Fragaria: a Genus with Deep Historical Roots and Ripe for Evolutionary and Ecological Insights
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant List Bristow Prairie & High Divide Trail
*Non-native Bristow Prairie & High Divide Trail Plant List as of 7/12/2016 compiled by Tanya Harvey T24S.R3E.S33;T25S.R3E.S4 westerncascades.com FERNS & ALLIES Pseudotsuga menziesii Ribes lacustre Athyriaceae Tsuga heterophylla Ribes sanguineum Athyrium filix-femina Tsuga mertensiana Ribes viscosissimum Cystopteridaceae Taxaceae Rhamnaceae Cystopteris fragilis Taxus brevifolia Ceanothus velutinus Dennstaedtiaceae TREES & SHRUBS: DICOTS Rosaceae Pteridium aquilinum Adoxaceae Amelanchier alnifolia Dryopteridaceae Sambucus nigra ssp. caerulea Holodiscus discolor Polystichum imbricans (Sambucus mexicana, S. cerulea) Prunus emarginata (Polystichum munitum var. imbricans) Sambucus racemosa Rosa gymnocarpa Polystichum lonchitis Berberidaceae Rubus lasiococcus Polystichum munitum Berberis aquifolium (Mahonia aquifolium) Rubus leucodermis Equisetaceae Berberis nervosa Rubus nivalis Equisetum arvense (Mahonia nervosa) Rubus parviflorus Ophioglossaceae Betulaceae Botrychium simplex Rubus ursinus Alnus viridis ssp. sinuata Sceptridium multifidum (Alnus sinuata) Sorbus scopulina (Botrychium multifidum) Caprifoliaceae Spiraea douglasii Polypodiaceae Lonicera ciliosa Salicaceae Polypodium hesperium Lonicera conjugialis Populus tremuloides Pteridaceae Symphoricarpos albus Salix geyeriana Aspidotis densa Symphoricarpos mollis Salix scouleriana Cheilanthes gracillima (Symphoricarpos hesperius) Salix sitchensis Cryptogramma acrostichoides Celastraceae Salix sp. (Cryptogramma crispa) Paxistima myrsinites Sapindaceae Selaginellaceae (Pachystima myrsinites) -
Characteristics of Fragaria Vesca Yield Parameters and Anthocyanin Accumulation Under Water Deficit Stress
plants Article Characteristics of Fragaria vesca Yield Parameters and Anthocyanin Accumulation under Water Deficit Stress Rytis Rugienius 1,* , Vidmantas Bendokas 1 , Tadeusas Siksnianas 1, Vidmantas Stanys 1, Audrius Sasnauskas 1 and Vaiva Kazanaviciute 2 1 Lithuanian Research Centre for Agriculture and Forestry, Department of Orchard Plant Genetics and Biotechnology, Institute of Horticulture, LT-54333 Babtai, Lithuania; [email protected] (V.B.); [email protected] (T.S.); [email protected] (V.S.); [email protected] (A.S.) 2 Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania; [email protected] * Correspondence: [email protected]; Tel.: +370-37-555253 Abstract: Plants exposed to drought stress conditions often increase the synthesis of anthocyanins—natural plant pigments and antioxidants. However, water deficit (WD) often causes significant yield loss. The aim of our study was to evaluate the productivity as well as the anthocyanin content and composition of berries from cultivated Fragaria vesca “Rojan” and hybrid No. 17 plants (seedlings) grown under WD. The plants were grown in an unheated greenhouse and fully irrigated (control) or irrigated at 50% and 25%. The number of berries per plant and the berry weight were evaluated every 4 days. The anthocyanin content and composition of berries were evaluated with the same periodicity using HPLC. The effect of WD on the yield parameters of two evaluated F. vesca genotypes differed depending on the harvest time. The cumulative yield of plants under WD was not less Citation: Rugienius, R.; Bendokas, V.; Siksnianas, T.; Stanys, V.; Sasnauskas, than that of the control plants for 20–24 days after the start of the experiment. -
Kim E. Hummer USDA ARS National Clonal Germplasm Repository 33447 Peoria Road Corvallis, Oregon 97333-2521 U.S.A
A new species of Fragaria (Rosaceae) from Oregon Kim E. Hummer USDA ARS National Clonal Germplasm Repository 33447 Peoria Road Corvallis, Oregon 97333-2521 U.S.A. [email protected] ABSTRACT Fragaria cascadensis K.E. Hummer, sp. nov. is endemic to the western high Cascade Mountain Range in Oregon, United States. This deca- ploid species can be distinguished by adaxial leaf hairs, distal tooth of the terminal leaflet always smaller than adjacent teeth, and comma- shaped achenes. Its known range is in the western Cascade Mountains from the Columbia River in the north, to the vicinity of Crater Lake in the south, at elevations of 1,000 to 3,800 m, in sandy-clay loams of volcanic origin, in forest clearings and open meadows. RESUMEN Fragaria cascadensis K.E. Hummer, sp. nov. es endémica de la Cordillera de las Cascadas en Oregón, Estados Unidos. Esta especie deca- ploide puede diferenciarse por los pelos del envés de las hojas, diente distal del foliolo terminal siempre más pequeño que los dientes adya- centes, y los aquenios en forma de coma. Su rango conocido va del oeste de la Cordillera de las Cascadas desde el río Columbia en el norte, a las proximidades del Crater Lake en el sur, a elevaciones de 1,000 a 3,800 m, en margas arenoso-calcáreas de origen volcánico, en claros de bosque y en parados abiertos. DESCRIPTION Fragaria cascadensis Hummer, sp. nov. (Figs. 1–3). TYPE: U.S.A. OREGON. Lane Co.: US NFDR 5897, southern exposure, dis- turbed area at forest edge, along roadside ditch, altitude 1433 m, with Pseudotsuga menziesii, 8 Aug 2011, K.E. -
