Cosmologie Et Rayons Cosmiques La

Total Page:16

File Type:pdf, Size:1020Kb

Cosmologie Et Rayons Cosmiques La Ont participé à l’élaboration de ce rapport : Coordination : G. Chrétien-Duhamel Rédaction : M. Baylac A. Billebaud C. Cholat J. Collot V. Comparat L. Derome T. Lamy A. Lucotte N. Ollivier J.-S. Real W. Regairaz J.-M. Richard B. Silvestre-Brac A. Stutz C. Tur Édition (brochure, PDF, CD-ROM) : C. Favro Rapport d’activité 2004 - 2005 Rapport d’activité 2004 - 2005 Avant propos rise de la recherche ou recherche de la crise ? Eu égard aux deux années de réforme Cet de contre-réforme que nous venons de vivre, on peut légitimement se poser cette question. Et tenter d’y répondre – pour ce qui nous concerne – en prenant pour objet d’analyse l’unité de recherche dont l’activité est rapportée dans ce document. En choisissant comme référentiel d’évaluation, les indicateurs scientifiques communs tels que le nombre de publications de rang A (160 pour 2004 - 2005), leur indice moyen de citation à deux ans (10,8 par article), le nombre de distinctions décernées à des membres du laboratoire (7 en 4 ans), la proportion de chercheurs et d’enseignants-chercheurs d’origine étrangère (17%) ou encore le nombre de personnes occupant des responsabilités à un niveau national ou international (15), la crise ne paraît pas très évidente ! Elle n’apparaît nettement que si l’on examine le budget total du laboratoire, salaires soustraits. Celui-ci n’a pas cessé de décroître depuis 2003 (25% de baisse cumulée depuis 2003). Voilà donc où se situe la crise de notre unité – provoquée par les instances de direction des organismes de recherche – au nom d’une politique scientifique qui réduit la place accordée à la recherche fondamentale en physique subatomique sur des bases édictées par le sacro-saint principe d’utilité publique et de demande sociale. N’y a-t-il pas parmi les citoyens un intérêt profond pour l’acquisition « désintéressée » de nouvelles connaissances ? Une soif de voir certaines énigmes persistantes – sur lesquelles nous travaillons – levées dans le futur : comme par exemple l’identification de la nature de la matière noire, l’élaboration d’une théorie de Grande Unification des forces élémentaires, la recherche de mini-trous noirs, l’existence d’anti-étoiles… À chaque manifestation destinée au grand public (fête de la science, conférences, exposition…) à laquelle nous avons le plaisir de participer, nous ne pouvons que constater la ferveur du public (des jeunes ou seniors), l’ampleur de sa quête de connaissances. Alors où se situe l’erreur ? Peut-être finalement dans l’attitude de nos dirigeants, plus enclins à servir les possibles enjeux politiques et économiques à court terme de la science, plutôt que le savoir pur. Le problème de cette stratégie, qui est imposée par le haut, est qu’il est absolument impossible de programmer avec certitude les retours économiques liés aux avancées de la science. Et que bien souvent, cette stratégie n’est qu’une copie conforme, faite avec quelques années de retard, des orientations prises outre-Atlantique. Ce qui en soi constitue un aveu de dépendance, plutôt qu’une réelle politique scientifique concertée et efficace qui mettrait en valeur les qualités des acteurs scientifiques de la nation. Dans cette impasse, une issue est peut-être en vue. Car la direction actuelle du CNRS a décidé de renforcer le budget accordé aux mathématiques, science fondamentale s’il en est, et secteur d’excellence depuis toujours en France. Souhaitons qu’elle en fasse autant pour la physique – qui n’a pas démérité – mais qui souffre d’un « rééquilibrage » au profit des sciences de la vie dont l’efficacité, l’organisation en France sont loin d’être acquises. Le Laboratoire de Physique Subatomique et de Cosmologie de Grenoble est une Unité Mixte de Recherche (UMR) de l’Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), de l’Université