Preparation and Characterization of Silver Orthophosphate

Total Page:16

File Type:pdf, Size:1020Kb

Preparation and Characterization of Silver Orthophosphate www.nature.com/scientificreports OPEN Preparation and characterization of silver orthophosphate photocatalytic coating on glass substrate Masahide Hagiri*, Kenichi Uchida, Mika Kamo Sasaki & Shofyah Sakinah The photocatalytic activity of silver orthophosphate Ag3PO4 has been studied and shown to have a high photo-oxidation capability. However, there is few reported example of a simple method to prepare Ag3PO4 coatings on various substrates. In this study a novel and simple method to immobilize A g3PO4 on the surface of glass substrates has been developed. A silver phosphate paste based on a polyelectrolyte solution was applied to a smooth glass surface. The resulting dried material was calcined to obtain a coating that remained on the glass substrate. The coating layer was characterized by X-ray difraction and energy dispersive X-ray spectrometry, and the optical band gap of the material was determined. The results indicated that an Ag3PO4 coating responsive to visible light was successfully prepared. The coating, under visible light irradiation, has the ability to decompose methylene blue. Although the coating contained some elemental silver, this did not adversely afect the optical band gap or the photocatalytic ability. Te development of sustainable energy utilization and environmental purifcation technologies is an important issue for ongoing development of society. In this context, research on photocatalysts is being actively conducted. Titanium dioxide TiO 2, a typical inorganic solid photocatalyst, is widely used due to its excellent photocatalytic activity and ability to produce hydrogen by water splitting1–5. However, the development of photocatalysts that utilize visible light, which accounts for 43% of sunlight, has been studied as an efective means of solar energy use3,4. Photocatalysts driven by visible light are also important in the utilization of indoor light as an energy source6. Recently, the photocatalytic activity of silver orthophosphate, Ag 3PO4, has been investigated, and the com- pound has been shown to have a high photo-oxidation capability 7–12. Photo-oxidative decomposition experiments using methylene blue revealed good photo-oxidative performance with a quantum yield of nearly 80%, which is tens of times more efcient than titanium dioxide or bismuth vanadate. In the photo-oxidative decomposition of water to generate oxygen, the performance of Ag3PO4 surpassed that of bismuth vanadate BiVO4 and tungsten 7 oxide WO3 under visible light . Although silver phosphate cannot be used for the conversion of water to hydro- gen due to its slightly low conduction band potential, it has shown considerable promise for oxygen generation, decomposition of organic matter, and in antifouling applications8. In addition, recent studies have revealed the antimicrobial properties of materials containing silver phosphate 13. For this reason, there have been numerous 7 reports on the synthesis and utilization of Ag3PO4, especially since the report of Yi et al. Silver orthophosphate may be synthesized by precipitation 14–16, ion exchange15,17, electrolysis7, and other methods 18,19, each of which has its own advantages. Recently, silver phosphate crystals of various shapes15,17–20, core–shell particles21,22, and composites, all of which provide high photocatalytic activity, have been studied 10,12,23–30. Te development of coating technologies for substrates is an important issue when using photocatalysts for surface antifouling applications 31. Tin-flm and thick-flm technologies for semiconductors are also important in the development and advancement of electronic devices 32,33. Te immobilization of titanium dioxide, a typi- cal photocatalyst, on the surface of materials has been the subject of much research and has been widely used in practical applications5,34–37. Tere are various ways for producing semiconductor flms, including the sol–gel method, vacuum deposition, sputtering, plasma CVD, and pulsed laser deposition. In the case of Ag 3PO4, it is difcult to use an approach Department of Applied Chemistry and Biochemistry, Fukushima College, National Institute of Technology, Nagao 30, Kamiarakawa, Taira, Iwaki, Fukushima 970-8034, Japan. *email: [email protected] Scientifc Reports | (2021) 11:13968 | https://doi.org/10.1038/s41598-021-93352-z 1 Vol.:(0123456789) www.nature.com/scientificreports/ such as the sol–gel method to synthesize a coating flm directly from a precursor solution on a solid surface, or a deposition method using plasma. 