The Role of Traf2 in Zebrafish
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TLR3-Dependent Activation of TLR2 Endogenous Ligands Via the Myd88 Signaling Pathway Augments the Innate Immune Response
cells Article TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response 1 2, 1 3 Hellen S. Teixeira , Jiawei Zhao y, Ethan Kazmierski , Denis F. Kinane and Manjunatha R. Benakanakere 2,* 1 Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] (H.S.T.); [email protected] (E.K.) 2 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] 3 Periodontology Department, Bern Dental School, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected] Present address: Department of Pathology, Wayne State University School of Medicine, y 541 East Canfield Ave., Scott Hall 9215, Detroit, MI 48201, USA. Received: 30 June 2020; Accepted: 12 August 2020; Published: 17 August 2020 Abstract: The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 / to somehow act downstream of TLR3. -
MYD88 L265P Is a Marker Highly Characteristic Of, but Not Restricted To, Waldenstro¨M’S Macroglobulinemia
Leukemia (2013) 27, 1722–1728 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu ORIGINAL ARTICLE MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstro¨m’s macroglobulinemia C Jime´ nez1, E Sebastia´n1, MC Chillo´n1,2, P Giraldo3, J Mariano Herna´ndez4, F Escalante5, TJ Gonza´lez-Lo´ pez6, C Aguilera7, AG de Coca8, I Murillo3, M Alcoceba1, A Balanzategui1, ME Sarasquete1,2, R Corral1, LA Marı´n1, B Paiva1,2, EM Ocio1,2, NC Gutie´ rrez1,2, M Gonza´lez1,2, JF San Miguel1,2 and R Garcı´a-Sanz1,2 We evaluated the MYD88 L265P mutation in Waldenstro¨m’s macroglobulinemia (WM) and B-cell lymphoproliferative disorders by specific polymerase chain reaction (PCR) (sensitivity B10 À 3). No mutation was seen in normal donors, while it was present in 101/117 (86%) WM patients, 27/31 (87%) IgM monoclonal gammapathies of uncertain significance (MGUS), 3/14 (21%) splenic marginal zone lymphomas and 9/48 (19%) non-germinal center (GC) diffuse large B-cell lymphomas (DLBCLs). The mutation was absent in all 28 GC-DLBCLs, 13 DLBCLs not subclassified, 35 hairy cell leukemias, 39 chronic lymphocyticleukemias(16withM-component), 25 IgA or IgG-MGUS, 24 multiple myeloma (3 with an IgM isotype), 6 amyloidosis, 9 lymphoplasmacytic lymphomas and 1 IgM-related neuropathy. Among WM and IgM- MGUS, MYD88 L265P mutation was associated with some differences in clinical and biological characteristics, although usually minor; wild-type MYD88 cases had smaller M-component (1.77 vs 2.72 g/dl, P ¼ 0.022), more lymphocytosis (24 vs 5%, P ¼ 0.006), higher lactate dehydrogenase level (371 vs 265 UI/L, P ¼ 0.002), atypical immunophenotype (CD23 À CD27 þþFMC7 þþ), less Immunoglobulin Heavy Chain Variable gene (IGHV) somatic hypermutation (57 vs 97%, P ¼ 0.012) and less IGHV3–23 gene selection (9 vs 27%, P ¼ 0.014). -
2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A. -
Characterization of Perch Rhabdovirus (PRV) in Farmed Grayling Thymallus Thymallus
Vol. 106: 117–127, 2013 DISEASES OF AQUATIC ORGANISMS Published October 11 doi: 10.3354/dao02654 Dis Aquat Org FREEREE ACCESSCCESS Characterization of perch rhabdovirus (PRV) in farmed grayling Thymallus thymallus Tuija Gadd1,*, Satu Viljamaa-Dirks2, Riikka Holopainen1, Perttu Koski3, Miia Jakava-Viljanen1,4 1Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland 2Finnish Food Safety Authority Evira, Neulaniementie, 70210 Kuopio, Finland 3Finnish Food Safety Authority Evira, Elektroniikkatie 3, 90590 Oulu, Finland 4Ministry of Agriculture and Forestry, PO Box 30, 00023 Government, Finland ABSTRACT: Two Finnish fish farms experienced elevated mortality rates in farmed grayling Thy- mallus thymallus fry during the summer months, most typically in July. The mortalities occurred during several years and were connected with a few neurological disorders and peritonitis. Viro- logical investigation detected an infection with an unknown rhabdovirus. Based on the entire gly- coprotein (G) and partial RNA polymerase (L) gene sequences, the virus was classified as a perch rhabdovirus (PRV). Pairwise comparisons of the G and L gene regions of grayling isolates revealed that all isolates were very closely related, with 99 to 100% nucleotide identity, which suggests the same origin of infection. Phylogenetic analysis demonstrated that they were closely related to the strain isolated from perch Perca fluviatilis and sea trout Salmo trutta trutta caught from the Baltic Sea. The entire G gene sequences revealed that all Finnish grayling isolates, and both the perch and sea trout isolates, were most closely related to a PRV isolated in France in 2004. According to the partial L gene sequences, all of the Finnish grayling isolates were most closely related to the Danish isolate DK5533 from pike. -
