The Plants of Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
With Maryland and Much of the World in Lockdown from the Coronavirus Pandemic, It’S Hard to Know What Lies Ahead
NEWSLETTER OF THE HORTICULTURAL SOCIETY OF MARYLAND, INC. | MAY 2020 With Maryland and much of the world in lockdown from the coronavirus pandemic, it’s hard to know what lies ahead. But even with almost everything canceled or postponed, there is no stopping Spring 2020. The flowers are blooming, the trees are leafing out. There is beauty to be seen and what a balm it is in these uncertain times. We hope for health and normalcy soon. Until then, keep gardening, enjoy the outdoors —and stay safe. Programs & EvEnts A New Vice President for Membership Tool Drive PostponeD arah Atherton, a member of the Society for several years, is our The Society’s annual spring Tool Drive Snew vice president for membership. Sarah, who grew up in has been postponed. Members are northwest Washington, D.C., said her love of plants and gardening asked to please keep the Tool Drive in “probably began with a science project on hydroponic gardening” mind for donations of garden tools they no longer use. when she was in the seventh grade. She did her senior internship in the Washington National Cathedral greenhouse and has worked for AnnuAl PlAnT & seeD swAP other greenhouses and nurseries. She was the volunteer coordinator TUESDAY, SEPTEMBER 8, 2020 for the Society’s last three garden tours. Photo: Robin V. Willner 6:45 p.m. to 7:15 p.m. Same night as September lecture, Welcome New Members! details to come. Dorothea Abbott Kate Carski Nicole Haddock Caitlyn Kelley AnnuAl GArDen Tour Christina Beneman Rachel Fischer Emily Hanson Chelsea Mahaffey COMING THIS FALL Watch for details. -
Fair Use of This PDF File of Herbaceous
Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut. -
Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever
Staminal Evolution In The Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence For Multiple Origins Of The Staminal Lever Jay B. Walker & Kenneth J. Sytsma (Dept. of Botany, University of Wisconsin, Madison) Annals of Botany (in press) Abstract • Background and Aims - The genus Salvia has traditionally included any member of the tribe Mentheae (Lamiaceae) with only two stamens and with each stamen expressing an elongate connective. The recent demonstration of the non-monophyly of the genus presents interesting implications for staminal evolution in the tribe Mentheae. In the context of a molecular phylogeny, we characterize the staminal morphology of the various lineages of Salvia and related genera and present an evolutionary interpretation of staminal variation within the tribe Mentheae. • Methods. Two molecular analyses are presented in order to investigate phylogenetic relationships in the tribe Mentheae and the genus Salvia. The first presents a tribal survey of the Mentheae and the second concentrates on Salvia and related genera. Schematic sketches are presented for the staminal morphology of each major lineage of Salvia and related genera. • Key Results. These analyses suggest an independent origin of the staminal elongate connective on at least three different occasions within the tribe Mentheae, each time with a distinct morphology. Each independent origin of the lever mechanism shows a similar progression of staminal change from slight elongation of the connective tissue separating two fertile thecae to abortion of the posterior thecae and fusion of adjacent posterior thecae. We characterize a monophyletic lineage within the Mentheae consisting of the genera Lepechinia, Melissa, Salvia, Dorystaechas, Meriandra, Zhumeria, Perovskia, and Rosmarinus. • Conclusions. -
Comparison of Essential Oils of Endemic Salvia Dichroantha Stapf Collected from Konya