10 Noureen et al. investigated the antibacterial and photocatalytic properties of Ag3PO4/graphene oxide coated 38 on cotton textiles. For these purposes, the coating has exhibited high performance. Furthermore, Xie et al. prepared titanium plates coated with polydopamine, graphene oxide, and Ag 3PO4 and successfully eliminated bioflm on the metal surface. Nevertheless, these materials were coatings in which crystals were electrostatically deposited on a portion of the substrate surface. An example of fabrication for an Ag 3PO4 coating that adheres to substrates is electrolytic deposition of silver plate, as reported by Yi et al.7. However, the substrate in this method is limited to a conductive medium such as silver plate. Te development of a simple method for the preparation of Ag3PO4 coatings on a variety of substrates may lead to more widespread use of Ag3PO4 as a highly efcient photocatalyst. In particular, if a method can be established for forming flms on transparent materials such as glass, it will be possible to apply Ag3PO4 to opti- cal devices and photoelectrodes, and this should contribute greatly to the development of optoelectronics using Ag3PO4. Tere are few reports for Ag3PO4 coating on transparent substrates. For example, Ma et al. successfully 39 40 immobilized an Ag/Ag2O/Ag3PO4/Bi2WO6 photocatalyst on a glass surface . Gunjakar et al. deposited Ag 3PO4 on the surface of ITO substrate by chemical bath deposition method. For the utilization of Ag 3PO4, it is desirable to discover more versatile coating methods. In this study, we have developed a novel and simple method to immobilize Ag 3PO4 as a coating on the sur- face of a glass substrate. Te approach is based on a simple method for preparing titanium dioxide coatings for dye-sensitized solar cells via a precursor paste, but the composition of the paste is even simpler in the present application. Tis article is based on a study frst reported in a short communication (in Japanese)41, to which substantial discussion and additions have been made. In this paper, the coating layer was obtained by frst preparing a paste, applying it to a glass surface, and then calcination. Te obtained coating layer was subjected to scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray difraction (XRD) analyses. Also, the optical response of the samples was evaluated by measuring their difuse refection absorption spectra. Termogravimetry (TG) and diferential thermal analysis (DTA) were also performed to study the thermal reactivity of the dried paste. Materials and methods Materials. All the water used in the experiments was distilled once and then purifed by ion exchange. Sil- ver nitrate (Wako Pure Chemicals), disodium hydrogen phosphate (Kanto Chemical), carboxymethyl cellu- lose sodium salt (CMC-Na; Wako Pure Chemicals), and methylene blue (Wako Pure Chemicals) were used as received without purifcation. Te commercial silver phosphate (Sigma-Aldrich), silver (Sigma-Aldrich), barium sulfate (Wako Pure Chemicals) were also used without further purifcation. Silver orthophosphate was synthesized according to the method for producing silver phosphate fne par- ticles reported by Khan et al.16. Specifcally, 100 mL each of 0.020 mol L−1 aqueous silver nitrate solution and 0.020 mol L−1 aqueous disodium hydrogen phosphate solution were dropped simultaneously into 200 mL of stirred pure water. To remove the supernatant and obtain fne crystals, the resulting colloidal solution of Ag3PO4 was centrifuged. Tis procedure was repeated at least three times, until no precipitation of silver chloride occurred, whereupon sodium chloride solution was added to the supernatant. Te resulting precipitate was dried under reduced pressure to obtain fne particles of Ag3PO4. Te resulting powder was yellow in color. To study the efect of the dropping rate on the product, the synthesis was attempted with two diferent drop- ping rates. Te XRD patterns and SEM images for the obtained samples were measured. Te XRD patterns for the samples synthesized at dropping rates of 0.020 cm3 s−1 and 0.33 cm3 s−1 are shown in Fig. 1. For comparison purposes, the difraction pattern for commercial silver phosphate (Aldrich, > 99%) is also shown. Te samples obtained using the above method showed prominent difraction peaks at 33.3° (210), 36.6° (211), 52.7° (222), 57.3° (321), and 55.0° (320)22. All of these major peaks were consistent with the commercial sample and assigned to the body-centered cubic structure of silver phosphate (JCPDS, card No. 6-505). Te results indicated that the synthetic products were Ag3PO4. A slight overlap of the halo pattern indicated the presence of small amounts of amorphous or low-crystallinity product. Te SEM images of the products obtained for each dropping rate are shown in Fig. 2. Te crystal shape is hexagonal prismatic, which is consistent with the crystal structure of silver phosphate. Te dropping rates of 0.33 cm3 s−1 and 0.020 cm3 s−1 yielded relatively uniform crystals of size ca. ~ 500 nm and ~ 1 µm, respectively. Te particle size is smaller for synthesis at the increased dropping rate. Te rapid dropping leads to rapid nucleation, resulting in an increase in crystal nuclei. Tis results in a smaller size of the yielded crystal. Subsequent studies were conducted using one of these microcrystals (dropping rate 0.33 cm3 s−1). Silver orthophosphate coatings on glass substrate. CMC-Na was used as a dispersion stabilizer and thickener in the preparation of silver phosphate paste. Te Ag 3PO4 obtained above, pure water, and CMC-Na were mixed in a mass ratio of 1:1:0.020–0.050, and a paste was prepared by kneading for 10 min while maintain- ing constant humidity.
