Resource Partitioning Among Brachiopods and Bivalves at Ancient Hydrocarbon Seeps: a Hypothesis

Total Page:16

File Type:pdf, Size:1020Kb

Resource Partitioning Among Brachiopods and Bivalves at Ancient Hydrocarbon Seeps: a Hypothesis RESEARCH ARTICLE Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis 1 2 Steffen Kiel , JoÈ rn PeckmannID * 1 Swedish Museum of Natural History, Department of Palaeobiology, Stockholm, Sweden, 2 UniversitaÈt Hamburg, Center for Earth System Research and Sustainability, Institute for Geology, Hamburg, Germany * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Brachiopods were thought to have dominated deep-sea hydrothermal vents and hydrocar- bon seeps for most of the Paleozoic and Mesozoic, and were believed to have been outcom- peted and replaced by chemosymbiotic bivalves during the Late Cretaceous. But recent findings of bivalve-rich seep deposits of Paleozoic and Mesozoic age have questioned this OPEN ACCESS paradigm. By tabulating the generic diversity of the dominant brachiopod and bivalve Citation: Kiel S, Peckmann J (2019) Resource clades±dimerelloid brachiopods and chemosymbiotic bivalves±from hydrocarbon seeps partitioning among brachiopods and bivalves at through the Phanerozoic, we show that their evolutionary trajectories are largely unrelated ancient hydrocarbon seeps: A hypothesis. PLoS to one another, indicating that they have not been competing for the same resources. We ONE 14(9): e0221887. https://doi.org/10.1371/ journal.pone.0221887 hypothesize that the dimerelloid brachiopods generally preferred seeps with abundant hydrocarbons in the bottom waters above the seep, such as oil seeps or methane seeps Editor: JuÈrgen Kriwet, University of Vienna, AUSTRIA with diffusive seepage, whereas seeps with strong, advective fluid flow and hence abundant hydrogen sulfide were less favorable for them. At methane seeps typified by diffusive seep- Received: June 13, 2019 age and oil seeps, oxidation of hydrocarbons in the bottom water by chemotrophic bacteria Accepted: August 16, 2019 enhances the growth of bacterioplankton, on which the brachiopods could have filter fed. Published: September 5, 2019 Whereas chemosymbiotic bivalves mostly relied on sulfide-oxidizing symbionts for nutrition, Peer Review History: PLOS recognizes the for the brachiopods aerobic bacterial oxidation of methane and other hydrocarbons played a benefits of transparency in the peer review more prominent role. The availability of geofuels (i.e. the reduced chemical compounds process; therefore, we enable the publication of used in chemosynthesis such as hydrogen sulfide, methane, and other hydrocarbons) at all of the content of peer review and author responses alongside final, published articles. The seeps is mostly governed by fluid flow rates, geological setting, and marine sulfate concen- editorial history of this article is available here: trations. Thus rather than competition, we suggest that geofuel type and availability con- https://doi.org/10.1371/journal.pone.0221887 trolled the distribution of brachiopods and bivalves at hydrocarbon seeps through the Copyright: © 2019 Kiel, Peckmann. This is an open Phanerozoic. access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are Introduction in the paper. The idea of bivalves replacing brachiopods as the dominant benthic filter feeders over the Funding: The authors received no specific funding course of the Phanerozoic is one of the oldest macroevolutionary patterns discussed in paleon- for this work. tology [1±3]. Originally observed in the rich fossil record of shallow marine environments, a PLOS ONE | https://doi.org/10.1371/journal.pone.0221887 September 5, 2019 1 / 22 Paleoecology of seep-dwelling brachiopods and bivalves Competing interests: The authors have declared similar pattern was also seen at deep-sea hydrothermal vents and hydrocarbon seeps [4]. These that no competing interests exist. ecosystems differ radically from all others in being based on chemosynthetic primary produc- tion rather than photosynthesis [5]. The evolution of the chemosynthesis-based faunal com- munities may therefore be buffered from mass extinctions and other disruptions of photosynthesis-based food chains [6±8] and may instead be driven by events affecting the dis- charge of the reduced chemicals (referred to as geofuels hereafter) that fuel the chemosynthe- sis-based food chain [9]. The animals that dominate chemosynthesis-based ecosystems show extensive physiological adaptations, commonly involving a symbiosis with chemotrophic