Needham Hawii 0085O 10368.Pdf
BREADFRUIT (ARTOCARPUS ALTILIS): THE IMPACT OF ENVIRONMENT ON NUTRITIONAL COMPOSITION AND IMPLICATIONS FOR HAWAIʻI COMMUNITIES A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT AND SOIL SCIENCES JULY 2019 By Amber Mei Lan Waiokeola Needham Thesis Committee: Noa Lincoln, Chairperson Rajesh Jha Theodore Radovich Alyssa Cho Keywords: Artocarpus altilis; Breadfruit; consumer survey; environmental variables; human nutrition 1 Acknowledgements He wahi leo mahalo kēia i kuʻu ʻohana, ke akua, nā ʻaumākua a me kuʻu kūpuna ʻāina e mālama mau mai ka wā hūpēkole ʻānō. Eia nō au, he pūkoʻa kani ʻāina, he māmakakaua o kēia paio hoʻoluluhi nei o ka hele kulanui. He kauoha mana loa kēia e hōʻike ai i ka ʻike, ka ikaika, ke akamai, ka maopopo pono, ka ʻike pāpālua, a me ka mana o ka Hawaiʻi; pēlā nō ā i ke aloha ʻāina hope loa. Paʻi ka lima! Paʻi ka lima! Paʻi ka lima! Eō! Many thanks to my committee members for their patience and willingness to guide me through this research. A special thank-you is due to Dr. Jha for his nurturing nature and allowing me use of his laboratory for my analyses. Each farmer and his/her family, who have participated openly in this study and in other breadfruit studies that have directly supported this research, are greatly appreciated as ultimately this compilation of time and energy has been for and with them. An incredible amount of support was given to me and this research by members of the Indigenous Cropping Systems Lab, the Jha Lab, Native Hawaiian Student Services, Maui Nui Botanical Gardens, Dr. -
Potentilla Spp.)-The Five Finger Weeds 1
r Intriguing World of Weeds iiiiiiiiiaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Cinquefoils (Potentilla spp.)-The Five Finger Weeds 1 LARRY W. MITICH2 INTRODUCTION In 1753 Linneaus named the genus Potentilla in his Species Plantarum (4). The common name five finger is m cd frequently for this group of plants ( 18, 29). The genus, in the rose family (Rosaceae), is composed of about 500 north temperate species (50 in North America, 75 Euro pean species) of mostly boreal herbs and shrubs. Indeed, Potentilla extends far into arctic regions (22, 29). How ever, a few species are south temperate. And although less common, some species are also found in alpine and high 11,ountain regions of the tropics and South America; P. anserinoides Lehm. is a New Zealand native (27). Cinquefoil, which means five leaves, is an old herb, full of mystery and magic, which matches the charm Rough cinquefoil, Potentilla norvegica L. of its name. The plant protects its frag ile blooms in bad weather by contract ing the leaves so that they curve over the liver in humans (29). It was prescribed as a tea or in and shelter the flower (11). Cinquefoil wine for diarrhea, leukorrhea, kidney stones, arthritis, was credited with supernatural powers, cramps, and reducing fever (22). However, in recent times and was an essential ingredient in love divination. Accord the roots are being used for a gargle and mouthwash (11). ing to Alice Elizabeth Bacon, frogs liked to sit on this In America the outer root bark of creeping cinquefoil (P. plant-"the toad will be much under Sage, frogs will be in reptans L.) is used to stop nosebleeds. -
Introduction to Common Native & Invasive Freshwater Plants in Alaska
Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting -
State of Nature in the Peak District What We Know About the Key Habitats and Species of the Peak District
Nature Peak District State of Nature in the Peak District What we know about the key habitats and species of the Peak District Penny Anderson 2016 On behalf of the Local Nature Partnership Contents 1.1 The background .............................................................................................................................. 4 1.2 The need for a State of Nature Report in the Peak District ............................................................ 6 1.3 Data used ........................................................................................................................................ 6 1.4 The knowledge gaps ....................................................................................................................... 7 1.5 Background to nature in the Peak District....................................................................................... 8 1.6 Habitats in the Peak District .......................................................................................................... 12 1.7 Outline of the report ...................................................................................................................... 12 2 Moorlands .............................................................................................................................................. 14 2.1 Key points ..................................................................................................................................... 14 2.2 Nature and value .......................................................................................................................... -