Recommended publications
  • UNITED STATES PATENT OFFICE 2,510,510 GERMICIDAL DETERGENT COMPOSITION Elwyn E
    Patented June 6, 1950 2,510,510 UNITED STATES PATENT OFFICE 2,510,510 GERMICIDAL DETERGENT COMPOSITION Elwyn E. Mendenhall, Pittsburgh, Pa., assignor to Economics Laboratory, Inc., St. Paul, Minn., a corporation of Delaware No Drawing. Application October 3, 1945, Serial No. 620,172 9 Claims. (CL 252-107) 2 . This invention relates to improved germicides invention are not noticeably affected by light, and germicidal detergents and water softening and do not stain the skin. They may be used compositions, and more particularly to silver with soaps, in acid, neutral or alkaline Solution, containing glassy systems of value for Such uses. and are resistant to precipitation on contact with The usefulness of silver as a germicide has 5 organic materials found in wash or other Solu long been recognized. Numerous silver-contain tions. For these reasons, and in view of the high ing compounds have been used as antiseptics, activity of the compositions, that is, high germi such as silver acetate, silver bromide, silver chlo cidal effectiveness with low concentration of sil ride, and silver citrate. Silver iodide has been ver, they are of benefit as germicides and of par used in preparing colloidal silver preparations, 10 ticular advantage in germicidal detergentS alad and silver nitrate has also been used for this as germicidal water Softening agents. and numerous other purposes. Various silver The new compositions themselves may be effec vitellin preparations have been used as antiseptics tive water softening agents and may have effec in the treatment of the eyes, nose and throat. tive detergent properties, as when the composi Most such silver compounds are possessed of 15 tions consist of complex glassy phosphates con certain undesirable characteristics which detract taining some silver and substantial proportions of from their usefulness.
    [Show full text]
  • Ions and Silver Phosphate Nanoparticles with Hyaluronic Acid And/Or Chitosan As Promising Antimicrobial Agents for Vascular Grafts
    Int. J. Mol. Sci. 2013, 14, 13592-13614; doi:10.3390/ijms140713592 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Complexes of Silver(I) Ions and Silver Phosphate Nanoparticles with Hyaluronic Acid and/or Chitosan as Promising Antimicrobial Agents for Vascular Grafts Dagmar Chudobova 1, Lukas Nejdl 1, Jaromir Gumulec 2, Olga Krystofova 3, Miguel Angel Merlos Rodrigo 1,2, Jindrich Kynicky 3, Branislav Ruttkay-Nedecky 1,2, Pavel Kopel 1,2, Petr Babula 2, Vojtech Adam 1,2 and Rene Kizek 1,2,* 1 Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: [email protected] (D.C.); [email protected] (L.N.); [email protected] (M.A.M.R.); [email protected] (B.R.-N.); [email protected] (P.K.); [email protected] (V.A.) 2 Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: [email protected] (J.G.); [email protected] (P.B.) 3 Karel Englis College, Sujanovo nam. 356/1, CZ-602 00, Brno, Czech Republic; E-Mails: [email protected] (O.K.); [email protected] (J.K.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-545-133-350; Fax: +420-5-4521-2044. Received: 22 April 2013; in revised form: 3 June 2013 / Accepted: 5 June 2013 / Published: 28 June 2013 Abstract: Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns NATIONAL BUREAU of STANDARDS
    NBS MONOGRAPH 25—SECTION 1 9 CO Q U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Standard X-ray Diffraction Powder Patterns NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essentia! services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration
    [Show full text]