Int. J. Sec. Metabolite, Vol. 4: 3 (2017) pp. 412-417 Special Issue 2: Research Article ISSN: 2148-6905 online Journal homepage: http://www.ijate.net/index.php/ijsm Comparison of essential oils of endemic Salvia dichroantha Stapf collected from Konya Ayla KAYA *1, Süleyman DOĞU 2, Muhittin DİNÇ2, Mine KÜRKÇÜOĞLU 3 1Department of Pharmaceutical Botany, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey 2Department of Biology, Ahmet Keleşoğlu Faculty of Education, Necmettin Erbakan University, 42090 Konya, Turkey 3Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, TR-26470 Eskişehir, Turkey Received: 05 May 2017 - Accepted: 11 June 2017 Abstract: In the Anatolia folk medicine, Salvia L. (Lamiaceae) species are used by many people in various villages and towns for the therapeutic value of their essential oils. Salvia dichroantha Stapf is an endemic plant of the Irano-Turanian phytogeographic region. Plant materials were collected during the flowering period from Konya Cihanbeyli (900 m) and Konya Taşkent (1800 m). In this study, water-distilled essential oil of Salvia dichroantha was analyzed. The analysis was performed by using a gas chromatography (GC-FID) and gas chromatography- mass spectrometry (GC-MS) systems, simultaneously. Eight compounds were identified from the oil of Taşkent representing 96.2 % of the total oil and nine compounds were identified from the oil of Cihanbeyli representing 98.3% of the total oil. The major components were found as caryophyllene oxide (38.6%), caryophyllenol I (16.7%), caryophyllenol II (15.6%) and caryophylladienol II (11.1%) for Taşkent; caryophyllene oxide (65.8%), caryophyllenol II (14.3 %) for the oil of Cihanbeyli. -
Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971). -
BSBI News Index 121-130 ABC 8Pt FINAL
BSBI News INDEX to Nos 121 – 130 September 2012 to September 2015 Compiled by GWYNN ELLIS ISSN 2397-8813 1 GUIDE TO THE INDEX ABBREVIATIONS AEM Annual Exhibition Meeting Illus. Illustration AGM Annual General Meeting Infl. Inflorescence ASM Annual Summer Meeting Lvs Leaves cf. confer (compare) photo © photo copyright holder congrats congratulations Rev. Review CS Colour Section Rpt Report del. delineavit (drawn) s.l. sensu lato (broad sense) Descr. Description s.s. sensu stricto (narrow sense) Diag. Diagram v.c. vice-county Exbn Exhibition v.cc. vice-counties Exbt Exhibit (♀) female parent Fld Mtg Rpt Field Meeting Report (♂) male parent Fls Flowers ACKNOWLEDGEMENTS: The compiler wishes to thank David Pearman for much helpful advice and for scrutinising the final text. However, responsibility for checking the index and its final form rests solely with the compiler. BOOKS et al. are italicised as are Periodicals and scientific names COLOUR PAGES: In the index all colour page numbers are distinguished by being underlined with the cover pages enclosed in square brackets [ ]. The front cover and inside front cover are numbered [i] and [ii] respectively while the inside back and back cover pages are numbered according to the number of pages, thus with an issue of 76 pages the inside back cover is [77] and the back cover [78]. Colour Section plates are numbered CS1, CS2, CS3, CS4. Photographers are now indexed by name with the qualification (photo ©) COMPILATION: Using the original text on computer, the entries for each issue were generated by deleting all unwanted text. After checking, the entries were then sorted into alphabetical order, condensed, and finally output as pdf files for the Printer. -
Medicinal Plants, Aromatic Herbs and Fragrance Plants in France
> Medicinal plants, aromatic herbs and fragrance plants in France: a small www.ihc2022.org but thriving sector with a strong traditional base and a dynamic research network Annabelle Bergoënd and Joséphine Piasentin In France, medicinal and aromatic plants paced growth. This production is very diverse small areas. Many producers reserve some (MAP) or herbal, medicinal and aromat- and dynamic, leaning on strong traditional areas as a side crop for their main produc- ic plants (HMAP) industries1 traditionally skills and benefiting from new techniques tion. Many of the plants are not referenced refer to culinary herbs, medicinal plants, and high value processing. With a growing in the European common agricultural pol- and plants cultivated for the fragrance and demand for natural products and unfolding icy (CAP) nomenclature. About 