Joseph Fourier (UJF) ainsi que de l’Institut National Polytechnique de Grenoble (INPG). Environ 40 chercheurs, 25 enseignants-chercheurs, 100 ingénieurs et techniciens, 20 doctorants et une dizaine de personnes sur divers statuts d’accueil temporaire travaillent au LPSC. Par le nombre de ses personnels, il s’agit de la cinquième unité de recherche de l’IN2P3, de la plus grosse UMR de l’UJF et du premier laboratoire CNRS de Grenoble. Le budget total consolidé du LPSC est de 11 M€ dont 9 M€ de salaires. Le laboratoire est engagé dans une trentaine de projets nationaux et plus souvent internationaux. 2 LPSC Grenoble LPSC Grenoble 3 Rapport d’activité 2004 - 2005 Rapport d’activité 2004 - 2005 La mission principale du laboratoire est la recherche fondamentale – expérimentale et théorique – en physique nucléaire, en physique des particules, sur les rayons cosmiques et en cosmologie. Le LPSC dispose d’un personnel technique très qualifié qui lui permet de prendre de fortes responsabilités dans la conception et la construction de dispositifs expérimentaux extrêmement sophistiqués auprès d’accélérateurs de particules, de réacteurs nucléaires de test ou dans l’espace. Au côté de cette activité principale et ce depuis toujours, le LPSC a su irriguer de ses compétences, de ses acquis, tous les secteurs de la société. Par l’enseignement tout d’abord, puisque nous accueillons plus de 60 stagiaires par an (de la 3ème jusqu’aux dernières années de l’enseignement supérieur), que nous participons à 7 masters de l’UJF et de l’INPG et que nous intervenons au sein de l’INPG dans la seule filière de formation d’ingénieurs en génie nucléaire de France. Par la valorisation de nos connaissances et le développement d’applications ensuite, dans divers secteurs des technologies des plasmas, de l’électronique, de l’environnement, de la production d’ions, de l’imagerie médicale, de la radiothérapie jusqu’au traitement massif des données numériques. Il serait très difficile et bien trop réducteur de vouloir résumer en quelques lignes les principaux résultats et les évolutions notables du LPSC au cours de la période 2004 - 2005. Cette approche ne rendrait pas justice au travail de tous les personnels qu’ils soient scientifiques, administratifs ou techniques. C’est la raison pour laquelle nous avons choisi de fournir une introduction synthétique un peu plus longue, par secteur d’activité, que le lecteur trouvera au début de chaque chapitre. Avant de vous inviter à prendre connaissance en détail de l’ensemble de nos activités, je tiens à remercier toutes celles et tous ceux qui ont participé à la maquette, la rédaction, l’édition et la mise en ligne de ce rapport. Johann Collot Directeur du LPSC 2 LPSC Grenoble LPSC Grenoble 3 Rapport d’activité 2004 - 2005 Table des matières ¸ Avant propos. 2 ¸ Quarks, Leptons et Interactions fondamentales . 5 DØ. 7 ATLAS. 13 Neutrons ultra-froids (UCN). 19 ¸ Cosmologie et Rayons cosmiques . 21 AMS-CREAM . 22 Archeops-Planck . 28 MIMAC-He3 . 34 EUSO-ULTRA . 36 ¸ Hadrons et Noyaux . 43 Structure des nucléons et des noyaux légers. 45 GRAAL. 49 Structure nucléaire. 51 Physique des réacteurs . 57 ¸ Programmes pluridisciplinaires . 63 Interface Physique-Médecine . 64 ETOILE. 67 CRPMN . 68 ¸ Théorie. 73 ¸ Accélérateurs et Sources d’Ions . 85 Service Accélérateurs . 86 Sources d’Ions . 92 ¸ Services techniques et administratif . 97 Détecteurs et Instrumentation. 98 Études et Réalisations Mécaniques . 108 Électronique . 114 Acquisition de données. 123 Informatique . 129 Généraux. 134 Valorisation et Transfert de technologies . 136 Administration . 140 ¸ Communication. 141 ¸ Ressources humaines, Hygiène et sécurité. 147 ¸ Personnel et Organigramme . 153 ¸ Formation et Enseignement . 157 ¸ Publications . 161 ¸ Comité de rédaction . 