MYD88 and Beyond: Novel Opportunities for Diagnosis, Prognosis and Treatment in Waldenstro¨M’S Macroglobulinemia
Leukemia (2014) 28, 1799–1803 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu CONCISE REVIEW MYD88 and beyond: novel opportunities for diagnosis, prognosis and treatment in Waldenstro¨m’s Macroglobulinemia O Landgren and N Tageja Waldenstro¨m’s Macroglobulinemia (WM) is a rare disease of the elderly with a median age of 63–68 years at diagnosis. Despite recent progress in biological insights and therapeutics, WM remains clinically challenging to diagnose and is difficult to manage with significant morbidity and lack of established curative therapies. Recently, the use of whole-genome sequencing has helped to identify a highly recurrent somatic mutation, myeloid differentiation factor 88 [MYD88] L265P in WM. This has fueled major interest in the field and as newer evidence accumulates, it is clear that that discovery of MYD88 L265P mutation may represent an important breakthrough in understanding the pathogenesis of WM and lymphoproliferative disorders. Recent scientific work in this field has also guided the identification of new targets such as CXCR4 and PI3K-delta that may have major implications in the future treatment of WM. This review discusses the role of MYD88 L265P mutations as well as targets beyond MYD88 in the setting of pathogenesis and development of future rational therapeutic trials focusing on patients diagnosed with WM. Leukemia (2014) 28, 1799–1803; doi:10.1038/leu.2014.88 INTRODUCTION transduces signals to the NF-kB transcription factors in response to Waldenstro¨m’s Macroglobulinemia (WM) is a rare hematological IL-1R1 signaling. MYD88 has a modular structure with a Toll/IL-1R malignancy with a reported age-adjusted incidence rate of 3.4 per (TIR) domain at its COOH terminus and a death domain at its 12 11 million among men and 1.7 per million among women in the NH2 terminus. -
And Sepsis-Induced Lung Inflammation and Mediates Myd88
The Journal of Immunology Caveolin-1 Tyr14 Phosphorylation Induces Interaction with TLR4 in Endothelial Cells and Mediates MyD88-Dependent Signaling and Sepsis-Induced Lung Inflammation Hao Jiao,*,†,1 Yang Zhang,*,†,1 Zhibo Yan,* Zhen-Guo Wang,* Gongjian Liu,† Richard D. Minshall,*,‡ Asrar B. Malik,‡ and Guochang Hu*,‡ Activation of TLR4 by the endotoxin LPS is a critical event in the pathogenesis of Gram-negative sepsis. Caveolin-1, the signaling protein associated with caveolae, is implicated in regulating the lung inflammatory response to LPS; however, the mechanism is not understood. In this study, we investigated the role of caveolin-1 in regulating TLR4 signaling in endothelial cells. We observed that LPS interaction with CD14 in endothelial cells induced Src-dependent caveolin-1 phosphorylation at Tyr14. Using a TLR4-MD2- CD14–transfected HEK-293 cell line and caveolin-1–deficient (cav-12/2) mouse lung microvascular endothelial cells, we demon- strated that caveolin-1 phosphorylation at Tyr14 following LPS exposure induced caveolin-1 and TLR4 interaction and, thereby, TLR4 activation of MyD88, leading to NF-kB activation and generation of proinflammatory cytokines. Exogenous expression of phosphorylation-deficient Y14F caveolin-1 mutant in cav-12/2 mouse pulmonary vasculature rendered the mice resistant to LPS compared with reintroduction of wild-type caveolin-1. Thus, caveolin-1 Y14 phosphorylation was required for the interaction with TLR4 and activation of TLR4-MyD88 signaling and sepsis-induced lung inflammation. Inhibiting caveolin-1 Tyr14 phosphoryla- tion and resultant inactivation of TLR4 signaling in pulmonary vascular endothelial cells represent a novel strategy for preventing sepsis-induced lung inflammation and injury. -
TLR Signaling Pathways