Diversity of Volatile Patterns in Sixteen Fragaria Vesca L. Accessions in Comparison to Cultivars of Fragaria ×Ananassa D
Journal of Applied Botany and Food Quality 86, 37 - 46 (2013), DOI:10.5073/JABFQ.2013.086.006 1Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Quedlinburg, Germany 2Hansabred GmbH & Co. KG, Dresden, Germany Diversity of volatile patterns in sixteen Fragaria vesca L. accessions in comparison to cultivars of Fragaria ×ananassa D. Ulrich1*, K. Olbricht 2 (Received April 4, 2013) Summary of the latter was described as much more sweetish-aromatic than those of the F. ×ananassa cultivars but with some astringent and Fragaria vesca is the most distributed wild species in the genus bitter impressions (ULRICH et al., 2007). F. vesca is characterized by Fragaria. Due to this biogeography, a high diversity is to expect. outstanding flowery notes like violet and acacia. But especially in During two harvest seasons, sixteen accessions from different lo- the white mutant F. vesca f. alba (Ehrh.) Staudt, these impressions cations from the most eastern habitat at Lake Baikal in Siberia, from sometimes were described by the testers with negative statements Middle and Southern Europe and Northern Europe with Scandinavia like over-aromatic and perfume-like. By gas chromatography- and Iceland were investigated as well as two of the three described olfactometry (GCO) experiments, the flowery impressions were North American subspecies and three F. vesca cultivars. Five very assigned to the content of the aromatic ester methyl anthranilate distinct European F. ×ananassa cultivars were chosen to serve as a whereas the herbaceous impressions are caused by a high content comparison. Beside brix value and acid contents, the aroma patterns of terpenoids. -
Strawberries
STRAWBERRIES JUNE-BEARING ( MAIN CROP ) Cultivar Comments Benicia Fruit have excellent flavor compared to other available June-bearing strawberries, particularly during early spring. The berries maintain their size well over the course of the season instead of diminishing in size toward the end. The plants demonstrate moderate to high plant vigor efficiency. Chandler Large, firm fruit with very good flavor. Good for fresh market and for freezing. Plant produces numerous runners. Douglas Large to very large, firm fruit of excellent flavor and very high sugar content. A heavy producer, 'Douglas' produces a much heavier yield of high quality berries than other early varieties. Well suited to coastal and Southern California. Lassen Medium to large berry of good quality. Crops produced in spring and fall. A good variety for Southern California. Plant is somewhat tolerant of saline soils. Mojave Plants have moderate to high plant vigor, especially in the early parts of the season. Berries are delicious and moderately firm. Sequoia Exceptionally large, soft berry of outstanding quality has won many taste tests. Fruit begins to ripen in January and continues for many months. Preforms like an everbearer in mild climates. Vigorous plants produce many runners and are somewhat tolerant of alkaline soils. Tioga Medium to large, firm berry with very good flavor. Yield, size, and quality of fruit is better than that of 'Lassen'. Heavy producer. Fruit is an excellent shipper and good for fresh eating or for preserves, pies, or freezing. EVERBEARING Cultivar Comments Brighton Showy flowers and big, beautiful berries make this a good variety for hanging baskets. -
Sex-Allocation Plasticity in Hermaphrodites of Sexually Dimorphic Fragaria Virginiana (Rosaceae)
231 Sex-allocation plasticity in hermaphrodites of sexually dimorphic Fragaria virginiana (Rosaceae) Eric J. Bishop, Rachel B. Spigler, and Tia-Lynn Ashman Abstract: Sex-allocation plasticity is thought to play an important role in the evolution of separate sexes in plants. Ac- cordingly, much attention has been paid to environmentally induced variation in fruit and seed production in sexually di- morphic species, but we know little about whether this variation arises as a direct response to environmental variation or is instead an indirect consequence of changes in plant size. In this study, we characterize sex-allocation plasticity across a resource gradient for several reproductive traits in hermaphrodites of gyno(sub)dioecious