180 LPSC Grenoble 1 Quarks, Leptons et InteractionsQuarks, Leptons fondamentales et Interactions fondamentales a théorie des particules élémentaires appelée Modèle Standard (MS) s’est élaborée au Lcours des 30 dernières années. Selon cette description, les constituants de la matière sont les leptons et les quarks ; ceux-ci sont classés en trois générations, à l’intérieur desquelles les particules ont des p r o p r i é t é s similaires, à l’exception de leur masse. Les interactions entre ces particules sont décrites comme résultant de l’invariance par rapport au groupe de symétrie SU(3)C×SU(2)L×U(1)Y. Elles sont p o r t é e s par une autre classe de particules, les bosons de jauge, dont le couplage aux particules de « matière » définit l’intensité de l’interaction. L’interaction forte est ainsi représentée par le groupe de symétrie de couleur SU(3)C, qui décrit les interactions liant les quarks à l’intérieur des protons et neutrons. C’est une symétrie conservée dont les bosons médiateurs sont les gluons, sans masse. L’intensité du couplage fort varie avec l’énergie à laquelle se déroule l’interaction, et se réduit lorsque cette dernière s’accroît. Les deux conséquences notables sont qu’aux faibles énergies les quarks ne peuvent apparaître que dans un état lié à un autre quark, comme c’est le cas à l’intérieur du noyau. En revanche, à de hautes énergies, ces fermions se comportent comme des particules quasi-libres. L’électromagnétisme est porté par un boson de masse nulle, le photon, qui couple les particules de charge électrique non nulle. L’intensité de ce couplage n’est pas constante mais, à l’opposé de l’interaction forte, s’accroît avec l’énergie de l’interaction. Enfin, l’interaction faible, responsable par exemple de la radioactivité β, est portée par des bosons neutre et chargé, les bosons Z et W observés pour la première fois en 1983 au CERN, après la mise en évidence de l’existence du courant neutre faible par l’expérience Gargamelle dix ans auparavant. Ces bosons étant très massifs, la force faible n’opère qu’à de courtes distances, contrairement à l’électromagnétisme, de portée infinie.
Recommended publications
  • Capture and Decay of Electroweak Wimponium
    Prepared for submission to JCAP MIT-CTP/4845 Capture and Decay of Electroweak WIMPonium Pouya Asadi,a Matthew Baumgart,a Patrick J. Fitzpatrick,b Emmett Krupczakb and Tracy R. Slatyerb aNew High Energy Theory Center, Rutgers University, Piscataway, NJ 08854 bCenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected], [email protected], [email protected], fi[email protected], [email protected] Abstract. The spectrum of Weakly-Interacting-Massive-Particle (WIMP) dark matter gener- ically possesses bound states when the WIMP mass becomes sufficiently large relative to the mass of the electroweak gauge bosons. The presence of these bound states enhances the anni- hilation rate via resonances in the Sommerfeld enhancement, but they can also be produced directly with the emission of a low-energy photon. In this work we compute the rate for SU(2) triplet dark matter (the wino) to bind into WIMPonium – which is possible via single-photon emission for wino masses above 5 TeV for relative velocity v < O(10−2) – and study the subsequent decays of these bound states. We present results with applications beyond the wino case, e.g. for dark matter inhabiting a nonabelian dark sector; these include analytic capture and transition rates for general dark sectors in the limit of vanishing force carrier mass, efficient numerical routines for calculating positive and negative-energy eigenstates of a Hamiltonian containing interactions with both massive and massless force carriers, and a study of the scaling of bound state formation in the short-range Hulthén potential. In the arXiv:1610.07617v2 [hep-ph] 24 Jan 2017 specific case of the wino, we find that the rate for bound state formation is suppressed relative to direct annihilation, and so provides only a small correction to the overall annihilation rate.