  • RIVM Report 601780003 Nanomaterials Under REACH
    Report 601780003/2009 M.E.J. Pronk et al. Nanomaterials under REACH Nanosilver as a case study RIVM report 601780003/2009 Nanomaterials under REACH Nanosilver as a case study M.E.J. Pronk, Centre for Substances and Integrated Risk Assessment, RIVM S.W.P. Wijnhoven, Centre for Substances and Integrated Risk Assessment, RIVM E.A.J. Bleeker, Expertise Centre for Substances, RIVM E.H.W. Heugens, Expertise Centre for Substances, RIVM W.J.G.M. Peijnenburg, Laboratory for Ecological Risk Assessment, RIVM R. Luttik, Expertise Centre for Substances, RIVM B.C. Hakkert, Bureau REACH, Expertise Centre for Risk Assessment, RIVM Contact: B.C. Hakkert Bureau REACH, Expertise Centre for Substances, RIVM [email protected] This investigation has been performed by order and for the account of VROM, within the framework of REACH project number M/601780. RIVM, P.O. Box 1, 3720 BA Bilthoven, the Netherlands Tel +31 30 274 91 11 www.rivm.nl © RIVM 2009 Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication. 2 RIVM report 601780003 Abstract Nanomaterials under REACH Nanosilver as a case study Some adjustments are needed in the European chemicals legislation REACH to assess and control the risks of nanomaterials. The information on substances to be provided under REACH is not sufficient to determine the specific properties of nanomaterials, nor to assess how these properties affect their behaviour and effects in humans and the environment. RIVM concluded this following research into the suitability of REACH for nanomaterials.
    [Show full text]
  • Karen Mclaughlin, Steven Silva, Carol Kendall, Hilary Stuart-Williams, and Adina Paytan. a Precise Method for the Analysis of Ph
    LIMNOLOGY and Limnol. Oceanogr.: Methods 2, 2004, 202–212 OCEANOGRAPHY: METHODS © 2004, by the American Society of Limnology and Oceanography, Inc. A precise method for the analysis of δ18O of dissolved inorganic phosphate in seawater Karen McLaughlin1, Steven Silva2, Carol Kendall2, Hilary Stuart-Williams3, and Adina Paytan1 1Department of Geological & Environmental Science, Stanford, CA 94305-2115, USA 2U.S. Geological Survey, Menlo Park, CA 94025, USA 3Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra ACT 2601, Australia Abstract A method for preparation and analysis of the oxygen isotope composition (δ18O) of dissolved inorganic phosphate (DIP) has been developed and preliminary results for water samples from various locations are reported. Phosphate is extracted from seawater samples by coprecipitation with magnesium hydroxide. Phosphate is further purified through a series of precipitations and resin separation and is ultimately convert- ed to silver phosphate. Silver phosphate samples are pyrolitically decomposed to carbon monoxide and ana- lyzed for δ18O. Silver phosphate samples weighing 0.7 mg (3.5 µmol oxygen) can be analyzed routinely with an average standard deviation of about 0.3‰. There is no isotope fractionation during extraction and blanks are negligible within analytical error. Reproducibility was determined for both laboratory standards and natu- ral samples by multiple analyses. A comparison between filtered and unfiltered natural seawater samples was also conducted and no appreciable difference was observed for the samples tested. The δ18O values of DIP in seawater determined using this method range from 18.6‰ to 22.3‰, suggesting small but detectable natural variability in seawater. For the San Francisco Bay estuary DIP δ18O is more variable, ranging from 11.4‰ near the San Joaquin River to 20.1‰ near the Golden Gate Bridge, and was well correlated with salinity, phosphate concentration, and δ18O of water.
