships amongst taxa. With a robust phylogeny as a basis, questions on for example diversification dynamics, biogeography and morphological evolution can be addressed. The occurrence of the same morphological characters in different clades can be due to convergent evolution in distantly related taxa, or represent an ancestral state that has been lost in some lineages. Although morphological characters might not always provide an easily understandable indication of kinship it can often still be useful for understanding evolution
Recommended publications
  • Full-Text (PDF)
    Vol. 12(26), pp. 397-407, 22 September, 2018 DOI: 10.5897/AJPP2018.4949 Article Number: 0C4E92E58647 ISSN: 1996-0816 Copyright ©2018 African Journal of Pharmacy and Author(s) retain the copyright of this article http://www.academicjournals.org/AJPP Pharmacology Full Length Research Paper Healing effect of the microemulsion enriched with hydroalcoholic extract of Abarema cochliacarpa (Gomes) Barneby & J. W. Grimes (Fabaceae) Antônio Santos Dias1, Clívia Rolemberg Andrade1, André Luiz Lima Meneses Santos1, Sabrina Zelice de Moraes1, Jymmys Lopes dos Santos1, Silvan Silva de Araújo1, Andrea Yu Kwan Villar Shan1*, Jamylle Nunes de Souza Ferro4, Marcelo Cavalcante Duarte2, Emiliano de Oliveira Barreto4, Anderson Carlos Marçal3, Ricardo Luiz Cavalcante Albuquerque Júnior5, Antonio Euzebio Goulart Santana4, Brancilene Santos de Araújo1 and Charles dos Santos Estevam1 1Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49000-100, Brazil. 2Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, 49000-100, Brazil. 3Department of Morphology, Federal University of Sergipe, São Cristóvão, SE, 49000-100, Brazil 4Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, 57072-900, Brazil. 5Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, 57072-900, Brazil. 6Tiradentes University (UNIT), Aracaju, SE, 49032-490, Brazil. Received 6 July, 2018; Accepted 23 August, 2018 Abarema cochliocarpa is an endemic plant of Brazil and has been traditionally used as a popular medicine to treat various diseases and mostly as a healing agent. The aim of this study was to evaluate the healing effect of the microemulsion containing hydrometanic fraction of the inner bark (HMF) of the plant, as well as its antioxidant, antitumor and cytotoxic potential.
    [Show full text]
  • Plot-Scale Agroforestry Modeling Explores Tree Pruning and Fertilizer Interactions for Maize Production in a Faidherbia Parkland
    Article Plot-Scale Agroforestry Modeling Explores Tree Pruning and Fertilizer Interactions for Maize Production in a Faidherbia Parkland Aynalem M. Dilla 1,2, Philip J. Smethurst 3,*, Neil I. Huth 4 and Karen M. Barry 2 1 Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 1000, Ethiopia; [email protected] 2 Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia; [email protected] 3 Commonwealth Scientific and Industrial Research Organization, Private Bag 12, Hobart, TAS 7001, Australia 4 Commonwealth Scientific and Industrial Research Organization, 203 Tor St, Toowoomba, QLD 4350, Australia; [email protected] * Correspondence: [email protected] Received: 16 September 2020; Accepted: 3 November 2020; Published: 4 November 2020 Abstract: Poor agricultural productivity has led to food shortages for smallholder farmers in Ethiopia. Agroforestry may improve food security by increasing soil fertility, crop production, and livelihoods. Agroforestry simulation models can be useful for predicting the effects of tree management on crop growth when designing modifications to these systems. The Agricultural Production Systems sIMulator (APSIM) agroforestry tree-proxy model was used to simulate the response of maize yield to N fertilizer applications and tree pruning practices in the parkland agroforestry system in the Central Rift Valley, Ethiopia. The model was parameterized and tested using data collected from an experiment conducted under trees and in crop-only plots during the 2015 and 2016 growing seasons. The treatments contained three levels of tree pruning (100% pruned, 50% pruned, and unpruned) as 1 the main plots, and N fertilizers were applied to maize at two rates (9 or 78 kg N ha− ) as sub-plots.
    [Show full text]
  • Family Fabaceae
    CATNIP classes, Acme Botanical Services 2013 Fabaceae (Pea Family, Bean Family, Legume Family) The third largest family of angiosperms (behind the aster family (Asteraceae) and the orchid family (Orchidaceae), the Fabaceae includes somewhere between 16.000 and 20,000 species. It rivals the grass family (Poaceae) in terms of economic importance. The Fabaceae includes plants of all growth forms, from trees and shrubs down to annual and perennial herbs. Members are easy to recognize on the basis of the foliage, which involves compound leaves of various kinds; the flowers, which are of three types (see subfamilies below); and the fruit, which is a single-chambered dry pod. Three subfamilies are recognized. All three are well represented in the Capital area. Mimosoideae. In this subfamily, the leaves are twice-pinnately compound. The flowers are tightly packed into heads or spikes. The flowers are regular (radially symmetrical), but the perianth (corolla and calyx) is so tiny as to be scarcely noticeable. The stamens are the conspicuous part of the flower, usually numerous and 10 times or more as long as the corolla. In many species, such as Nuttall’s sensitive- briar (Mimosa nuttallii, right), the flower heads resemble pink pom-poms. Caesalpinoideae. Plants of this group have even-pinnate or odd-pinnate leaves. The flowers have a conspicuous corolla with 5 separate petals. The stamens are separate and visible (i.e., not concealed by the corolla. Most of the species in our area have yellow petals. Roemer’s two-leaf senna (Senna roemeriana, right) is typical. Papilionideae. This is the largest subfamily in our area, and the one with the bilaterally symmetrical two-lipped flowers that come to mind any time the pea family is mentioned.