    [Show full text]
  • Lepton Mixing and Neutrino Mass
    Lepton Mixing and Neutrino Mass v Werner Rodejohann T -1 (MPIK, Heidelberg) mv = m L - m D M R m D Strasbourg MANITOP Massive Neutrinos: Investigating their July 2014 Theoretical Origin and Phenomenology 1 Neutrinos! 2 Literature ArXiv: • – Bilenky, Giunti, Grimus: Phenomenology of Neutrino Oscillations, hep-ph/9812360 – Akhmedov: Neutrino Physics, hep-ph/0001264 – Grimus: Neutrino Physics – Theory, hep-ph/0307149 Textbooks: • – Fukugita, Yanagida: Physics of Neutrinos and Applications to Astrophysics – Kayser: The Physics of Massive Neutrinos – Giunti, Kim: Fundamentals of Neutrino Physics and Astrophysics – Schmitz: Neutrinophysik 3 Contents I Basics I1) Introduction I2) History of the neutrino I3) Fermion mixing, neutrinos and the Standard Model 4 Contents II Neutrino Oscillations II1) The PMNS matrix II2) Neutrino oscillations II3) Results and their interpretation – what have we learned? II4) Prospects – what do we want to know? 5 Contents III Neutrino Mass III1) Dirac vs. Majorana mass III2) Realization of Majorana masses beyond the Standard Model: 3 types of see-saw III3) Limits on neutrino mass(es) III4) Neutrinoless double beta decay 6 Contents I Basics I1) Introduction I2) History of the neutrino I3) Fermion mixing, neutrinos and the Standard Model 7 I1) Introduction Standard Model of Elementary Particle Physics: SU(3) SU(2) U(1) C × L × Y oR +R Species # eR bR tR sR Quarks 10P 10 cR io dR i+ uR ie oL Leptons 3 13 +L eL tL Charge 3 16 cL uL bL sL dL Higgs 2 18 18 free parameters... + Gravitation + Dark Energy + Dark Matter + Baryon
    [Show full text]
  • Connections Between the High and Low Energy Violation of Lepton and Flavor Numbers in the Minimal Left-Right Symmetric Model
    SISSA Scuola Internazionale Superiore di Studi Avanzati Connections Between the High and Low Energy Violation of Lepton and Flavor Numbers in the Minimal Left-Right Symmetric Model Thesis submitted for the degree of Doctor Philosophiae Supervisor: Candidate: Prof. Goran Senjanovic Vladimir Tello September 2012 Contents Introduction 2 1 The Left-Right Model 5 1.1 TheLeft-Rightsymmetry. ............................ 6 1.1.1 Symmetry breaking. 7 1.1.2 Gauge interactions of fermions . 9 1.1.3 Yukawa interactions of leptons . 10 1.1.4 Yukawa interactions of Quarks . 11 1.1.5 The Left-Right symmetry and the mass matrices . 11 1.2 Seesawmechanism ................................ 13 1.2.1 Light-Heavy Neutrino mixing - Inverting the seesaw formula . 14 1.2.2 Examples of MD ............................. 15 1.2.3 General Parametrization of MD. .................... 16 1.3 Summary ..................................... 17 2 Phenomenology 21 2.1 Measuring the scale of parity restoration . 21 2.2 Testing the Higgs mechanism. 22 2.3 Experimental limits on particle masses . 23 2.4 Lepton flavour violation . 23 2.4.1 LFV decay modes of Leptons . 25 2.4.2 Muon-electron conversion . 30 2.5 Interplay between di↵erentLFVprocesses . 31 2.6 Neutrinoless double beta decay . 33 2.6.1 Decay Rate . 35 2.6.2 Implication for the LR scale . 39 2.6.3 Cosmological constraints on mN .................... 41 2.7 Interplay between the LHC and Neutrinoless double beta decay. 42 2.8 Illustrative example: Type II seesaw dominance . 43 i 2.9 Electron electric dipole moment . 46 2.9.1 Neutrino dipole moments . 48 Conclusion 50 A Scalar Potential 52 B The square root of a matrix 54 Bibliography 55 ii List of Figures 2.1 The production of WR at the LHC.