    [Show full text]
  • SCCS/1577/16 Final Version of 6 October 2016
    SCCS/1577/16 Final version of 6 October 2016 Scientific Committee on Consumer Safety SCCS OPINION ON preservative EcoG+ The SCCS adopted this opinion at its 2nd plenary meeting on 6 October 2016 SCCS/1577/16 Final version of the Opinion on Eco G+ About the Scientific Committees Two independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) The Scientific Committees review and evaluate relevant scientific data and assess potential risks. Each Committee has top independent scientists from all over the world who are committed to work in the public interest. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCCS The Committee, on request of Commission services, provides Opinions on questions concerning health and safety risks (notably chemical, biological, mechanical and other physical risks) of non-food consumer products (e.g. cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.)
    [Show full text]
  • TOXICOLOGICAL PROFILE for SILVER Agency for Toxic
    TOXICOLOGICAL PROFILE FOR SILVER Agency for Toxic Substances and Disease Registry U.S. Public Health Service December 1990 1 1. PUBLIC HEALTH STATEMENT This Statement was prepared to give you information about silver and to emphasize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1177 sites on its National Priorities List (NPL). Silver has been found at 27 of these sites. However, we do not know how many of the 1177 NPL sites have been evaluated for silver. As EPA evaluates more sites, the number of sites at which silver is found may change. The information is important for you because silver may cause harmful health effects and because these sites are potential or actual sources of human exposure to silver. When a chemical is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment as a chemical emission. This emission, which is also called a release, does not always lead to exposure. You can be exposed to a chemical only when you come into contact with the chemical. You may be exposed to it in the environment by breathing, eating, or drinking substances containing the chemical or from skin contact with it. If you are exposed to a hazardous substance such as silver, several factors will determine whether harmful health effects will occur and what the type and severity of those health effects will be. These factors include the dose (how much), the duration (how long), the route or pathway by which you are exposed (breathing, eating, drinking, or skin contact), the other chemicals to which you are exposed, and your.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns
    7 NATL INST OF STANDARDS & TECH R.I.C. Nes AlllOD Ififib^fi PUBLICATIONS 100988698 ST5°5rv'25-17;1980 C.1 NBS-PUB-C 19 cr»T OF NBS MONOGRAPH 25-SECTION 1 V) J U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Standard X-ray Diffraction Powder Patterns . NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901 The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods ol measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities- — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.
    [Show full text]
  • Preparation and Photocatalytic Activity of Silver Phosphate Modified by Nano-Silver Metal
    Digest Journal of Nanomaterials and Biostructures Vol. 15, No. 4, October-December 2020, p. 991-999 PREPARATION AND PHOTOCATALYTIC ACTIVITY OF SILVER PHOSPHATE MODIFIED BY NANO-SILVER METAL C. PENG, Y. LIU, J. CUI, Y. SHEN*, Key Laboratory of Environment Functional Materials of Tangshan City, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China Since the 21st century, a variety of photocatalytic materials have been developed, in which the properties are not the same, but the photocatalytic degradation activity of Ag3PO4 is much higher than other known visible light catalysts, and Ag3PO4 exhibits excellent performance under visible light. Photocatalytic performance has received attention. In order to prepare a more stable and efficient Ag3PO4 photocatalytic material, the photocatalytic performance of Ag3PO4 was improved by nano-metal Ag modification of Ag3PO4. Nano-modified silver phosphate was prepared by coprecipitation method and hydrothermal method using silver nitrate and potassium dihydrogen phosphate as raw materials, and analyzed by x-ray diffraction (XRD), scanning electron microscope (SEM), Photoluminescence (PL), ultraviolet diffuse reflection and photodegradation etc. The performance improvement effect of the prepared nano-metal modified silver phosphate was examined. In this experiment, Rhodamine was used as the degraded solution. Through the photodegradation experiment, that is, under the illumination of LED lamps, it can be observed that the performance of nano-metal Ag-modified silver phosphate is improved compared with pure Ag3PO4, and the prepared nano-metal Ag is modified. The degradation rate of rhodamine at Ag3PO4 can reach 99% at 10 minutes.