Seminars in Immunology 16 (2004) 3–9 TLR signaling pathways Kiyoshi Takeda, Shizuo Akira∗ Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Abstract Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing spe- cific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling. © 2003 Elsevier Ltd. All rights reserved. Keywords: TLR; Innate immunity; Signal transduction; TIR domain 1. Introduction 2. Toll-like receptors Toll receptor was originally identified in Drosophila as an A mammalian homologue of Drosophila Toll receptor essential receptor for the establishment of the dorso-ventral (now termed TLR4) was shown to induce the expression pattern in developing embryos [1]. In 1996, Hoffmann and of genes involved in inflammatory responses [3]. In addi- colleagues demonstrated that Toll-mutant flies were highly tion, a mutation in the Tlr4 gene was identified in mouse susceptible to fungal infection [2]. This study made us strains that were hyporesponsive to lipopolysaccharide [4]. aware that the immune system, particularly the innate im- Since then, Toll receptors in mammals have been a major mune system, has a skilful means of detecting invasion by focus in the immunology field. -
A Synthetic Cd8a:Myd88 Coreceptor Enhances
Published OnlineFirst October 20, 2017; DOI: 10.1158/0008-5472.CAN-17-0653 Cancer Microenvironment and Immunology Research A Synthetic CD8a:MyD88 Coreceptor Enhances CD8þ T-cell Responses to Weakly Immunogenic and Lowly Expressed Tumor Antigens Sabina Kaczanowska1, Ann Mary Joseph1, Jitao Guo1, Alexander K Tsai1, Jackline Joy Lasola1, Kenisha Younger1, Yuji Zhang1,2, Cruz Velasco Gonzales3, and Eduardo Davila1,4 Abstract Tcell–based immunotherapies are a promising approach for and Toll-like receptor signaling-related proteins. CD8a: patients with advanced cancers. However, various obstacles MyD88–expressing T cells improved antitumor responses in limit T-cell efficacy, including suboptimal T-cell receptor mice. Enhanced antitumor activity was associated with a (TCR) activation and an immunosuppressive tumor environ- unique tumor cytokine/chemokine signature, improved T-cell ment. Here, we developed a fusion protein by linking CD8a infiltration, reduced markers of T-cell exhaustion, elevated þ and MyD88 (CD8a:MyD88) to enhance CD8 T-cell levels of proteins associated with antigen presentation, and responses to weakly immunogenic and poorly expressed fewer macrophages with an immunosuppressive phenotype in tumor antigens. CD8a:MyD88–engineered T cells exhibited tumors. Given these observations, CD8a:MyD88 represents a increased proliferation and expression of effector and costi- unique and versatile approach to help overcome immunosup- mulatory molecules in a tumor antigen–dependent manner. pression and enhance T-cell responses to tumor antigens. These effects were accompanied by elevated activation of TCR Cancer Res; 77(24); 7049–58. Ó2017 AACR. Introduction ciated macrophage (6) and Th2 cytokine accumulation hamper antitumor T-cell responses. Moreover, chronic exposure to factors T cell–based immunotherapies are one of the most promising in the TME induces the expression of receptors that foster T-cell treatments for patients with advanced cancers, including melano- exhaustion, such as Tim-3, Lag-3, and PD-1 (7). -
Induced IFN Regulatory Factor 1 Transcription Factor by Myd88 in Toll-Like Receptor-Dependent Gene Induction Program
Evidence for licensing of IFN-␥-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program Hideo Negishi*, Yasuyuki Fujita*, Hideyuki Yanai*, Shinya Sakaguchi*, Xinshou Ouyang*, Masahiro Shinohara†, Hiroshi Takayanagi†, Yusuke Ohba*, Tadatsugu Taniguchi*‡, and Kenya Honda* *Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; and †Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan Contributed by Tadatsugu Taniguchi, August 18, 2006 The recognition of microbial components by Toll-like receptors (TLRs) In the present study we investigated how IFN-␥-induced IRF1 initiates signal transduction pathways, which trigger the expression contributes to TLR-mediated signaling. We demonstrate that of a series of target genes. It has been reported that TLR signaling is IRF1 forms a complex with MyD88, similar to the case of IRF4, enhanced by cytokines such as IFN-␥, but the mechanisms underlying IRF5, and IRF7. We also provide evidence that IRF1 induced this enhancement remain unclear. The MyD88 adaptor, which is by IFN-␥ is activated by MyD88, which we refer to as ‘‘licensing,’’ essential for signaling by many TLRs, recruits members of the IFN and migrates rapidly into the nucleus to mediate an efficient regulatory factor (IRF) family of transcription factors, such as IRF5 and induction of IFN-, iNOS, and IL-12p35. Our study therefore IRF7, to evoke the activation of TLR target genes. In this study we revealed that IRF1 is a previously unidentified member of the demonstrate that IRF1, which is induced by IFN-␥, also interacts with multimolecular complex organized via MyD88 and that the IRF1 and is activated by MyD88 upon TLR activation. -