    [Show full text]
  • PPEU-2014-Neutrino-Lecture3.Pdf
    NEUTRINOS Alexey Boyarsky PPEU 1 Discovery of neutrino Observed 14C 14N + e− 6 ! 7 Two body decay: the electron has the same energy (almost) )not observed! Energy is not conserved? Pauli’s letter, Dec. 4, 1930 ... because of the ”wrong” statistics of the N and Li6 nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the ”exchange theorem” of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles h::: i which have spin 1/2 and obey the exclusion principle h::: i. The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant. Alexey Boyarsky PPEU 2 Neutrino "I have done a terrible thing. I invented a particle that cannot be detected." W. Pauli Pauli (1930) called this new particle neutron Chadwick discovered a massive nuclear particle in 1932 )neutron Fermi renamed it into neutrino (italian “little neutral one”) Alexey Boyarsky PPEU 3 Neutrino β-decay is the decay of neutron − n p + e +ν ¯e ! inside the nucleus Electron capture: 22 − 22 Na + e Ne + νe 11 ! 10 Here νe has opposite spin than that of ν¯e! The process − p + e n + νe ! inside a nucleus Alexey Boyarsky PPEU 4 β+-decay + Also observed was β -decay 22 22 + Na Ne + e + νe 11 ! 10 Again the particle νe has the opposite spin to ν¯e! + Formally β decay would come from the ? + p n + e + νe ! but mass of proton mp < mn (mass of neutron)?!.
    [Show full text]
  • Jcap07(2005)012
    ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Spin-half fermions with mass dimension one: theory, phenomenology, and dark matter JCAP07(2005)012 DVAhluwalia-Khalilova1 and D Grumiller2 1 ASGBG/CIU, Department of Mathematics, Apartado Postal C-600, University of Zacatecas (UAZ), Zacatecas, Zac 98060, Mexico 2 Institut f¨ur Theoretische Physik, University of Leipzig, Augustusplatz 10-11, D-04109 Leipzig, Germany E-mail: [email protected] and [email protected] Received 8 December 2004 Accepted 14 June 2005 Published 19 July 2005 Online at stacks.iop.org/JCAP/2005/i=07/a=012 doi:10.1088/1475-7516/2005/07/012 Abstract. We provide the first details on the unexpected theoretical discovery of a spin-one-half matter field with mass dimension one. It is based upon a complete set of dual-helicity eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity, it belongs to a non-standard Wigner class. Consequently, the theory exhibits non- locality with (CPT)2 = −I.Webrieflydiscuss its relevance to the cosmological ‘horizon problem’. Because the introduced fermionic field is endowed with mass dimension one, it can carry a quartic self-interaction. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate the new fermion as a prime dark matter candidate. Taking this suggestion seriously we study a supernova-like explosion of a galactic-mass dark matter cloud to set limits on the mass of the new particle and present acalculation on relic abundance to constrain the relevant cross-section.