bac- teria, resulting in faunal communities with a low diversity but high abundance of highly spe- cialized animals [10, 11]. A first compilation of Phanerozoic vent and seep sites with brachiopods and/or bivalves indicated a pattern of a Paleozoic to middle Mesozoic dominance of brachiopods in these eco- systems, and the chemosymbiotic bivalves became dominant from the Late Cretaceous onward [4]. Subsequent research confirmed a number of Paleozoic and early Mesozoic seep deposits dominated by brachiopods, including Septatrypa in the Silurian [12], Dzieduszyckia in the Devonian [13], Ibergirhynchia in the Carboniferous [14], Halorella in the Triassic [15], and Sulcirostra and Anarhynchia in the Jurassic [16±18], supporting this hypothesis. However, also discovered were seep deposits at which inferred chemosymbiotic bivalves were a major faunal element, including the modiomorphid genus Ataviaconcha at Silurian and Devonian sites in Morocco [19, 20] and kalenterid and anomalodesmatan genera at Triassic sites in Turkey [21, 22]. These findings challenge the claim of predominantly brachiopod-dominated pre-Creta- ceous vents and seeps, and raise the questions why some sites were dominated by brachiopods and others by bivalves. A further complication in this context is that the feeding strategy (or strategies) of vent and seep-inhabiting brachiopods is essentially unknown. The large size of certain species and bra- chiopod dominance at some sites may intuitively suggest that they were chemosymbiotic [18, 23, 24]. However, brachiopods are virtually absent from extant vents and seeps, and the few known examples are filter feeder that take advantage of the hard substrate provided by authi- genic carbonates exposed at some seeps [25]. Furthermore, the general brachiopod bauplan lacks certain features, such as gills and a closed cardio-vascular system, which are important for hosting chemosymbionts in bivalves or tube worms [26, 27] and make brachiopods ill- suited for coping with the toxicity of hydrogen sulfide. Furthermore, the brachiopods that formed mass occurrences at ancient seeps are not drawn randomly from the brachiopod tree of life but instead belong, with one exception, to a single clade: the Dimerelloidea [28]. The one exception is the genus Septatrypa from a Silurian seep deposit in Morocco [12], which belongs to a different rhynchonellate order than the dimerelloids. Because insights into the feeding strategy of seep-dominating brachiopods are only available for the dimerelloids (see below), our study focuses exclusively on members of this clade. One intriguing feature of many seep deposits dominated by dimerelloids is the sheer abundance of the brachiopods, which by far exceeds the abundance of chemosymbiotic bivalves at fossil seep deposits ([13, 15, 17, 29], own observations). Here we present the hypothesis that dimerelloid brachiopods and chemosymbiotic bivalves coexisted at hydrocarbon seeps during the Paleozoic and Mesozoic by partitioning the locally available geofuels. We propose that the presence, absence, or relative abundance of each clade at a given site was largely controlled by the chemical composition of the seep fluids (the pro- portions of sulfide, methane, and/or oil), which in turn was influenced by seepage intensity and perhaps seawater sulfate concentrations. Our hypothesis is based on (i) a tabulation of the diversity of the ecologically dominant bivalve and brachiopod genera at seeps through the Phanerozoic; (ii) recent improvements in geochemically assessing the composition of fluids PLOS ONE | https://doi.org/10.1371/journal.pone.0221887 September 5, 2019 2 / 22 Paleoecology of seep-dwelling brachiopods and bivalves and the intensity of fluid flow at ancient seeps; and (iii) a set of derivations and assumptions on the paleoecology of the dominant brachiopod and bivalve clades at ancient hydrocarbon seeps. Approach Compilation of generic diversity of bivalves and brachiopods Modern seep communities are characterized by the low diversity but high abundance of a few taxa that are able to take advantage of the unique food resources at seeps [5, 30]. Thus our compilation of brachiopod and bivalve diversity at seeps includes only the ecologically domi- nant clades instead of the full range of genera known from fossil seep deposits to avoid the results being blurred by chance occurrences or by local taxa fortuitously taking advantage of the abundance of food at a seep site (known as `vagrants' or `background taxa', cf. [31] Sibuet and Olu, 1998). Among bivalves, only chemosymbiotic or in the case of extinct taxa, inferred chemosymbiotic taxa, were included. Although chemosymbiotic bivalves may occasionally be rare, in general they dominate seep deposits numerically (cf. [9] Kiel, 2015; [32] Campbell, 2006). Among brachiopods, only dimerelloid genera reported from geochemically confirmed seep deposits are included because (i) with a single exception (see