Characteristics of Three Rhabdoviruses from Snakehead Fish Ophicephalus Striatus
DISEASES OF AQUATIC ORGANISMS Vol. 13: 89-94, 1992 Published July 23 Dis. aquat. Org. l Characteristics of three rhabdoviruses from snakehead fish Ophicephalus striatus 'Department of Microbiology, Oregon State University, Nash Hall 220, Corvallis, Oregon 97331-3804, USA Oregon Department of Fish and Wildlife, Department of Microbiology, Oregon State University, Nash Hall 220, Corvallis, Oregon 97331-3804, USA Laboratory for Fish Disease Research, Department of Microbiology, Oregon State University, Mark 0. Hatfield Marine Science Center, Newport, Oregon 97365-5296, USA ABSTRACT: Protein profiles and serological characteristics of 3 rhabdoviruses from snakehead fish Ophicephalus striatus were determined and compared to 5 known fish rhabdoviruses and 1 mammalian rhabdovirus. The snakehead rhabdovirus (SHRV) exhibited a bacilliform morphology and a Lyssavirus-type protein profile. The ulcerative disease rhabdovirus isolates (UDRV-BP and UDRV-19) were indistinguishable and exhibited bullet-shaped morphology and a Vesiculovirus-type protein profile. At present, none of the 3 viruses is known to be the cause of disease in any species of fish. UDRV-BP and UDRV-19 were serologically identical but distinct from SHRV and from 5 other fish rhabdoviruses. SHRV was serologically unrelated to any of the fish rhabdoviruses examined. INTRODUCTION have been conducted. In this report, the morphology, structural proteins and serological characteristics of Since 1980, a severe epizootic disease, often charac- 3 isolates (SHRV, UDRV-BP and UDRV-19) are de- terized by necrotic ulcerations, has occurred among scribed and compared to each other and to other both wild and cultured snakehead fish Ophicephalus rhabdoviruses. striatus in southeast Asia, Malaysia, Thailand, Lao People's Democratic Republic and Burma (Boonyarat- palin 1989). -
Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University
Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors Daochun Sun Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). Wayne State University Dissertations. Paper 558. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS by DAOCHUN SUN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: _______________________________________ Advisor Date _______________________________________ _______________________________________ _______________________________________ © COPYRIGHT BY DAOCHUN SUN 2012 All Rights Reserved DEDICATION This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them. ii ACKNOWLEDGMENTS I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true. I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr. -
Genetically Engineered Viral Hemorrhagic Septicemia Virus (VHSV)
Fish and Shellfish Immunology 95 (2019) 11–15 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Genetically engineered viral hemorrhagic septicemia virus (VHSV) vaccines T ∗ Min Sun Kima, Ki Hong Kimb, a Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea b Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea ARTICLE INFO ABSTRACT Keywords: Viral hemorrhagic septicemia virus (VHSV) has been one of the major causes of mortality in a wide range of VHSV freshwater and marine fishes worldwide. Although various types of vaccines have been tried to prevent VHSV Reverse genetics disease in cultured fishes, there are still no commercial vaccines. Reverse genetics have made it possible to Vaccine change a certain regions on viral genome in accordance with the requirements of a research. Various types of Attenuated VHSV VHSV mutants have been generated through the reverse genetic method, and most of them were recovered to Single-cycle-VHSV investigate the virulence mechanisms of VHSV. In the reverse genetically generated VHSV mutants-based vac- VHSV vector cines, high protective efficacies of attenuated VHSVs and single-cycle VHSV particles have been reported. Furthermore, the application of VHSV for the delivery tools of heterologous antigens including not only fish pathogens but also mammalian pathogens has been studied. As not much research has been conducted on VHSV mutants-based vaccines, more studies on the enhancement of immunogenicity, vaccine administration routes, safety to environments are needed for the practical use in aquaculture farms. 1. Introduction antibodies, the development of prophylactic vaccines against VHSV has mainly focused on the G protein.