    [Show full text]
  • The Structure of the Void
    Filozofski vestnik The Structure of the Void Edited by Mladen Dolar, Gregor Moder, Aleš Bunta, Matjaž Ličer, Sašo Dolenc XXXIV | 2/2013 Izdaja | Published by Filozofski inštitut ZRC SAZU Institute of Philosophy at SRC SASA Ljubljana 2013 FV_02_2013.indd 1 15. 12. 13 18:38 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 001.1:1(082) The STRUCTURE of the void / edited by Mladen Dolar ... [et al.]. - Ljubljana : Filozofski inštitut ZRC SAZU = Institute of Philosophy at SRC SASA, 2013. - (Filozofski vestnik, ISSN 0353-4510 ; 2013, 2) ISBN 978-961-254-662-5 1. Dolar, Mladen 270731264 FV_02_2013.indd 2 15. 12. 13 18:38 Contents Filozofski vestnik The Structure of the Void Volume XXXIV | Number 2 | 2013 7 Mladen Dolar, Gregor Moder, Aleš Bunta, Matjaž Ličer, Sašo Dolenc Editorial 11 Mladen Dolar The Atom and the Void – from Democritus to Lacan 27 Tzu Chien Tho The Void Just Ain’t (What It Used To Be): Void, Infinity, and the Indeterminate 49 Sašo Dolenc The Void of Quantum Reality 61 Matjaž Ličer The Concept of Aether in Classical Electrodynamics and Einstein's Relativity 79 Miha Nemevšek Vacuum, Colliders, and the Origin of Mass 97 Gregor Moder “Held Out into the Nothingness of Being”: Heidegger and the Grim Reaper 115 Katja Kolšek The Repetition of the Void and the Materialist Dialectic 127 Henrik Bjerre Himself Nothing Beholds Nothing. On Schelling’s Ontological Isomorphism 145 Aleš Bunta Antinomy of the Void 163 Oxana Timofeeva Imagine There’s No Void 177 Pietro Bianchi The Lack(anians). Use and Misuse of a Concept between Psychoanalysis and Science 201 Notes on Contributors 203 Abstracts FV_02_2013.indd 3 15.
    [Show full text]
  • The Specificities of the Nature of Neutrinos ∑
    American Journal of Modern Physics 2014; 3(6): 245-246 Published online December 02, 2014 (http://www.sciencepublishinggroup.com/j/ajmp) doi: 10.11648/j.ajmp.20140306.17 ISSN: 2326-8867 (Print); ISSN: 2326-8891 (Online) The specificities of the nature of neutrinos V. P. Efrosinin Institute for Nuclear Research, RAS, Moscow, Russia Email address: [email protected] To cite this article: V. P. Efrosinin. The Specificities of the Nature of Neutrinos. American Journal of Modern Physics. Vol. 3, No. 6, 2014, pp. 245-246. doi: 110.11648/j.ajmp.20140306.17 Abstract: The paper deals with the problem of lepton flavor and neutrino oscillation. The oscillation property concerns only the light neutrino. The discussion about the mixing of the light and so-called heavy neutrinos seems to be doubtful. Keywords: Lepton Flavor, Neutrino Oscillation, the Standard Model, Majoran and Dirac particles The charged leptons and quarks are described by virtue of = the Dirac equation. The same equation is valid for description ∑ Li const. (3) of the charge-neutral particles with a spin-1/2 under i condition of identity and non-identity of particles. In case of truly neutrally charged particles with spin-1/2 the Dirac At the same time ν l and ν l have represented equation is replaced by the Majoran equation. The structure respectively a particle and antiparticle, each of which could of the Standard model [1, 2, 3] is such that after a be in two states with different values of helicity. According to spontaneous symmetry alteration neutrino remains the this approach the neutrino can be treated as the Dirac particle.
    [Show full text]
  • The Harmonic Quarks and Hadrons up to 1000
    The harmonic quarks and hadrons up to 1000 MeV Oleg A. Teplov Institute of metallurgy and materiology of the Russian Academy of Science, Moscow. e-mail: [email protected] Abstract The calculations and analysis of a variance have shown, that masses of mesons up to 1000 MeV strongly correlate with a model spectrum of potential wells at mass of harmonic up-quark 105.6 MeV. It is shown, that probability of casual correspon- dence of the meson and model spectrums is less than 1 ppm. The harmonic quark model is applied to L=0 hadrons for the analysis of them structures and detec- tion of them filled quark shells. The possible quark structures of all mesons up to 1000 MeV are given. The completely neutral simple boson configurations are found for a threshold a proton-antiproton and the total mass of neutral pion and kaon. Mass relations are fulfilled with precision near 0.01%. It is supposed, that new re- lations is connected with Higgs mechanism of mass formation. The final precision of calculated masses of harmonic quarks is estimated as 0.005%. 1 Introduction A many various quark models were applied for investigation of hadrons structures [1]–[6]. The part from them used a relativistic approach, i.e. the masses of quarks are considered small values or even zero [5]. A potentials of various forms frequently use, including the harmonic quark oscillator and degree functions [3, 4, 5]. Others shell quark models were constructed in the no relativistic limit [1, 2, 4, 6]. On this way are received a good results arXiv:hep-ph/0408205v1 18 Aug 2004 for the mass spectrum of L=1 baryons [6].