Recommended publications
  • G. Arthur Cooper
    G. ARTHUR COOPER SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 65 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.' This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropotogy Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the h/larine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the worid. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • DOGAMI Open-File Report O-86-06, the State of Scientific
    "ABLE OF CONTENTS Page INTRODUCTION ..~**********..~...~*~~.~...~~~~1 GORDA RIDGE LEASE AREA ....................... 2 RELATED STUDIES IN THE NORTH PACIFIC .+,...,. 5 BYDROTHERMAL TEXTS ........................... 9 34T.4 GAPS ................................... r6 ACKNOWLEDGEMENT ............................. I8 APPENDIX 1. Species found on the Gorda Ridge or within the lease area . .. .. .. .. .. 36 RPPENDiX 2. Species found outside the lease area that may occur in the Gorda Ridge Lease area, including hydrothermal vent organisms .................................55 BENTHOS THE STATE OF SCIENTIFIC INFORMATION RELATING TO THE BIOLOGY AND ECOLOGY 3F THE GOUDA RIDGE STUDY AREA, NORTZEAST PACIFIC OCEAN: INTRODUCTION Presently, only two published studies discuss the ecology of benthic animals on the Gorda Sidge. Fowler and Kulm (19701, in a predominantly geolgg isal study, used the presence of sublittor31 and planktsnic foraminiferans as an indication of uplift of tfie deep-sea fioor. Their resuits showed tiac sedinenta ana foraminiferans are depositea in the Zscanaba Trough, in the southern part of the Corda Ridge, by turbidity currents with a continental origin. They list 22 species of fararniniferans from the Gorda Rise (See Appendix 13. A more recent study collected geophysical, geological, and biological data from the Gorda Ridge, with particular emphasis on the northern part of the Ridge (Clague et al. 19843. Geological data suggest the presence of widespread low-temperature hydrothermal activity along the axf s of the northern two-thirds of the Corda 3idge. However, the relative age of these vents, their present activity and presence of sulfide deposits are currently unknown. The biological data, again with an emphasis on foraminiferans, indicate relatively high species diversity and high density , perhaps assoc iated with widespread hydrotheraal activity.
    [Show full text]
  • Mechanics Unlocks the Morphogenetic Puzzle of Interlocking Bivalved Shells
    Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells Derek E. Moultona,1 , Alain Gorielya , and Regis´ Chiratb aMathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom; and bCNRS 5276, LGL-TPE (Le Laboratoire de Geologie´ de Lyon: Terre, Planetes,` Environnement), Universite´ Lyon 1, 69622 Villeurbanne Cedex, France Edited by Sean H. Rice, Texas Tech University, Lubbock, TX, and accepted by Editorial Board Member David Jablonski November 11, 2019 (received for review September 24, 2019) Brachiopods and mollusks are 2 shell-bearing phyla that diverged tal events causing shell injuries. Yet, in all cases the interlocking from a common shell-less ancestor more than 540 million years ago. of the 2 shell edges is tightly maintained. These observations Brachiopods and bivalve mollusks have also convergently evolved imply that the interlocking pattern emerges as the result of epi- a bivalved shell that displays an apparently mundane, yet strik- genetic interactions modulating the behavior of the secreting ing feature from a developmental point of view: When the shell mantle during shell development. is closed, the 2 valve edges meet each other in a commissure that Here, we provide a geometric and mechanical explanation forms a continuum with no gaps or overlaps despite the fact that for this morphological trait based on a detailed analysis of the each valve, secreted by 2 mantle lobes, may present antisymmet- shell geometry during growth and the physical interaction of the ric ornamental patterns of varying regularity and size. Interlock- shell-secreting soft mantle with both the rigid shell edge and ing is maintained throughout the entirety of development, even the opposing mantle lobe.