75% of the perfume industries. This agricultural sector opportunities for new markets, HMAP is fac- producers cultivate HMAPs to diversify their encompasses several hundred plant species, ing exciting prospects. production. The largest amount of land is as compared with field crops, such as cereals, occupied by fragrance plants, then medici- which may include single species grains. Characteristics of French HMAP nal plants. Aromatic herbs account for less The organic production for these crops is than 10% of the HMAP cultivated area. In significantly larger than traditional crops of Farm features and production are 2018, the estimated average farm was 4 ha global French agriculture. Wild harvest of geographically diverse for MAP production and 17 ha for perfume HMAP continues and is key for a success- The complexity of the production sector for plants. -
Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility -
Ranunculus Ficaria (Ranunculaceae) Naturalized in Texas: Update
Nesom, G.L. 2015. Ranunculus ficaria (Ranunculaceae) naturalized in Texas: Update. Phytoneuron 2015-27: 1–7. Published 29 April 2015. ISSN 2153 733X RANUNCULUS FICARIA (RANUNCULACEAE) NATURALIZED IN TEXAS: UPDATE GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 [email protected] ABSTRACT In the 7 years since a report of its naturalization along a creek in Tarrant County, Texas, Ranunculus ficaria (now treated within the genus Ficaria as F. verna ) has increased in number of plants and coverage at that locality. The Texas plants produce axillary bulbils and flowers apparently are sterile, producing only unexpanded achenes. Photos show population structure and characteristics of the habitat. Ranunculus ficaria L. was earlier observed (Nesom 2008) to be naturalized along Overton Creek within Overton Park in Fort Worth, Texas. It was noted that "Thirty discrete plants, clearly naturalized, grow in an area of about 30 square feet ... A second population of five scattered plants occurs on the stream terrace about 300 yards downstream." In 2015, areal coverage of plants of Ranunculus ficaria has increased by about 6 times; the original larger population has expanded, additional colonies have formed downstream between 20 and 50 yards from the original, and an additional large population has arisen downstream of plants seen in 2008, increasing the linear extent of the total population to about 400 yards. Photos of subgroups of the Overton Park population (Figs. 1–7) show the characteristic habitat and dispersion of the plants –– all are growing in wet soil immediately beside the water or close by on the low, frequently flooded terrace. -
Ficaria Verna Huds
DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD DRAFT July 2013 Scientific name: Ficaria verna Huds. Synonyms: Ranunculus ficaria L., Ranunculus ficaria L. ssp. bulbifera (Marsden-Jones) Lawalree, Ranunculus ficaria L. ssp. calthifolius (Reichenbach) Arcangeli, Ranunculus ficaria L. var. bulbifera Marsden-Jones, Ficaria verna Huds. Common name: Lesser celandine, fig buttercup, pilewort, figroot buttercup, figwort, bulbous buttercup, and small crowfoot Family: Ranunculaceae Legal Status: Proposed Class B noxious weed Images from left to right: 1. Plant growth with flowers, image: Catherine Herms, The Ohio State University, Bugwood.org; 2.Tuberous roots of Ficaria verna, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org; 3. Close up of flower, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org; 4. Bulbils in leaf axils, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org. Description and Variation: As Post et al. (2009) outline, North American treatments of Ficaria verna did not include subspecies or only included one while European treatments include five subspecies: subsp. ficariiformis, subsp. chrysocephalus, subsp. calthifolius, subsp. ficaria, subsp. bulbilifer. Through a review of herbarium specimens, Post et al. (2009) determined that all five subspecies existed here in the United States. Sell (1994) provides descriptions of all five subspecies. Whittemore (1997) states that the species is highly variable and that the different forms intergrade extensively and varieties are often impossible to distinguish. Listing Ficaria verna as a Class C noxious weed includes all subspecies of F. verna and any cultivars of the species and subspecies. Overall Habit: Ficaria verna is a highly variable, glabrous perennial with tuberous roots. -