    [Show full text]
  • Prosiding Seminar Nasional Biotik 2018 ISBN: 978-602-60401-9-0
    Prosiding Seminar Nasional Biotik 2018 ISBN: 978-602-60401-9-0 KEANEKARAGAMAN JENIS TUMBUHAN SPERMATOPHYTA FAMILY FABACEAE DI PEGUNUNGAN DEUDAP PULO ACEH KABUPATEN ACEH BESAR Hariyati1), Mirna Zulmaidar2), Rahmalia Hasanah3) 1-3)Program Studi Pendidikan Biologi FTK UIN Ar-Raniry Banda Aceh Email: [email protected] ABSTRAK Penelitian tentang “Keanekaragaman Jenis Tumbuhan Spermatophyta Family Fabaceae di Pegunungan Deudap Pulo Aceh Kabupaten Aceh Besar” telah dilakukan pada tanggal 15 April 2017. Penelitian ini dilakukan untuk mengetahui keanekaragaman jenis tumbuhan Spermatophyta family Fabaceae di pegunungan Deudap, kecamatan Pulo Aceh, kabupaten Aceh Besar. Metode yang digunakan dalam penelitian ini adalah kombinasi metode transek garis (line transek) dan metode menjelajah. Analisis data dilakukan dengan cara kuantitatif menggunakan rumus indeks keanekaragaman. Hasil penelitian diketahui bahwa terdapat 3 spesies tumbuhan family Fabaceae yang tergolong ke dalam 2 subfamily, yaitu subfamily Faboideae dan Caesalpinioideae. Indeks keanekaragaman jenis tumbuhan Spermatophyta family Fabaceae yang diperoleh adalah 1,0795. Hal ini menunjukkan bahwa keanekaragaman jenis tumbuhanspermatophyta family Fabaceae tergolong sedang. Kata Kunci: Keanekaragaman, Spermatophyta, Fabaceae, Pulo Aceh. PENDAHULUAN amily Fabaceae merupakan anggota pada akar atau batangnya. Jaringan yang dari ordo Fabales yang dicirikan mengandung bakteri simbiotik ini biasanya dengan buah bertipe polong. Family ini menggelembung dan membentuk bintil-bintil. terdistribusi secara luas di seluruh dunia dan Setiap jenis biasanya bersimbiosis pula dengan terdiri atas 18.000 spesies yang tercakup dalam jenis bakteri yang khas pula (Arifin Surya dan 650 genus (Langran, et.al., 2010). Berdasarkan Priyanti, 2016). ciri pada bunga dan biji, ahli botani membagi Desa Deudap merupakan suatu desa di family Fabaceae menjadi tiga subfamily, yaitu kecamatan Pulo Aceh yang kawasannya masih Caesalpinioideae, Faboideae, dan Mimosoideae alami ditandai dengan adanya kekayaan dan (Ariati, et.al., 2001).
    [Show full text]
  • Higher Than Expected Growth Rate of the Endangered West African Giraffe Giraffa Camelopardalis Peralta: a Successful Human–Wildlife Cohabitation
    Higher than expected growth rate of the Endangered West African giraffe Giraffa camelopardalis peralta: a successful human–wildlife cohabitation J.-P. SURAUD,J.FENNESSY,E.BONNAUD,A.M.ISSA,H.FRITZ and J . - M . G AILLARD Abstract The West African giraffe is a genetically unique Introduction population represented only by the subspecies Giraffa 20 camelopardalis peralta, categorized as Endangered on the ince the beginning of the th century the density ff ff IUCN Red List. These giraffes live outside protected areas, Sand distribution of gira e Gira a camelopardalis 1965 without natural predators and share their habitat with local populations has decreased across Africa (Sidney, )toa 140 000 1990 1999 ff people and their livestock. This study provides demographic total of c. , by the late s (East, ). Gira es , 80 000 data on this poorly studied megaherbivore and documents are now thought to number , (unpubl. data from ff its recovery. We analysed the results of photo-identification the international gira e database). The population of the ff ff censuses from 1996 to 1999 (count data) and from 2005 to West African gira e Gira a camelopardalis peralta,a 2008 (count and demographic data). From 1996 to 1999 genetically unique subspecies represented only by this 2007 the annual growth rate was c. 19% because of an unbalanced population, has also decreased (Brown et al., ; Hassanin 2007 population structure after a period of severe poaching. et al., ). ff From 2005 to 2008 an annual growth rate of c. 12–13% During Palaeolithic times the gira e ranged across West was estimated from both count data and demographic and North Africa, including the Mediterranean coastline 1957 20 parameters.