    [Show full text]
  • Les Brachiopodes De La Collection Eudes-Deslongchamps Du Muséum De Gaillac (Tarn)
    Les Carnets natures, 2014, vol. 1 Les Brachiopodes de la collection Eudes-Deslongchamps Du muséum de Gaillac (Tarn) Yves ALMéRAS, Michel COUGNON, Bernard GUIBBERT & Philippe FAURé Yves Alméras : Université Claude-Bernard-Lyon 1, Département des Sciences de la Terre, Campus universitaire de la Doua, bâtiment Géode, 2 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France. E-mail : yves.almeras0827@ orange.fr Michel Cougnon : E-mail : [email protected] Bernard Guibbert : E-mail : [email protected] Philippe Fauré : Muséum d’Histoire naturelle de Toulouse, allées Jules Guesdes, F-31000 Toulouse. E-mail : [email protected] Résumé Les collections du Musée de Gaillac renferment un important fond de fossiles provenant du Jurassique de Normandie. Ceux-ci furent recueillis à la fin du 19ème siècle par le Dr. Philadelphe Thomas profitant de ses bonnes relations avec le paléontologue normand Eugène Eudes-Deslongchamps. On y trouve en particulier un important lot de Brachiopodes déterminés et étiquetés par cet éminent spécialiste des Brachiopodes jurassiques. La disparition de la collection originale du Musée de Caen sous les bombes des alliés en 1944 en fait toute la valeur car les collections du Musée de Gaillac renferment un certain nombre de topotypes (ou néotypes) éventuels. La présente publication donne une brève description des espèces de Brachiopodes jurassiques conservées à Gaillac. Ces descriptions sont précédées d’une synonymie précisant la diagnose originale de chaque espèce, ainsi que la référence à une récente publication, ce qui permet au lecteur de retrouver toutes les données relatives à ces espèces (variabilité morphologique, caractères internes, âges et répartitions géographiques, principales figurations par les auteurs successifs).
    [Show full text]
  • Cranial Anatomy and Taxonomy of Dolichorhynchops Bonneri New
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 2008 Cranial anatomy and taxonomy of Dolichorhynchops bonneri new combination, a polycotylid (Sauropterygia: Plesiosauria) from the Pierre Shale of Wyoming and South Dakota F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation O'Keefe, F. R. (2008). Cranial anatomy and taxonomy of Dolichorhynchops bonneri new combination, a polycotylid (Sauropterygia: Plesiosauria) from the Pierre Shale of Wyoming and South Dakota. Journal of Vertebrate Paleontology, 28(3), 664-676. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. CRANIAL ANATOMY AND TAXONOMY OF DOLICHORHYNCHOPS BONNERI NEW COMBINATION, A POLYCOTYLID (SAUROPTERYGIA: PLESIOSAURIA) FROM THE PIERRE SHALE OF WYOMING AND SOUTH DAKOTA F. ROBIN O’KEEFE ABSTRACT The taxonomic identity of two well-preserved polycotylid plesiosaur skeletons from the Pierre Shale of far northern Wyoming and southern South Dakota has been controversial since their discovery. Originally referred to Dolichorhynchops osborni, the material was almost immediate-ly christened Trinacromerum bonneri Adams 1997; more recently the material has been referred to Polycotylus. Recent preparation of the well-preserved skull of one specimen permits detailed examination of the cranial morphology of this animal for the first time, and allows for its inclusion in a cladistic analysis of the Polycotylidae.
    [Show full text]
  • 75 the Upper Triassic Events Recorded in Platform and Basin of the Austrian Alps. the Triassic/Jurassic GSSP and Norian/Rhaetian
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt (ISSN 1017-8880), Band 111, Wien 2015 STRATI 2015 The Upper Triassic events recorded in platform and basin of the Austrian Alps. The Triassic/Jurassic GSSP and Norian/Rhaetian GSSP candidate Sylvain Richoz & Leopold Krystyn 47 figures Sylvain Richoz - Institute of Earth Sciences, Graz University, Heinrichstraße 26, 8010 Graz, Austria, [email protected] Leopold Krystyn - Department for Palaeontology, Vienna University, Geozentrum, Althansstr. 9, A-1090 Vienna, Austria; [email protected] Contents Abstract 1. Topics and area of the Field Trip 2. Introduction 2.1. The Northern Calcareous Alps 2.2. Principles of the structural evolution 2.3. Triassic depositional realms 2.3.1. General features 2.3.2. The Dachstein Mountains 2.3.3. The Zlambach facies – the deep shelf environment 2.3.4. The Hallstatt facies – the condensed deep shelf environment 2.3.5. The Eiberg Basin 3. The Field Trip 3.1. Shelf margin (Day 1) 3.1.1. Route 3.1.2. Locality 1 – Pötschenhöhe Quarry 3.1.3. Locality 2 – Großer Zlambach 3.1.4. Locality 3 – Steinbergkogel: Proposed Norian/Rhaetian GSSP section 3.1.5. Locality 4 – Gosausee: The Dachstein margin at Gosaukamm 3.2 Lagoon, fringing reef and Eiberg Basin (Day 2) 3.2.1. Route 3.2.2. Locality 5 – Pass Lueg: The classical Lofer cycle 3.2.3. Locality 6 – Adnet 3.2.4. Locality 7 – Steinplatte 3.2.5. Locality 8 – Eiberg 3.3. The Triassic/Jurassic GSSP (Day 3) 3.3.1.