    [Show full text]
  • Leptogenesis in the Superstring Inspired E6 Model
    Leptogenesis in the superstring inspired E6 model Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Abteilung Physik der Universit¨at Dortmund vorgelegt von Alexander Kartavtsev Februar 2007 Zusammenfassung Die beobachtete Baryonasymmetrie des Universums findet eine elegante Erkl¨arung im Rahmen des Szenarios der Leptogenese. Wir analysieren ver- schiedene Aspekte dieses Szenarios, wobei wir den Einfluss von St¨orungen der Energiedichte und der Metrik der Raum–Zeit auf die Erzeugung der Lepton- und Baryonasymmetrie mit einbeziehen. Wir betrachten ferner die Umwandlung der Leptonasymmetrie in eine Baryonasymmetrie und un- tersuchen die Effekte, die damit zusammenh¨angen, dass die Leptonasym- metrie von Null verschiedene chemische Potentiale der anderen Teilchen- sorten induziert. Es wird eine Absch¨atzung f¨ur die obere Grenze der Lep- tonasymmetrie im Standardmodell und im durch die Superstring–Theorie inspirierten E6–Modell gemacht, und die f¨ur die Leptogenese relevanten Eigenschaften dieses Modells werden im Detail diskutiert. Das Szenario der Leptogenese sagt von Null verschiedene Massen der Neutrinos vorher, die in Oszillations–Experimenten gemessen worden sind. Wir berechnen die f¨ur die Interpretation der experimentellen Resultate relevanten Wirkungs- querschnitte f¨ur die koh¨arente Pionerzeugung durch Neutrinostreuung an Kernen mittels geladener und neutraler Str¨ome. Abstract The observed baryon asymmetry of the Universe is elegantly explained in the framework of the baryogenesis via leptogenesis scenario. We analyze various aspects of this scenario including the influence of perturbations of the energy density and space–time metric perturbations on the generation of the lepton and baryon asymmetries. We also consider conversion of the lepton asymmetry into the baryon asymmetry and investigate the ef- fects associated with the fact, that the lepton asymmetry induces nonzero chemical potentials of the other species.
    [Show full text]
  • Exotics: Heavy Pentaquarks and Tetraquarks Arxiv:1706.00610V2
    DESY 17-071 Exotics: Heavy Pentaquarks and Tetraquarks Ahmed Ali,1 Jens S¨orenLange,2 and Sheldon Stone3 1DESY Theory Group, Notkestrasse 85, D-22607 Hamburg, Germany 2Justus-Liebig-Universit¨atGiessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany 3Physics Department, 201 Physics Building, Syracuse University, Syracuse, NY 13244-1130, USA July 31, 2017 Abstract For many decades after the invention of the quark model in 1964 there was no evidence that hadrons are formed from anything other than the simplest pairings of quarks and antiquarks, mesons being formed of a quark-antiquark pair and baryons from three quarks. In the last decade, however, in an explosion of data from both e+e− and hadron colliders, there are many recently observed states that do not fit into this picture. These new particles are called generically \ex- otics". They can be either mesons or baryons. Remarkably, they all decay into at least one meson formed of either a cc or bb pair. In this review, after the introduction, we explore each of these new discoveries in detail first from an experimental point of view, then subsequently give a theo- retical discussion. These exotics can be explained if the new mesons contain two-quarks and two- antiquarks (tetraquarks), while the baryons contain four-quarks plus an antiquark (pentaquarks). The theoretical explanations for these states take three divergent tracks: tightly bound objects, just as in the case of normal hadrons, but with more constituents, or loosely bound \molecules" similar to the deuteron, but formed from two mesons, or a meson or baryon, or more wistfully, they are not multiquark states but appear due to kinematic effects caused by different rescatterings of virtual particles; most of these models have all been post-dictions.