    [Show full text]
  • Leguminosae Subfamily Papilionoideae Author(S): Duane Isely and Roger Polhill Reviewed Work(S): Source: Taxon, Vol
    Leguminosae Subfamily Papilionoideae Author(s): Duane Isely and Roger Polhill Reviewed work(s): Source: Taxon, Vol. 29, No. 1 (Feb., 1980), pp. 105-119 Published by: International Association for Plant Taxonomy (IAPT) Stable URL: http://www.jstor.org/stable/1219604 . Accessed: 16/08/2012 02:44 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. International Association for Plant Taxonomy (IAPT) is collaborating with JSTOR to digitize, preserve and extend access to Taxon. http://www.jstor.org TAXON 29(1): 105-119. FEBRUARY1980 LEGUMINOSAE SUBFAMILY PAPILIONOIDEAE1 Duane Isely and Roger Polhill2 Summary This paper is an historical resume of names that have been used for the group of legumes whose membershave papilionoidflowers. When this taxon is treatedas a subfamily,the prefix "Papilion-", with various terminations, has predominated.We propose conservation of Papilionoideae as an alternative to Faboideae, coeval with the "unique" conservation of Papilionaceaeat the family rank. (42) Proposal to revise Code: Add to Article 19 of the Code: Note 2. Whenthe Papilionaceaeare includedin the family Leguminosae(alt. name Fabaceae) as a subfamily,the name Papilionoideaemay be used as an alternativeto Faboideae(see Art. 18.5 and 18.6).
    [Show full text]
  • Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
    RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits.
    [Show full text]
  • Food Quality, Competition, and Parasitism Influence Feeding Preference in a Neotropical Lepidopteran
    Ecology, 87(12), 2006, pp. 3058–3069 Ó 2006 by the Ecological Society of America FOOD QUALITY, COMPETITION, AND PARASITISM INFLUENCE FEEDING PREFERENCE IN A NEOTROPICAL LEPIDOPTERAN 1,2,3 2 2 1,2 THOMAS A. KURSAR, BRETT T. WOLFE, MARY JANE EPPS, AND PHYLLIS D. COLEY 1Department of Biology, University of Utah, Salt Lake City, Utah 84112 USA 2Smithsonian Tropical Research Institute, Balboa, Panama Abstract. We surveyed Lepidoptera found on 11 species of Inga (Fabaceae:Mimosoideae) co-existing on Barro Colorado Island, Panama, to evaluate factors influencing diet choice. Of the 47 species of caterpillars (747 individuals) recorded, each fed on a distinct set of Inga.In the field, 96% of the individuals were found on young leaves. Growth rates of caterpillars that were fed leaves in the laboratory were 60% higher on young leaves compared to mature leaves. When caterpillars were fed leaves of nonhost Inga, they grew more slowly. These data provide support for a link between preference and performance. However, among hosts on which larvae normally occurred, faster growth rates were not associated with greater host electivity (the proportion of larvae found on each host species in the field, corrected for host abundance). Growth rates on normal hosts were positively correlated with leaf expansion rates of the host, and fast expansion was associated with leaves with higher nutritional content. Detailed studies on a gelechiid leaf roller, the species with the largest diet breadth, allowed us to assess the importance of factors other than growth that could influence diet electivity. This species showed a 1.7-fold difference in growth rate among Inga hosts and faster growth on species with fast-expanding leaves.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • Medical Glossary
    Medical Glossary AAD allergic airway disease – infl ammatory Acetogenins natural products from the plants of disorder of the airways caused by allergens. the family Annonaceae, are very potent inhibi- AAPH 2,2 ¢ -azobis(2-amidinopropane) dihy- tors of the NADH-ubiquinone reductase (Com- drochloride, a water-soluble azo compound plex I) activity of mammalian mitochondria. used extensively as a free radical generator, Acetylcholinesterase (AChE) is an enzyme often in the study of lipid peroxidation and that degrades (through its hydrolytic activity) the characterization of antioxidants. the neuro transmitter acetylcholine, producing Abeta aggregation amyloid beta protein choline. (Abeta) aggregation is associated with Acne vulga´ris also known as chronic acne, Alzheimer’s disease (AD); it is a major com- usually occurring in adolescence, with come- ponent of the extracellular plaque found in dones (blackheads), papules (red pimples), AD brains. nodules (infl amed acne spots), and pustules Abdominal distension referring to generalised (small infl amed pus-fi lled lesions) on the face, distension of most or all of the abdomen. Also neck, and upper part of the trunk. referred to as stomach bloating often caused Acidosis increased acidity. by a sudden increase in fi ber from consump- Acquired Immunodefi ciency Syndrome tion of vegetables, fruits and beans. (AIDS) an epidemic disease caused by Ablation therapy the destruction of small an infection by human immunodefi ciency areas of myocardial tissue, usually by appli- virus (HIV-1, HIV-2), retrovirus that causes cation of electrical or chemical energy, in the immune system failure and debilitation and treatment of some tachyarrhythmias. is often accompanied by infections such as Abortifacient a substance that causes or induces tuberculosis.
    [Show full text]