    [Show full text]
  • Paleoecology of Late Cretaceous Methane Cold-Seeps of the Pierre Shale, South Dakota
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 10-2014 Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota Kimberly Cynthia Handle Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/355 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota by Kimberly Cynthia Handle A dissertation submitted to the Graduate Faculty in Earth and Environmental Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i © 2014 Kimberly Cynthia Handle All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Earth and Environmental Sciences in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Neil H. Landman____________________________ __________________ __________________________________________ Date Chair of Examining Committee Harold C. Connolly, Jr.___ ____________________ __________________ __________________________________________ Date Deputy - Executive Officer Supervising Committee Harold C. Connolly, Jr John A. Chamberlain Robert F. Rockwell The City University of New York iii ABSTRACT The Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota By Kimberly Cynthia Handle Adviser: Neil H. Landman Most investigations of ancient methane seeps focus on either the geologic or paleontological aspects of these extreme environments.
    [Show full text]
  • Energy and Mineral Resources, Grand Staircase
    Circular 93 Utah Geological Survey Illustration Captions View figure: Circular 93 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. A Preliminary Assessment of Energy and Table of Contents 1.Preface Mineral Resources within the Grand 2.Summary 3.Introduction Staircase - Escalante National Monument 4.Geology 5.Kaiparowits Plateau coal Compiled by M. Lee Allison, State Geologist field 6.Oil and Gas Potential Contributors: 7.Tar-sand Resources Robert E. Blackett, Editor 8.Non-fuel Minerals and Thomas C. Chidsey Jr., Oil and Gas Mining David E. Tabet, Coal and Coal-Bed Gas 9.Acknowledgments Robert W. Gloyn, Minerals 10.References Charles E. Bishop, Tar-Sands January 1997 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES CONTENTS PREFACE SUMMARY INTRODUCTION Background Purpose and Scope GEOLOGY Regional Structure Permian through Jurassic Stratigraphy Cretaceous and Tertiary Stratigraphy THE KAIPAROWITS PLATEAU COAL FIELD History of Mining and Exploration Coal Resources Coal Resources on School and Institutional Trust Lands Sulfur Content of Kaiparowits Coal Coal-bed Gas Resources Further Coal Resource Assessments Needed OIL AND GAS POTENTIAL Source Rocks Potential Reservoirs Trapping Mechanisms Exploration and Development Carbon Dioxide Further Oil and Gas Resource Assessments Needed TAR-SAND RESOURCES OF THE CIRCLE CLIFFS AREA NON-FUEL MINERALS AND MINING Manganese Uranium-Vanadium Zirconium-Titanium Gold Copper, Lead and Zinc Industrial and Construction Materials Mining Activity Further Non-Fuel Mineral Resource Assessments Needed ACKNOWLEDGMENTS REFERENCES APPENDIX A: Presidential proclamation APPENDIX B: Summary of the coal resource of Kaiparowits Plateau and its value APPENDIX C: Summary of coal resources on School and Institutional Trust Lands APPENDIX D: Authorized Federal Oil and Gas Leases in the monument ILLUSTRATIONS Figure 1.