    [Show full text]
  • Current Intelligence Bulletin 70: Health Effects of Occupational Exposure to Silver Nanomaterials
    CURRENT INTELLIGENCE BULLETIN 70 Health Effects of Occupational Exposure to Silver Nanomaterials Centers for Disease Control and Prevention National Institute for Occupational Safety and Health On the cover: Silver nanomaterials and products or processes using silver nanomaterials. Clockwise from top left and ending with center: Composite image of cells 24 hours post-exposure to silver nanoparticles coated with polyvinylpyrrolidone. Nanoparticles, endoplasmic reticulum, nuclei, and mitochondria shown in white, red, blue, and green, respectively. Photo by Robert M. Zucker, U.S. EPA. Silver metal (Ag), crystal structure. Photo by ©Molekuul/Getty Images. Printed circuit boards and components, which frequently use silver. Photo by ©Isti2/Getty Images. Silver nanoparticles within macrophages in lung tissue. Photo by NIOSH. Silver nanoparticles imaged by scanning electron microscope. Photo by NIOSH. Sock fabric, which is among textiles that frequently contain silver as an antimicrobial agent. Photo by ©Gojak/Getty Images. A tradesperson uses an airless sprayer to apply paint containing silver biocide. Photo by Bruce Lippy, CPWR. Current Intelligence Bulletin 70 Health Effects of Occupational Exposure to Silver Nanomaterials DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Insti- tute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Preven- tion (CDC). In addition, citations of websites external to CDC/NIOSH do not constitute CDC/NIOSH endorsement of the sponsoring organizations or their programs or products.
    [Show full text]
  • Specialty Silver Compounds
    Specialty Silver Compounds • Selection of silver compounds can be manufactured up to a purity of 99.999% • Batch production capability from grams to 200 Kg www.alfa.com Alfa Aesar have the capability of Specialized Silver Compounds producing batch sizes up to 200 Kg. Bulk packing sizes are customized to • Our specialized silver compounds are meet our customers’ requirements. available in catalog sizes to bulk quantities. Many silver compounds are • We can manufacture our silver compounds to specific purity on request. photosensitive. All our specialized silver compounds are packaged in lightproof • If you require a specialized silver compound containers. not listed we can discuss its manufacture. KEY FEATURES Manufacturing • A batch specific certificate of analysis is produced for each product. Alfa Aesar’s production operations offer a single source for silver salts from research to pilot plant • Each silver product batch has; scale. Full-scale production of these products is 1. Full metallic impurities typically measured available. by ICP-MS to ppm. 2. The silver content measured. Development • A selection of silver compounds can be With our extensive development capability, we manufactured up to a purity of 99.999% are able to supply advanced silver materials to meet your technical requirements. • Most other silver products are manufactured to 99.9% purity as standard. Quality Control We employ advanced quality control for both in-process and final product testing phases. The high standard of our modern quality control and assurance facilities is matched by the expertise of our experienced staff. Further details and prices for catalog quantities are available in the Alfa Aesar Catalog or via the web site www.alfa.com.
    [Show full text]
  • United States Patent Office 2,136,483
    Patented Nov. 15, 1938 2,136,483 UNITED STATES PATENT OFFICE 2,136,483. METHOD AND MATERIAL FOR PREVENTING THE TARNISHING of SILVERWARE Kenneth H. Barnard and Arthur F. McLean, Andover, Mass, assigaors to Facific Mills, Lawrence, Mass., a corporation of Massachus setts No Drawing. Application November 13, 1937, Serial No. 4486 m 4 Claims. (CI, 23-241). a This is an improvement on the method and ammonia of 26° Baumé. Add water to make the material patented by Grinnell Jones of Cam Solution up to ten gallons, or more or less accord bridge, Mass., Patent No. 1,766,646, June 24, 1930, ing to the silver concentration desired. Then pad for preventing the tarnishing of silverware. the cloth, which may be double-napped flannel 5 The Jones patent described a fabric for pro previously dyed, with this solution. The squeeze 5. tecting silverware from tarnish comprising a rolls of the padder will remove the excess of material, Suitable for wrapping, impregnated with liquid and the cloth may then be dried, prefer finely divided silver, or a compound thereof, which ably on a tenter frame in a current of warm air. WOuld Combine With the tarnishing gases in the The annonia evaporates, whereupon the silver O atmosphere and thereby protect the silver phosphate, being insoluble in water, is precipi O Wrapped in the protecting material. tated in the cloth in a finely divided state. The Jones patent describes a fabric impreg We then wash out the Sodium nitrate, the nated with silver or a silver compound to protect Other product of the reaction of Silver nitrate silver from tarnish.
    [Show full text]