Gymnaconitum, a New Genus of Ranunculaceae Endemic to the Qinghai-Tibetan Plateau
TAXON 62 (4) • August 2013: 713–722 Wang & al. • Gymnaconitum, a new genus of Ranunculaceae Gymnaconitum, a new genus of Ranunculaceae endemic to the Qinghai-Tibetan Plateau Wei Wang,1 Yang Liu,2 Sheng-Xiang Yu,1 Tian-Gang Gao1 & Zhi-Duan Chen1 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043, U.S.A. Author for correspondence: Wei Wang, [email protected] Abstract The monophyly of traditional Aconitum remains unresolved, owing to the controversial systematic position and taxonomic treatment of the monotypic, Qinghai-Tibetan Plateau endemic A. subg. Gymnaconitum. In this study, we analyzed two datasets using maximum likelihood and Bayesian inference methods: (1) two markers (ITS, trnL-F) of 285 Delphinieae species, and (2) six markers (ITS, trnL-F, trnH-psbA, trnK-matK, trnS-trnG, rbcL) of 32 Delphinieae species. All our analyses show that traditional Aconitum is not monophyletic and that subgenus Gymnaconitum and a broadly defined Delphinium form a clade. The SOWH tests also reject the inclusion of subgenus Gymnaconitum in traditional Aconitum. Subgenus Gymnaconitum markedly differs from other species of Aconitum and other genera of tribe Delphinieae in many non-molecular characters. By integrating lines of evidence from molecular phylogeny, divergence times, morphology, and karyology, we raise the mono- typic A. subg. Gymnaconitum to generic status. Keywords Aconitum; Delphinieae; Gymnaconitum; monophyly; phylogeny; Qinghai-Tibetan Plateau; Ranunculaceae; SOWH test Supplementary Material The Electronic Supplement (Figs. S1–S8; Appendices S1, S2) and the alignment files are available in the Supplementary Data section of the online version of this article (http://www.ingentaconnect.com/content/iapt/tax). -
The Chromosome-Based Lavender Genome Provides New Insights Into
Li et al. Horticulture Research (2021) 8:53 Horticulture Research https://doi.org/10.1038/s41438-021-00490-6 www.nature.com/hortres ARTICLE Open Access The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis Jingrui Li1,2, Yiming Wang 3,YanmeiDong1,2, Wenying Zhang1,2,DiWang1, Hongtong Bai1,KuiLi3,HuiLi1 and Lei Shi1 Abstract The aromatic shrub Lavandula angustifolia produces various volatile terpenoids that serve as resources for essential oils and function in plant-insect communication. To better understand the genetic basis of the terpenoid diversity in lavender, we present a high-quality reference genome for the Chinese lavender cultivar ‘Jingxun 2’ using PacBio and Hi-C technologies to anchor the 894.50 Mb genome assembly into 27 pseudochromosomes. In addition to the γ triplication event, lavender underwent two rounds of whole-genome duplication (WGD) during the Eocene–Oligocene (29.6 MYA) and Miocene–Pliocene (6.9 MYA) transitions. As a result of tandem duplications and lineage-specific WGDs, gene families related to terpenoid biosynthesis in lavender are substantially expanded compared to those of five other species in Lamiaceae. Many terpenoid biosynthesis transcripts are abundant in glandular trichomes. We further integrated the contents of ecologically functional terpenoids and coexpressed terpenoid biosynthetic genes to construct terpenoid-gene networks. Typical gene clusters, including TPS-TPS, TPS- CYP450, and TPS-BAHD, linked with compounds that primarily function as attractants or repellents, were identified by fl 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; their similar patterns of change during ower development or in response to methyl jasmonate. Comprehensive analysis of the genetic basis of the production of volatiles in lavender could serve as a foundation for future research into lavender evolution, phytochemistry, and ecology.