    [Show full text]
  • Analysis of the Complete Mitochondrial DNA Sequence of the Brachiopod Terebratulina Retusa Places Brachiopoda Within the Protostomes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12415870 Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Article in Proceedings of the Royal Society B: Biological Sciences · November 1999 DOI: 10.1098/rspb.1999.0885 · Source: PubMed CITATIONS READS 83 50 2 authors, including: Martin Schlegel University of Leipzig 151 PUBLICATIONS 2,931 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Rare for a reason? Scale-dependence of factors influencing rarity and diversity of xylobiont beetles View project Bat diversity and vertical niche activity in the fluvial flood forest Leipzig View project All content following this page was uploaded by Martin Schlegel on 22 May 2014. The user has requested enhancement of the downloaded file. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Alexandra Stechmann* and Martin Schlegel UniversitÌt Leipzig, Institut fÏr Zoologie/Spezielle Zoologie,Talstr. 33, 04103 Leipzig, Germany Brachiopod phylogeny is still a controversial subject. Analyses using nuclear 18SrRNA and mitochondrial 12SrDNA sequences place them within the protostomes but some recent interpretations of morphological data support a relationship with deuterostomes. In order to investigate brachiopod a¤nities within the metazoa further,we compared the gene arrangement on the brachiopod mitochondrial genome with several metazoan taxa. The complete (15 451bp) mitochondrial DNA (mtDNA) sequence of the articulate brachiopod Terebratulina retusa was determined from two overlapping long polymerase chain reaction products. All the genes are encoded on the same strand and gene order comparisons showed that only one major rearrangement is required to interconvert the T.retusa and Katharina tunicata (Mollusca: Polyplaco- phora) mitochondrial genomes.
    [Show full text]
  • Coincidence of Photic Zone Euxinia and Impoverishment of Arthropods
    www.nature.com/scientificreports OPEN Coincidence of photic zone euxinia and impoverishment of arthropods in the aftermath of the Frasnian- Famennian biotic crisis Krzysztof Broda1*, Leszek Marynowski2, Michał Rakociński1 & Michał Zatoń1 The lowermost Famennian deposits of the Kowala quarry (Holy Cross Mountains, Poland) are becoming famous for their rich fossil content such as their abundant phosphatized arthropod remains (mostly thylacocephalans). Here, for the frst time, palaeontological and geochemical data were integrated to document abundance and diversity patterns in the context of palaeoenvironmental changes. During deposition, the generally oxic to suboxic conditions were interrupted at least twice by the onset of photic zone euxinia (PZE). Previously, PZE was considered as essential in preserving phosphatised fossils from, e.g., the famous Gogo Formation, Australia. Here, we show, however, that during PZE, the abundance of arthropods drastically dropped. The phosphorous content during PZE was also very low in comparison to that from oxic-suboxic intervals where arthropods are the most abundant. As phosphorous is essential for phosphatisation but also tends to fux of the sediment during bottom water anoxia, we propose that the PZE in such a case does not promote the fossilisation of the arthropods but instead leads to their impoverishment and non-preservation. Thus, the PZE conditions with anoxic bottom waters cannot be presumed as universal for exceptional fossil preservation by phosphatisation, and caution must be paid when interpreting the fossil abundance on the background of redox conditions. 1 Euxinic conditions in aquatic environments are defned as the presence of H2S and absence of oxygen . If such conditions occur at the chemocline in the water column, where light is available, they are defned as photic zone euxinia (PZE).
    [Show full text]
  • Combined Analysis of Extant Rhynchonellida (Brachiopoda) Using Morphological and Molecular Data
    Syst. Biol. 67(1):32–48, 2018 © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. DOI:10.1093/sysbio/syx049 Advance Access publication May 8, 2017 Combined Analysis of Extant Rhynchonellida (Brachiopoda) using Morphological and Molecular Data ,∗ , DAV I D W. BAPST1 ,HOLLY A. SCHREIBER1 2, AND SANDRA J. CARLSON1 1Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; and 2Penn Dixie Fossil Park and Nature Reserve, 3556 Lakeshore Rd, Ste. 210 Blasdell, NY 14219, USA ∗ Correspondence to be sent to: Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; E-mail: [email protected]. Received 5 August 2016; reviews returned 14 October 2016; accepted 28 April 2017 Associate Editor: Ken Halanych Abstract.—Independent molecular and morphological phylogenetic analyses have often produced discordant results for certain groups which, for fossil-rich groups, raises the possibility that morphological data might mislead in those groups for which we depend upon morphology the most. Rhynchonellide brachiopods, with more than 500 extinct genera but only 19 extant genera represented today, provide an opportunity to explore the factors that produce contentious phylogenetic signal across datasets, as previous phylogenetic hypotheses generated from molecular sequence data bear little agreement with those constructed using morphological characters.
    [Show full text]
  • Late Cretaceous Stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona H
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/9 Late Cretaceous stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona H. G. Page and C. A. Repenning, 1958, pp. 115-122 in: Black Mesa Basin (Northeastern Arizona), Anderson, R. Y.; Harshbarger, J. W.; [eds.], New Mexico Geological Society 9th Annual Fall Field Conference Guidebook, 205 p. This is one of many related papers that were included in the 1958 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]