Fragaria virginiana Duch. We find significant plasticity, on average, for flower number, proportion fruit set, ovule number, proportion seed set, and run- ner number in response to resource variation. Plasticity of most traits examined tended to be at least partially independent of variation in plant size, suggesting that it is not simply an indirect consequence of plant allometry. Moreover, we find genetic variation for plasticity of key reproductive traits. Comparisons of relative plasticities among traits reveal that F. virginiana hermaphrodites are more likely to adjust female investment via changes in fruit and seed set than ovule num- ber, and most likely to adjust male investment via flower number rather than anther number or pollen per anther, although there is genotypic variation for plasticity in pollen per anther. Evidence of within-population variation can logically be ex- tended to suggest that variation in hermaphrodite sex-expression seen among natural populations of F. -
Comparative Transcriptome Analysis Uncovers the Regulatory Functions Of
Bai et al. Horticulture Research (2019) 6:42 Horticulture Research https://doi.org/10.1038/s41438-019-0128-4 www.nature.com/hortres ARTICLE Open Access Comparative transcriptome analysis uncovers the regulatory functions of long noncoding RNAs in fruit development and color changes of Fragaria pentaphylla Lijun Bai1,2, Qing Chen 1,LeiyuJiang1,YuanxiuLin1,YuntianYe1,PengLiu2, Xiaorong Wang1 and Haoru Tang1 Abstract To investigate the molecular mechanism underlying fruit development and color change, comparative transcriptome analysis was employed to generate transcriptome profiles of two typical wild varieties of Fragaria pentaphylla at three fruit developmental stages (green fruit stage, turning stage, and ripe fruit stage). We identified 25,699 long noncoding RNAs (lncRNAs) derived from 25,107 loci in the F. pentaphylla fruit transcriptome, which showed distinct stage- and genotype-specific expression patterns. Time course analysis detected a large number of differentially expressed protein-coding genes and lncRNAs associated with fruit development and ripening in both of the F. pentaphylla varieties. The target genes downregulated in the late stages were enriched in terms of photosynthesis and cell wall organization or biogenesis, suggesting that lncRNAs may act as negative regulators to suppress photosynthesis and cell wall organization or biogenesis during fruit development and ripening of F. pentaphylla. Pairwise comparisons of two varieties at three developmental stages identified 365 differentially expressed lncRNAs in total. Functional 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; annotation of target genes suggested that lncRNAs in F. pentaphylla may play roles in fruit color formation by regulating the expression of structural genes or regulatory factors. Construction of the regulatory network further revealed that the low expression of Fra a and CHS may be the main cause of colorless fruit in F. -
The Best Paper Ever
Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz” Métodos de conservação pós-colheita de pedúnculos de caju Juliana Tauffer de Paula Tese apresentada para obtenção do título de Doutora em Ciências. Área de concentração: Fitotecnia Piracicaba 2017 Juliana Tauffer de Paula Engenheira Agrônoma Métodos de conservação pós-colheita de pedúnculos de caju Orientador: Prof. Dr. RICARDO ALFREDO KLUGE Tese apresentada para obtenção do título de Doutora em Ciências. Área de concentração: Fitotecnia Piracicaba 2017 3 RESUMO Métodos de conservação pós-colheita de pedúnculos de caju O pedúnculo de caju é um pseudofruto carnoso, suculento, de ótimo aroma, apresenta altos teores de ácido ascórbico e compostos fenólicos. Apesar da condição nutricional, a vida útil e a comercialização in natura do pedúnculo é limitada principalmente devido a sua alta perecibilidade e susceptibilidade ao ataque de microrganismos patogênicos. O objetivo do trabalho foi estudar métodos de conservação pós-colheita de pedúnculos de caju, entre eles: radiação gama, quitosana e atmosfera modificada passiva, de forma primeiramente individual para avaliar o efeito na conservação dos principais atributos físico-químicos, nutricionais e nos aspectos fisiológicos e depois em combinação para verificar efeitos sobre a vida útil, na atividade antioxidante e no perfil de compostos voláteis. No experimento de irradiação a dose de 2,0 kGy reduziu drasticamente a incidência de podridão mas ocasionou alta perdas de firmeza, ácido ascórbico, fenólicos e de pigmentos. A dose de 0,5 kGy proporcionou a melhor qualidade dos pedúnculos, pois além de reduzir podridões, reduziu perda de massa, manteve valores adequados de firmeza e, diferente da maior dose, não interferiu na pigmentação da epiderme, além de manter altos os níveis de compostos fenólicos e reduzir a adstringência.