    [Show full text]
  • What Is a Truly Neutral Particle?
    What is a truly neutral particle ? Ung Chan Tsan To cite this version: Ung Chan Tsan. What is a truly neutral particle ?. International Journal of Modern Physics E, World Scientific Publishing, 2004, 13, pp.425-437. in2p3-00021944 HAL Id: in2p3-00021944 http://hal.in2p3.fr/in2p3-00021944 Submitted on 16 Jun 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 WHAT IS A TRULY NEUTRAL PARTICLE? TSAN UNG CHAN Laboratoire de Physique Subatomique et de Cosmologie IN2P3-CNRS et Université Joseph Fourier 53 Avenue des Martyrs, F38026 Grenoble Cedex FRANCE An electrically charged particle is necessarily different from its antiparticle while an electrically neutral particle is either identical with or different from its antiparticle. A truly neutral particle is a particle identical to its antiparticle which means that all its algebraic intrinsic properties are equal to zero since particle and antiparticle have all their algebraic intrinsic properties opposite. We propose two complementary methods to recognize the true nature of any electrically neutral particle. On the one hand, any non null algebraic intrinsic property of a particle (properties such as Q, magnetic moment already known in classical physics or quantum numbers such as baryonic number A, lepton number L or flavours which are meaningful only in quantum world) reveals that it is distinct from its antiparticle.
    [Show full text]
  • Neutrinoless Double Beta Decay: Theory
    Neutrinoless Double Beta Decay: Theory v T -1 Werner Rodejohann mv = m L - m D M R m D SSI 2015 MANITOP 17/08/15 Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology 1 Neutrinos... ...still interesting... 2 What is Neutrinoless Double Beta Decay? (A, Z) (A, Z + 2) + 2 e− (0νββ) → second order in weak interaction, Γ G4 Q5 rare! • ∝ F ⇒ not to be confused with (A, Z) (A, Z + 2) + 2 e− + 2ν ¯ (2νββ) • → e (Γ G4 Q11, but occurs more often...) ∝ F 3 Need to forbid single β decay: • even/even even/even • ⇒ → either direct (0νββ) or two simultaneous decays with virtual (energetically • forbidden) intermediate state (2νββ) 4 Ho,Ho, manymany nucleinuclei inin thisthis condition-condition- '-value )MeV+ '-value A Slide by A. Giuliani, see lecture by Lisa Kaufman 5 35 candidate isotopes • 10 are interesting: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 130Te, • 136Xe, 150Nd Q-value vs. natural abundance vs. reasonably priced enrichment • vs. association with a well controlled experimental technique vs... no superisotope ⇒ 0ν Natural abundance of different 0νββ candidate Isotopes G for 0νββ-decay of different Isotopes 35 20 18 30 16 25 14 ] -1 12 20 yrs -14 10 15 [10 ν 8 0 G 10 6 Natural abundance [%] 4 5 2 0 0 48 76 82 96 100 110 116 124 130 136 150 48 76 82 96 100 110 116 124 130 136 150 Ca Ge Se Zr Mo Pd Cd Sn Te Xe Nd Ca Ge Se Zr Mo Pd Cd Sn Te Xe Nd Isotope Isotope T 0ν 1/a T 0ν Q−5 1/2 ∝ 1/2 ∝ 6 Neutrinoless Double Beta Decay (A, Z) (A, Z + 2) + 2 e− (0νββ) Lepton Number Violation → ⇒ Standard Interpretation (neutrino physics) • Non-Standard Interpretations (BSM = neutrino physics) • 6 Int.
    [Show full text]